PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

Exploring the Use of Code Generation Patterns
for the Creation of Evolvable Documents and Runtime Artifacts

Herwig Mannaert and Gilles Oorts

Normalized Systems Institute
University of Antwerp, Belgium
Email: herwig.mannaert@uantwerp.be

Abstract—Many organizations are often required to produce
large amounts of documents in various versions and variants.
Though many solutions for document management and creation
exist, the streamlined automatic generation of modular and
evolvable documents remains challenging. It has been argued
in previous work that a meta-circular metaprogramming archi-
tecture enables a modular creation of source artifacts with very
limited programming. In this contribution, a proof of concept is
explored to generate modular LaTeX documents from runtime
information systems through the use of a reduced version of
this metaprogramming environment. The actual generation of
several basic administrative document sources is explained, and
it is argued that this architecture can easily be applied to generate
other types of source artifacts using live runtime data.

Index Terms—Evolvability; Normalized Systems Theory;
Metaprogramming; Document Creation; Single Sourcing

I. INTRODUCTION

Organizations are often required to produce large amounts
of versions and variants of certain documents. While they have
traditionally focused their efforts into streamlining technical
product documentation [1], they are now also looking to build
business value by creating personalized customer-faced docu-
ments [2]. At the same time, current information systems are
producing massive amounts of relatively simple documents,
e.g., invoices and timesheets, based on corporate data.

The streamlined and possibly automatic generation of such
documents leads to concepts like modularization and single
sourcing [1], both reminiscent of similar techniques used in
the creation of software. Just like in software, dealing with
versions and variants requires the design of document struc-
tures that deplete the rippling of changes in order to provide a
level of evolvability [3]. Moreover, the use of parameter data
during the instantiation of document variants seems similar to
the inner workings of code generation environments.

In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment [4], and
have argued that this architecture enables a scalable collab-
oration between various metaprogramming projects featuring
different meta-models [5][6]. In this contribution, we inves-
tigate the use of a reduced version of this code generation
environment within the generated software applications. More
specifically, we explore the creation of evolvable artifacts, such

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

Koen De Cock and Peter Uhnak

Research and Development
NSX BVBA, Belgium
Email: koen.de.cock@nsx.normalizedsystems.org

as documents, where runtime data of the generated software
application is used to instantiate the artifacts.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss some aspects and terminology
related to the creation and single sourcing of documents, an
important class of artifacts created by information systems
at runtime. In Section III-A, we explain the basic concept
of Normalized Systems Theory with regard to the design of
evolvable artifacts. Section III-B recapitulates the architec-
ture of our meta-circular code generation environment, and
explains that this expansion of source code artifacts is not
limited to programming code. Section IV presents how the
generation environment can be configured to instantiate and
expand runtime artifacts such as documents using live data.
Finally, we present some conclusions in Section V.

II. MODULAR AND EVOLVABLE DOCUMENT CREATION

While organizations have traditionally focused their efforts
in document management into streamlining product docu-
mentation [1], there is a widespread belief that personalized
customer-faced documents can build business value by enhanc-
ing customer loyalty [2]. However, repurposing internal docu-
ments to be used for online purposes such as sales, marketing,
product documentation and customer support has proven to
be diffcult. Moreover, it is hard to find any best practices or
repeatable models developed that address this challenge [1].
In this section, we briefly discuss some techniques and issues
regarding the creation of evolvable documents.

A. Document Creation and Single Sourcing

A successful approach to handle any complex system or
problem is modularization [7][8]. An example of such an
approach in the area of document management is Component
Content Management (CCM), defined as a set of methodolo-
gies, processes, and technologies that rely on the principles
of reuse, granularity, and structure to allow writers to author,
review, and repurpose organizational content as small compo-
nents [1]. One of the fundamental ideas of component content
management is the separation of content and layout [9]. The
granularity of a component in CCM is defined by the smallest
unit of usable information [10]. Several standards exist that

17

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

define practical and technical implementation guidelines for
creating modular and reusable content. According to Andersen
and Batova [1], the most widely implemented standard is the
Darwin Information Typing Architecture (DITA).

Originally regarded as the broader discipline of CCM in
the early 2000s, single sourcing has been defined as one of
the fundamental aspects of CCM concerned with the design
and production of modular, structured content. An elaborate
description of single sourcing and its concepts, advantages,
methodology, guidelines and practical examples, can be found
in [11]. There are three fundamental aspects to single sourcing.
First, content is made reusable by separating content from
format. A second aspect is modular writing. Content is written
in stand-alone modules instead of whole documents. This
allows content to be assembled into documents from singular
source files that contain unique content, the third aspect
of single sourcing. Besides assembling the content modules
into documents, i.e., combining source files in a hierarchical
and sequential way with a distinct combination of audience,
purpose and format, the modules need to be linked, i.e.,
connected to make them into coherent documents.

Enabling the content creators to focus on the actual sub-
stance of documents instead of having to deal with layout and
publishing technologies, should lead to various advantages:
saving time and money, improving document usability, and
increasing team synergy [11]. Single sourcing recognizes
two types of document creation. Repurposing entails merely
reusing content modules for a different output format. Re-
assembly on the other hand, is a more impactful way of reusing
modules to develop documents for different purposes or au-
diences. Contrary to repurposing, re-assembly also includes
changing the sequence of modules, the conditional inclusion,
and the hierarchical level of inclusion.

B. Modular and Parametrized Document Generation

The emergence of concepts like modularization, CCM, and
single sourcing regarding the management of certain classes of
documents, e.g., technical documentation or personalized doc-
uments, is highly reminiscent of similar concepts in software
codebases. Indeed, software developers have been striving for
decades to modularize codebases, to separate concerns into
singular source files, and to assemble source code modules
into software applications, in a continuous effort — or quest
— to reuse and repurpose these source modules.

Both documents and software source bases can have suc-
cessive versions in time that contain additions, corrections or
omissions to its content, and can be branched into concurrent
variants when variations in content and/or purpose occur.
Just like in software, dealing with versions and variants of
a document requires the design of document structures to
provide a desired level of evolvability. Evolvable documents
are documents that do not hinder or limit the application of
changes made to their structure or content. They are free from
ripple effects that would cause changes to the documents to
be highly difficult and costly [3].

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

Documents, such as technical and/or personalized docu-
ments, can have many concurrent variants. In technical docu-
ments, these variants range from the variation or even condi-
tional presence of entire technical descriptions and procedures
due to differences in the components of various installations,
to simple parameter values like the serial number, color, or
location of the documented installation or product. But short
and simple documents, like letters, invoices or timesheets, can
also be considered to have many variants due to different
parameter values. This aspect of parameter-based or model-
based instantiation of document variants, is highly reminiscent
of environments for code generation in software.

III. EXPANSION OF EVOLVABLE MODULAR STRUCTURES

In this section, we discuss the expansion and assembly
of evolvable modular structures. We introduce Normalized
Systems Theory (NST) as a theoretical basis to design infor-
mation systems —and conceptually other kinds of modular
structures— with higher levels of evolvability, and its realiza-
tion in a framework to generate and assemble programming
code, and possibly other types of source artifacts.

A. Normalized Systems Theory and Evolvable Structures

NST was proposed to provide an ex-ante proven approach
to build evolvable software [12], [13], [14]. It is theoretically
founded on the concept of systems theoretic stability, a well-
known systems property demanding that a bounded input
should result in a bounded output. In the context of information
systems, this implies that a bounded set of changes should only
result in a bounded impact to the software. This implies that
the impact of changes to an information system should only
depend on the size of the changes to be performed, and not
on the size of the system to which they are applied. Changes
causing an impact dependent on the size of the system are
called combinatorial effects, and considered to be a major
factor limiting the evolvability of information systems. The
theory prescribes a set of theorems and formally proves that
any violation of any of the following theorems will result in
combinatorial effects (thereby hampering evolvability) [12],
[13], [14]:

o Separation of Concerns

o Action Version Transparency
e Data Version Transparency
e Separation of States

Applying the theorems in practice results in very fine-grained
modular structures in software applications, which are in gen-
eral difficult to achieve by manual programming. Therefore,
the theory also proposes a set of patterns to generate significant
parts of software systems which comply with these theorems.
More specifically, NST proposes five elements that serve as
design patterns for information systems [13][14]:

o data element
e action element
o workflow element

18

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

e connector element
o trigger element

Based on these elements, NST software is generated in a rela-
tively straightforward way. Due to this simple and determinis-
tic nature of the code generation mechanism, i.e., instantiating
parametrized copies, it is referred to as NS expansion and the
generators creating the individual coding artifacts are called
NS expanders. This generated code can be complemented with
custom code or craftings at well specified places (anchors)
within the skeletons or boiler plate code. This results in the
structural separation of four dimensions of variability [14][6]:

1) Mirrors representing data and flow models, using stan-
dard techniques like ERD (Entity Relationship Diagram)
and BPMN (Business Process Model and Notation).

2) Skeletons expanded by instantiating the parametrized
templates of the various element patterns.

3) Utilities corresponding to the various technology frame-
works that take care of the cross-cutting concerns.

4) Craftings or custom code to add non-standard function-
ality that is not provided by the skeletons.

It has been extensively argued that the design theorems and
structures of NST are applicable to all hierarchical modular
architectures that exhibit cross-cutting concerns [15]. More
specifically related to documents, the software theorems and
element patterns of NST are very similar to the principles of
CCM, that rely on reuse and fine-grained modular structures to
allow writers to author, review, and repurpose organizational
content as small components, and to the concept of single
sourcing, demanding the separation of content and layout.
Moreover, it has been shown that the application of NST to
the design of evolvable document management systems leads
to architectures that are in accordance with the principles of
CCM and single sourcing [3], [16], [17].

B. Meta-Circular Code Generation or Artifact Expansion

NST has been realized in software through a code gener-
ation environment to instantiate instances of the various ele-
ments or design patterns. Due to the simple and deterministic
nature of this code generation, i.e., instantiating parametrized
copies, it is referred to as NS expansion. We have also ar-
gued that metaprogramming or code generation environments
exhibit a rather similar and straightforward internal structure
[5], [6], distinguishing:

o model files containing the model parameters.
o reader classes to read the model parameter files.
o model classes to represent the model parameters.

o control classes to select and invoke the generator classes.
o generator classes instantiating the source templates, and
feeding the model parameters to the source templates.

o source templates containing the parametrized code.

As the NST metaprogramming environment was developed
for the creation of web information systems, it has always
included the generation of various building blocks, e.g., reader

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

and model classes, which are similar to those of the code gen-
eration environment itself. This has made it possible to merge
those generated code modules with the corresponding code
generation modules, thereby evolving the metaprogramming
environment into a meta-circular architecture [4]. This meta-
circular architecture, described in [4], [5], [6], is schematically
represented in Figure 1 and entails several advantages. First,

Define meta-models

Define expanders
Implement templates

l

Expander Model II

Code Templates

Expand

MetaCircle

Prime Radiant

Fig. 1. The meta-circular architecture for NS expanders and
meta-application.

this architecture enables the regeneration of the metaprogram-
ming code itself, thereby avoiding the growing burden of
maintaining the often complex meta-code, such as adapting
it to new technologies. Second, it allows for a structural
decoupling between the two sides of the code generation trans-
formation, i.e., the domain models and the code generating
templates. This also removes the need for contributors to get
acquainted with the — basically non-existing —internal code
structure of the metaprogramming environment, as additional
expanders with corresponding coding templates can be defined
and activated using a declarative control mechanism.

Moreover, the definition of additional meta-models and/or
templates is not limited to programming code either. Instead
of containing Java or JavaScript code, the templates may just
as well correspond to hierarchical document modules such
as chapters and sections, containing commands and settings
of typesetting systems like Markdown/Pandoc or ETX. And
any model representing parameter data and/or small content
components may serve as a meta-model and drive the ex-
pansion or instantiation of the document. The meta-circular
architecture does not require any explicit programming to
support the new model entities representing the document.
As we have seen, the various classes corresponding to the
new model entities (XML readers and writers, model classes,
control and generator classes) will be automatically generated.

IV. EXPLORING RUNTIME EXPANSION OF ARTIFACTS

In this section, we explore the assembly or expansion of
parametrized documents using the NST meta-circular code
generation environment.

19

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

A. Document Creation and Information Systems

As explained in Section II, an interesting duality exists
between information systems and document creation. Informa-
tion systems often support the creation of simple documents,
such as invoices or timesheets, incorporating data that is
entered and managed within the information system. At the
same time, the streamlined creation of large amounts of
document variants, for instance in the case of technical product
documentation, requires some tooling to specify and manage
the various parameters driving the creation of the document
variants. In other words, information systems often create
documents, and document creation systems usually require a
supporting information system.

For the exploratory development targeted at the creation of
documents using the NST meta-circular code generation envi-
ronment, we have opted for the first scenario. The streamlined
creation of variants of complex documents would require the
definition of an elaborate meta-model describing the structure
and domain parameters of the documents. The creation of such
a model is out of scope of this contribution, but does not seem
to pose a significant risk. Therefore, we decided to explore
the generation of rather simple documents based on common
data entities like invoices or timesheets. Nevertheless, this
explorative development does address a possible and important
technological hurdle. As these documents need to incorporate
runtime data from the live information systems, e.g., the actual
details of the various invoices, this proof of concept validates
the expansion of artifacts based on runtime data from any
information system expanded by the NST metaprogramming
environment. In this way, the development can also serve as a
validation for the expansion of other source artifacts based on
live runtime data of information systems, such as marketing
emails or sensor configuration files.

B. Declarative Control and Runtime Expansion

Consider two samples of a simplified data model for an
administrative information system as presented in Figure 2.

Project

- name

- vatNumber - client

- street - manager

- city - leadEngineer

Client
- name

Invoice Timesheet
- number - month
- reference - employee

- client - project

- invoicelines \\ - timeEntrys
InvoiceLine TimesheetEntry
- product - day

- hours
- activity
- description

- amount
- vatPercent
- description

Fig. 2. Samples of a simplified data model for an administrative system.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

o An invoice with some attributes, e.g., an invoice number
and reference, containing a reference to a client, and
consisting of several invoice lines.

o A timesheet with some attributes, e.g., the month and em-
ployee, containing a reference to a project, and consisting
of several timesheet entries.

These data entities are expanded into data elements, collec-
tions of software classes as described in [6], by the NST
metaprogramming environment, and incorporated in an infor-
mation system. The expanded data elements or collections of
classes include:

e Reader and writer classes to read and write the XML
data files, e.g., InvoiceXmlReader and InvoiceXmlWriter,
TimesheetXmlReader and TimesheetXmlWriter.

¢ Model classes to represent and transfer the various enti-
ties, and to make them available as an object graph, e.g.,
InvoiceDetails and InvoiceComposite, TimesheetDetails
and TimesheetComposite.

e View and control classes to perform CRUDS (create,
retrieve, update, delete, search) operations in a generated
table-based user interface.

In the same way that the instances of the NST meta-model
data elements are read and made available as an object graph
at the time of code generation, the instances of the data
elements represented in Figure 2 can be made available as
an object graph at runtime in a generated information system.
Incorporating the core templating engine of the NST metapro-
gramming environment [6] allows to evaluate the various
attributes of the administrative data entities using Object-
Graph Navigation Language (OGNL) expressions, and to feed
them to the (LaTeX) templates that are used to create the
invoice and timesheet documents.

As explained in [6], the expansion of artifacts, e.g., source
code or document files, is based on a generic ArtifactExpander
that uses declarative control to evaluate the model parameters
and insert them into the source templates. Every individual
expander generating a source artifact is defined in an Expander
XML document. An example of the definition of such an
individual expander to expand a LaTeX source file for an
invoice is shown below. It is quite similar to the declaration of
an expander creating a Java source file during code generation,
but has a TEX source type and uses for instance the runtime
invoice number to construct the filename.

<expander name="TexInvoiceExpander"
xmlns="http://normalizedsystems.org/expander">
<packageName>net .palver.latex.invoice</packageName>
<layerType name="ROOT"/>
<technology name="COMMON"/>
<sourceType name="TEX"/>
<elementTypeName>Invoice</elementTypeName>
<artifact>Invoice-$invoice.number$.tex</artifact>
<artifactPath>$expansion.directory$/

SartifactSubFolders$</artifactPath>

<isApplicable>true</isApplicable>
<active value="true"/>

</expander>

20

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

The evaluation of the various instance parameters or at-
tributes is based on OGNL expressions and defined in a
separate ExpanderMapping XML document. This ensures the
separation of content from format, as required by [9] to have
reusable and evolvable documents. An example of the defini-
tion of such an individual mapping document for the invoice
creation is shown below. Besides simple OGNL expressions, it
allows to evaluate logical expressions, e.g., whether the invoice
client is foreign for VAT purposes, and to make lists of linked
objects and their attributes available, e.g., invoice lines.

<mapping
xmlns="https://schemas.normalizedsystems.org/
xsd/expanders/2021/0/0/mapping">
<value name="info" eval="invoice.info"/>
<value name="number" eval="invoice.number"/>
<value name="client" eval="invoice.client.name"/>
<value name="vatNr" eval="invoice.client.vatNr"/>
<value name="street" eval="invoice.client.street"/>
<value name="city" eval="invoice.client.city"/>
<value name="isForeign"
eval="!invoice.client.country.equals ('Belgium’)"/>
<list name="invoiceLines"
eval="invoice.invoiceLines"
param="invoiceLine">
<value name="info" eval="invoicelLine.info"/>
<value name="product" eval="invoicelLine.product"/>
<value name="amount" eval="invoicelLine.amount"/>
</list>
</mapping>

The values as defined in the expander mapping document
are passed to the LaTeX templates. As described in [5], the
NST environment uses the StringTemplate (ST) engine library.
This library supports the creation of a modular document
structure by providing subtemplate include statements, en-
abling the document designers to adhere to the principles
of single sourcing [11]. For instance, we share the dec-
laration of various LaTeX packages and the definition of
some basic commands through the use of the subtemplates
<basePackages () > and <baseCommands()>.1And the various
invoice lines of an invoice (or timesheet entries of a timesheet)
are created by instantiating a corresponding subtemplate for
every hstitenjthrough <invoiceLines:invoiceTableLine () >
(Or<timesheetEntrys:timesheetTableLine()>)

A reduced version of the NST metaprogramming environ-
ment was integrated into a runtime installation of an expanded
information system that included the data elements represented
in Figure 2. Based on live data from this runtime environ-
ment, tens of LaTeX sources for invoices and timesheets
were successfully generated through the use of the expander
declarations and parameter evaluations as presented above. It
is clear that this expansion architecture allows information
systems to create other type of source artifacts based on live
runtime data. Indeed, as the NST expansion environment is
agnostic with respect to the source type, e.g., able to create
LaTeX source documents in exactly the same way as Java
source files, the generation of other types of source modules
is basically reduced to creating other types of templates. As
possible use cases, we mention the creation of HTML emails
for marketing purposes, and the assembly of configuration files

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

that can be uploaded to remote IoT sensors or controllers.

V. CONCLUSION

Many organizations are often required to produce large
amounts of versions and variants of documents in areas
like technical documentation and accreditation. At the same
time, corporate information systems are producing massive
amounts of relatively simple documents based on corporate
data. The streamlined and possibly automatic generation of
such documents leads to concepts like modularization and
single sourcing, which are similar to techniques used in code
generation software. As in software, dealing with versions and
variants requires the design of document structures to deplete
the rippling of changes in order to provide a desired level of
evolvability.

In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture can be used for code generation
based on different and even newly defined meta-models. In this
contribution, we have investigated the use of this code genera-
tion environment within the generated information systems at
runtime. More specifically, we have explored the creation of
evolvable artifacts, such as simple administrative documents,
where runtime data of the generated software application is
used to instantiate the artifacts.

We have shown in this contribution how a reduced version
of the NST metaprogramming environment can be integrated
within the runtime environment of an expanded information
system, and how object graphs containing runtime data can
be passed to source templates. We have demonstrated that
we can use this runtime metaprogramming environment to
successfully produce sources for administrative documents
through declarative definitions and OGNL evaluations, without
requiring dedicated software programming.

This paper provides different contributions. First, we val-
idate that it is possible to use the NST metaprogramming
environment to create another type of source code artifacts,
e.g., LaTeX documents. Moreover, we have explained that
this implementation adheres to several fundamental concepts
regarding modular and evolvable document creation, like CCM
and single sourcing. Second, we show that we can integrate a
reduced version of the NST metaprogramming environment
into a runtime information system expanded by the NST
metaprogramming environment, and to generate source arti-
facts from live data within this running information system.

Next to these contributions, it is clear that this paper is also
subject to a number of limitations. We have only demonstrated
a single case of generating another type of source artifacts, i.e.,
LaTeX documents, outside the scope of the generation of soft-
ware programming code. Moreover, the generated documents
are quite simple, and in line with documents that are currently
generated by mainstream information systems. Nevertheless,
this explorative proof of concept can be seen as an architectural
pathfinder, and we are planning to extend both the scope and

21

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

size of the generated documents, and the range of possible
source types of artifacts that are generated.

[1]

[2]
[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

R. Andersen and T. Batova, “The current state of component content
management: An integrative literature review,” IEEE Transactions on
Professional Communication, vol. 58, no. 3, 2015, pp. 247-270.

S. Abel and R. A. Bailie, The Language of Content Strategy. Laguna
Hills, CA, USA: XML Press, 2014.

G. Oorts, Design of modular structures for evolvable and versatile
document management based on normalized systems theory. Antwerp,
Belgium: University of Antwerp, 2019.

H. Mannaert, K. De Cock, and P. Uhndk, “On the realization of meta-
circular code generation: The case of the normalized systems expanders,”
in Proceedings of the Fourteenth International Conference on Software
Engineering Advances (ICSEA), November 2019, pp. 171-176.

H. Mannaert, C. McGroarty, K. De Cock, and S. Gallant, “Integrating
two metaprogramming environments : an explorative case study,” in
Proceedings of the Fifteenth International Conference on Software
Engineering Advances (ICSEA), October 2020, pp. 166—172.

H. Mannaert, K. De Cock, P. Uhndk, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International journal on advances in software, vol. 13, no.
3-4, 2020, pp. 149-159.

H. Simon, The Sciences of the Artificial. MIT Press, 1996.

C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity.
Cambridge, MA, USA: MIT Press, 2000.

D. Clark, “Content management and the separation of presentation and
content,” Technical Communication Quarterly, vol. 17, no. 1, 2007, pp.
35-60.

F. Sapienza, “A rhetorical approach to single-sourcing via intertextu-
ality,” Technical Communication Quarterly, vol. 16, no. 1, 2007, pp.
83-101.

K. Ament, Single Sourcing: Building Modular Documentation. ~ Nor-
wich, NY, USA: William Andrew Publishing, 2003.

H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210-1222, special Issue on Software Evolution, Adaptability
and Variability.

——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89-116.

H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

H. Mannaert, P. De Bruyn, and J. Verelst, “On the interconnection of
cross-cutting concerns within hierarchical modular architectures,” IEEE
Transactions on Engineering Management, 2020, pp. 1-16.

G. Oorts, H. Mannaert, and P. De Bruyn, “Exploring design aspects
of modular and evolvable document management,” in Proceedings of
the Seventh Enterprise Engineering Working Conference (EEWC), May
2017, pp. 126-140.

G. Oorts, H. Mannaert, and I. Franquet, “Toward evolvable document
management for study programs based on modular aggregation patterns,”
in Proceedings of the Ninth International Conferences on Pervasive
Patterns and Applications (PATTERNS), February 2017, pp. 34-39.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

22

