PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

Usage of Iterated Local Search to Improve Firewall
Evolvability

Haerens Geert
Antwerp University, Engie
Brussels, Belgium
email: geert.haerens@engie.com

Abstract—The Transmission Control Protocol/Internet Protocol
(TCP/IP) based firewall is a notorious non-evolvable system.
Changes to the firewall often result in unforeseen side effects,
resulting in the unavailability of network resources. The root
cause of these issues lies in the order sensitivity of the rule base
and hidden relationships between rules. It is not only essential
to define the correct rule. The rule must be placed at the right
location in the rule base. As the rule base becomes more extensive,
the problem increases. According to Normalized Systems, this is
a Combinatorial Effect. In previous research, an artifact has been
proposed to build a rule base from scratch in such a way that the
rules will be disjoint from each other. Having disjoint rules is the
necessary condition to eliminate the order sensitivity and thus
the evolvability issues. In this paper, an algorithm, based on the
Iterated Local Search metaheuristic, will be presented that will
disentangle the service component in an existing rule base into
disjoint service definitions. Such disentanglement is a necessary
condition to transform a non-disjoint rule base into a disjoint
rule base.

Keywords—Firewall; Rule Base; Evolvability; Metaheuristic;
Iterated Local Search.

I. INTRODUCTION

The TCP/IP based firewall has been and will continue
to be an essential network security component in protecting
network-connected resources from unwanted traffic. The in-
creasing size of corporate networks and connectivity needs has
resulted in firewall rule bases increasing considerably. Large
rule bases have a nasty side effect. It becomes increasingly
difficult to add the right rule at the correct location in the
firewall. Anomalies start appearing in the rule base, resulting
in the erosion of the firewall’s security policy or incorrect
functioning. Making changes to the firewall rule base becomes
more complex as the size of the system grows. An observation
shared by Forrester [1] and the firewall security industry [2]
[3]. A more detailed literature review on the topic can be found
in [4].

Normalized Systems (NS) theory [5] defines a Combina-
torial Effect (CE) as the effect that occurs when the impact
of a change is proportional to the nature of the change and
the system’s size. According to NS, a system that suffers from
CE is considered unstable under change or non evolvable. A
firewall suffers from CE. The evolvability issues are the root
cause of the growing complexity of the firewall as time goes
by.

The order sensitivity plays a vital role in the evolvability
issues of the rule base. The necessary condition to remove the
order sensitivity is known, being non-overlapping or disjoint

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

rules. However, firewall rule bases don’t enforce that condition,
leaving the door open for misconfiguration. While previous
work investigates the causes of anomalies [6] [7], detecting
anomalies [8] [9] [10] and correcting anomalies at the time
of entering new rules in the rule base [8], to the best of
our knowledge and efforts, no work was found that tries to
construct a rule base with ex-ante proven evolvability (= free of
CE). While previous methods are reactive, this paper proposes
a proactive approach.

Issues with evolvability of the firewall rule base induce
business risks. The first is the risk of technical communication
paths not being available to execute business activities prop-
erly. The second is that flaws in the rule base may result in
security issues, making the business vulnerable for malicious
hacks resulting in business activities’ impediment.

In this paper, we propose an artifact, an algorithm, that
aims at converting an existing non-evolvable rule base into
an evolvable rule base. Design Science [11] [12] is suited for
research that wants to improve things through artifacts (tools,
methods, algorithms, etc.). The Design Science Framework
(see Figure 1) defines a relevance cycle (solve a real and
relevant problem) and rigor cycle (grounded approach, usage
of existing knowledge and methodologies).

Environment E:j IS R ch Knowledge Base

People Foundations
*Roles Develop/Build «Theories
*Capabilities *Theories *Frameworks
*Characteristics Artifacts *Instruments

. . «Constructs
Organizations | Business 7y Applicable | g 0\
*Strategies Needs Knowledge | .\ethods
«Structure & Culture Assess Refine *Instantiations
*Processes v

— Methodologies
Technology Justify/Evaluate *Data Analysis
*Infrastructure ~Analytical Techniques
~Applications “Case Study «Formalisms
«Communications Experimental *Measures
Architecture ~Field Study “Validation Criteria
*Development *Simulation
Capabilities
3
Application in the Additions to the
Appropriate Environment Knowledge Base
Figure 1. The Design Science Framework - from [11] .

The Design Science Process (see Figure 2) guides the
artifact creation process according to the relevance and rigor
cycle. What follows is structured according to the Design
Science process.

Section II introduces the basic concepts of firewalls, fire-

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

| Research Strategies and Methods, Creative Methods

!

Initial Explicated
problem Explicate | Problem

™ Problem
Require-
Define ments
Require-
ments
Design
and Artefact
Develop Demon-
Artefact strated
Demon- | antefact
strate
Artefact
Evaluated
Evaluate | @rtefact
e

Artefact

f

Knowledge Base |

Figure 2. The Design Science Process - from [12].

wall rule relationships, Normalized Systems, and the evolv-
ability issues of the firewall. In Section III, we will discuss
the requirements for an algorithm that will transform a non-
evolvable rule base, into an evolvable rule base. Section IV
will build the different components of the proposed algorithm
using the Iterated Local Search metaheuristic. In Section V,
the algorithm will be demonstrated in a number of cases. In
Section VI, we evaluate and discuss our findings and we wrap-
up with a conclusion in Section VII.

II. PROBLEM DESCRIPTION

The first part of this section will explain how a firewall
works and the concept of firewall group objects. The second
part will discuss the relationships between firewall rules and
introduces the Normalized Systems theory.

A. Firewall basics

An Internet Protocol Version 4 (IP4) TCP/IP based firewall,
located in the network path between resources, can filter traffic
between the resources, based on the Layer 3 (IP address) and
Layer 4 (TCP/UDP ports) properties of those resources [13].
UDP stands for User Datagram Protocol and is, next to TCP, a
post based communcation protocol at the 4th level of the Open
Systems Interconnection Model (OSI Model) [14]. Filtering
happens by making use of rules. A rule is a tuple containing
the following elements: <Source IP, Destination IP, Protocol,
Destination Port, Action>. IP stands for IP address and is a
32-bit number that uniquely identifies a networked resource on
a TCP/IP based network. The protocol can be TCP or UDP.
Port is a 16-bit number (0 - 65.535) representing the TCP
or UDP port on which a service is listening on the 4th layer
of the OSI-stack. When a firewall sees traffic coming from
a resource with IP address =<Source IP>, going to resource
=<Destination IP>, addressing a service listening on Port =
<Destination port>, using Protocol = <Protocol>, the firewall
will look for the first rule in the rule base that matches Source
IP, Destination IP, Protocol and Destination Port, and will
perform an action = <Action>, as described in the matched
rule. The action can be “Allow” or “Deny”. See Figure 3 for
a graphical representation of the explained concepts.

A firewall rule base is a collection of order-sensitive rules.
The firewall starts at the top of the rule base until it encounters

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

SSH Service @

[I T [T T
——————————————————— LT T T T
—— I
Destinati
1(‘)IU1I'L:]E Rule Base : ?Szl?a ion
IR Source | Destination | Service | Action [N
o]
1.1.5.3 1.1.21 TCP/22 Deny TCP/22
2k TCP/22 Allow

U e
1.1.1.20

1.1.11 51251 UDP/10-25 Deny

Figure 3. Firewall concepts.

the first rule that matches the traffic. In a firewall rule, <Source
IP>, <Destination IP>, <Destination Port> and <Protocol>
can be one value or a range of values. In the remainder of this
paper, protocol and port are grouped together in service (for
example, TCP port 58 or UDP port 58 are 2 different services).

B. Firewall group objects

Rules containing IP addresses for source/destination and
port numbers, are difficult to interpret by humans. Modern
firewalls allow the usage of firewall objects, called groups,
to give a logical name to a source, a destination, or a port,
which is more human-friendly. Groups are populated with IP
addresses or ports and can be nested. The groups are used in
the definition of the rules. Using groups should improve the
manageability of the firewall.

C. Firewall rule relationships

In [6], the following relations are defined between rules:

o Exactly Matching: Exactly matching rules (Rx=Ry).
Rules Rx and Ry are exactly matched if every field
in Rx is equal to the corresponding field in Ry.

o Inclusively Matching: Inclusively matching rules
(RxCRYy). Rule Rx inclusively matches Ry if the rules
do not exactly match and if every field in Rx is a
subset or equal to the corresponding field in Ry. Rx is
called the subset match while Ry is called the superset
match.

e Correlated: Correlated rules (Rx<IRy). Rules Rx and
Ry are correlated if at least one field in Rx is a
subset or partially intersects with the corresponding
field in Ry, and at least one field in Ry is a superset
or partially intersects with the corresponding field in
Rx, and the rest of the fields are equal. This means
that there is an intersection between the address space
of the correlated rules although neither one is subset
of the other.

e Disjoint: Rules Rx and Ry are completely disjoint if
every field in Rx is not a subset and not a superset and
not equal to the corresponding field in Ry. However,
rules Rx and Ry are partially disjoint if there is at
least one field in Rx that is a subset or a superset or
equal to the corresponding field in Ry, and there is
at least one field in Rx that is not a subset and not
a superset and not equal to the corresponding field in
Ry.

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

Figure 4 represents the differnet relations in a graphical
manner. Exactly matching, inclusively matching and correlated
rules can result in the following firewall anomalies [8]:

o Shadowing Anomaly: A rule Rx is shadowed by an-
other rule Ry if Ry precedes Rx in the policy, and Ry
can match all the packets matched by Rx. The result
is that Rx is never activated.

e Correlation Anomaly: Two rules Rx and Ry can cause
a collerlation anomaly if, the rules Rx and Ry are
correlated and if Rx and Ry have different filtering
actions.

e Redundancy Anomaly: A redundant rule Rx performs
the same action on the same packets as another rule
Ry so that if Rx is removed the security policy will
not be affected.

A fully consistent rule base should only contain disjoint rules.
In that case, the order of the rules in the rule base is of no
importance, and the anomalies described above will not occur
[6] [7] [8] . However, due to several reasons such as unclear
requirements, a faulty change management process, lack of or-
ganization, manual interventions, and system complexity [13],
the rule base will include correlated, exactly matching, and
inclusively matching rules, and thus resulting in evolvability

issues.
“ Ry

Completely disjoint rules

Inclusively matched rules

Partially disjoint (or Correlated rules

partially matched) rules

Figure 4. Possible relationships between rules (from [9]).

D. Normalized Systems concepts

Normalized Systems theory [5] [15] originates from the
field of software development.

The Normalized Systems Theory takes the concept of sys-
tem theoretic stability from the domain of classic engineering
to determine the necessary conditions a modular structure of
a system must adhere to in order for the system to exhibit
stability under change. Stability is defined as Bounded Input
equals Bounded Output (BIBO). Transferring this concept to
software design, one can consider bounded input as a certain
amount of functional changes to the software and the bounded
output as the number of effective software changes. If the
amount of effective software changes is not only proportional
to the amount of functional changes but also the size of
the existing software system, then NS states that the system
exhibits a CE and is considered unstable under change.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

Normalized Systems Theory proves that, in order to elim-
inate CE, the software system must have a certain modular
structure, were each module respects four design rules. Those
rules are:

e Separation of Concern (SoC): a module should only
address one concern or change driver.

e Separation of State (SoS): a state should separate
the use of a module by another module during its
operation.

e Action Version Transparency (AVT): a module, per-
forming an action should be changeable without im-
pacting modules calling this action.

e Data Version Transparency (DVT): a module per-
forming a certain action on a data structure, should
be able to continue doing this action, even is the
data structures has undergone change (add/remove
attributes).

NS can be used to study evolvability in any system, which can
be seen as a modular system and derive design criteria for the
evolvability of such a system [16] [17].

III. REQUIREMENTS FOR THE SOLUTION

This section will discuss the design requirements for an
evolution rule base built from the ground up, also known as a
green-field approach. These design requirements serve as input
for a brown-field approach or convert a non-evolvable rule base
into an evolvable rule base.

A. Building an Evolvable Rule Base

In previous work [4], the combinatorics involved when
creating a rule base are discussed. For a given network
N, containing C;j sources and H; destinations, offering 2'7
services (protocol/port), and having a firewall F between the
sources and the destinations, it can be shown that f,ax 1S the
number of possible rules that can be defined on the firewall F:

fona = 2. <§:1 (Caﬂ>> . (i (Zg)) | ;Z_l <2;7)

(1
where C; and Hj are function of N: C; = f.(N) and H; = f,(N)

A subset of those rules will respresent the intended security
policy and only a subset of that subset will be the set of rules
that are disjoint. The maximum size of the disjoint set of
“allow” rules (aka a white list) is:

faisjomnt = H;.2'7 2)

with Hj is the number of hosts connected to the network. H;
= fi(N) and 2'7 the max amount of services available on a
host.

The probability that a firewall administrator will always
pick rules from the disjoint set is low if there is no conscious
design behind the selection of rules.

In previous work [4], based on NS, an artifact is being
proposed to create a rule base free of CE for a set of anticipated

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

changes. The artifact takes the “Zero Trust” [?] [?] design
criteria into account as well, meaning that access is given to
the strict minimum: in this case, the combination of host and
service.

1) Starting from an empty firewall rule base F. Add as
first rule the default deny rule F[1]= Ryefauii_deny With
b Rdefault_deny-source = ANY,
® Riefault_deny-Destination=ANY,
o Rdefault_deny.SeI’ViCGZ ANY,
. Rdefault_deny-ACtion = “Deny”.

2) For each service offered on the network, create a
group. All service groups need to be completely
disjoint from each other: the intersection between
groups must be empty.

Naming convention to follow:
e S service.name,
e with service.name as the name of the service.

3) For each host offering the service defined in the
previous step, a group must be created containing
only one item (being the host offering that specific
service).

Naming convention to follow:
o H host.name_S_service.name,
e with host.name as the name of the host offer-
ing the service

4) For each host offering a service, a client group
must be created. That group will contain all clients
requiring access to the specific service on the specific
host.

Naming convention to follow:

o C_H_host.name_S_service.name

5) For each S_service.name H_host.name_S_service.name

combination, create a rule R with:

e R Source =C_H_host.name_S_service.name

e R.Destination =
H_host.name_S_service.name

e R Service= S_service.name

e R Action = “Allow”

Add those rules to the firewall rule base F.
The default rule Ryepauye should always be at the end
of the rule base.

In [4], proof can be found that a rule base created according to
the above artifact, results in an evolvable rule base concerning
the following set of anticipated changes: addition/removal of
a rule, addition/removal of a service, addition/removal of a
destination (with or without a new service), the addition of a
source. The removal of a source does not impact the rule base
but does impact the groups containing the sources.

B. Converting an Existing Rule Base into an Evolvable Rule
Base

The previous section describes the green-field situation;
builiding a rule base from scratch. The luxery of a green-field
is often not present. We require a solution that can convert
an existing rule base, into a rule rule base that only contains
disjoint rules. Of couse, the original filtering strategy expressed
in the rule base must stay the same. From the previous section
we know that we require disjoint service definitions. If we

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

can disentangle the service defintions, and adjust the rules
accordingly, we have our basic building block for a disjoint
rule base. For each disjoint service definition, we need to
create as many destination groups as there are host offering
that service (lookup in rule base), and for each host-service
combination, we require one source group definition. All
components are then present to expand a non-evolvable rule
base into a normalized evolvale rule base. Figure 5 visualizes
what we want the solution to do.

SERVICE LIST SERVICE LIST
1 1
2 2
.~/ | ——
6 (5. A)
3
€ o)

ma
w

Apply algorithm >

»

=7 =7
;;8// \L

Figure 5. Algorithm objective.

IV. SOLUTION DESIGN

In this section, we will discuss the different components
that will make up the algorithm. We start by justifying the
choice for Iterated Local Search as metaheuristic [18] [19]
[20]. We will discuss the nature of the initial solution, the
set of feasible solutions and the objective function associated
with a solution. We continue by defining the move type, move
strategy, perturbation and stop condition of the Iterated Local
Search. The last part of this section discusses the solution
encoding and special operations performed in the algorithm,
and finally, the presentation of the algorithm.

A. Metaheuristic selection

The objective is to disentangle/reshuffle the service defi-
nitions into a set of new service definitions that are disjoint
but as large as possible. The simplest solution is to make one
service definition per port. But some ports belong together to
deliver a service. This logic is somewhere buried in the rule
base and service definitions. We may not lose it.

Service definitions containing ports that appear in multiple
service definitions must be split in non-overlapping service
definitions. The result should be that the degree of overlap
(or disjointness) of all service definitions decreases as more
service definitions are split. If we measure somehow the degree
of disjointness of all the service definitions and see that after a
split, the degree of disjointness improved, we know we found
a better solution than before.

A Local Search heuristic is a suitable method for organiz-
ing such gradual improvement process. To avoid getting stuck
in a local optimum (see further), the Local Search will be
upgraded to an Iterated Local Search (ILS). The Iteration part
should avoid getting stuck in a local optimum where we can
no longer perform splits and improve the disjointness. The

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

iteration part should perform a perturbation, a special kind
of split, that will allow the continuation of the search for
improvement.

B. Initial Solution and Neighbourhood

The initial solution is given. It is the rule base with all
the service definitions. The set of all service definitions is
our Neighbourhood. We will have to pick a service definition,
check if it is disjoint and if not, split it and see how this
affects the solution - disjointness improved or not. The solution
space SP for the service definitions consists of all possible
combinations of ports. If the number of distrinct ports in the
service groups equals P, then the SP is:

cop
se=>" () 3)
k=1

P can be max 2!7. We are looking to find a new solution, that

is part of the solution space, in which all service definitions
are disjoint yet grouped in groups of maximum size.

C. Objective Function

To know if the splitting of a service definition is improving
the solution, we need a mechanism to express the degree of
disjointness of the service definition. Each definition contains
ports and those ports may be part of multiple definitions. We
define the port frequency of a port as the number of times this
port appears in a service definition. The higher the frequency,
the more the need to splitting this port off.

We define the DI, the Disnointness Index of a service
definition Sy, as the SUM of the port frequencies PF of the
ports px of Sy, divided by the number of ports in Sy.

DI(SQ:W with nx = | Sx |= number of ports
in Sy

DI is one if all ports only appear once in a service
definition. A DI of one means the service definition is fully
disjoint.

We define the Objective Function OF as the sum of all
DI of all service definitions.

OF = " | DI(S;) with n the number of service definitions
in the solution.

If the Objective Function value is equal to the number
of service definitions, then we have found an optimal solution.
Not necessarily a Global Optimum as making service
definitions of one port would also yield to an Objective
Function equal to the number of service definitions.

D. Feasable Solutions

Whatever kind of splits we will be performing, the original
filtering logic of the rule base must be maintained, meaning
that splitting service definitions will result in splitting rules
to have the identical rule base behaviour. The original rule
will have to be removed from the rule base and replaced by
a number of rules equal to the splits size (split in 2 groups, 3
groups, etc.).

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

E. Move Type

The move type will be a split of a service definition. A
service definition can:

e be a subset of existing service definitions
e be the superset of existing service definitions

e have a partial overlapping with other service defini-
tions.

e be a combination of the above.

The split during the Local Search will concists of splitting,
carving out, all existing subgroups. We call the split the
full-carve-out move. This split is chosen as it resolves both
the sub and superset case.

Example: A service definition S={1,2,3,4,5,6,7}. There
also exists service definitions S;={1,2} and S,={5,7}.
Carving out S and S, from S gives, S;= {1,2}, S$,={5,7}
and §'={3,4,6}

This move type is not able to handle partial overlapping
service defintions. It is expected that when all carve outs
are done, there will be a number of overlaps remaining that
require a diffent kind of move (see furhter).

E Move Strategy

All services with a DI greater than one are candidates for
splitting. It seems logical to start splitting the service with
the largest DI. If that service cannot be split (no subgroups),
then the second-largest DI is taken, etc. If a group can be
split, the impact of the split is calculated. When OF improves
(=decends), the move is accepted and executed. If not, the
next service in the sorted service DI list is chosen. The move-
strategy is a variant of the First Improvement strategy of the
ILS metaheuristic; a variant as we first order the service DI
list and take the top element from the list.

G. Perturbation

The carve-out of subgroups cannot remove all forms for
disjointness. Correlated (partially overlapping) service defini-
tions cannot be split this way. That is why, when no more
carve-outs are possible, a new split operator is required. The
operator will determine if a service definition overlaps with
another service definitions. If it does, the intersection is split-
off. By splitting of this intersection, a new service definition
will be created that may be inclusively matching with the
other service definitions. Another iteration of the Local Search
will investigate this and perform the required carve-outs. We
consider this kind of split as a perturbation.

H. Stop Conditions

If all possible carve-outs are done, and all perturbations
are done, then there are no more inclusively matching and
correlated rules. All port frequencies are equal to one, all
service group DI’s are equal to one, and OF will equal the
number of service definitions. The solution cannot be improved
anymore.

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

L. Solution Encoding

The algorithm has been implemented in JAVA. The
different components of the solution are implemented as
JAVA classes. We tried to stay as close as possible to the NS
principles by defining data classes, which only contain data
and convenience methods to get and set the data, and task
classes used to perform actions and calculations on the data
objects.

1) Port: Services contain ports. A port is linked to a
protocol (TCP or UDP). PortRange is the class representing a
range of ports with an associated protocol.

public class PortRange

{

private String protocol;
private int begin;
private int end;

}

For a single port, begin = end.

2) Port Frequency: Within a solution, each port will have a
frequency that is equal to the number of service definitions in
which this port appears. PortFrequency is the class representing
the port frequency and the service definitions containing that
port.

public class PortFrequency

{

private int portnumber;

private int frequency;

private ArrayList<String> group_occurancelist;

}

3) Port Frequencies list: PortFrequencies class is the list
of all ports existing in a solution and for each port the
port frequency in the solution. The i element of the array
represents port i. The content of the i element contains the
port frequency information of port i. As there are TCP and
UDP ports, two arrays are required for a full port frequency
list.

public class PortFrequencies

{

private PortFrequency TCP_portfrequencyl]=
new PortFrequency[65536];

private PortFrequency UDP_portfrequencyl[] =
new PortFrequency[65536];

}

4) Service: The Services class represent a service definition
and contains all port ranges, UDP and TCP, associated with
the service.

public class Service

{

private String name;

private ArrayList<PortRange> udp_ranges;
private ArrayList<PortRange> tcp_ranges;

}

5) ServiceList: The ServiceList class is the list of all
service definitions of a solution.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

public class Servicelist

{

private String name;

private Arraylist<Service> servicelistitems;

}

6) Service DI: For each service definition, the disjointness
index must be calculated and stored. The disjointness index is
stored in the Service_DI class.

public class Service_DI

{

private Service service;

private double disjointness_index;

}

7) ServiceDIList: The ServiceDIList class is a list of all
DI’s of all service definitions of a solution. This list represents
the neighbourhood as this list will be used to iterate over. The
service DI list is an ordered list, with the service with the
highest DI as the first element of the list.

public class Service_DI_List

{
private ArrayList<Service_DI> service_DI_list;

}

J. Operations

The algorithm contains a number of tasks that perform
actions on and with the data classes. The most important and
relevant ones are listed in this section.

1) PortFrequenciesConstructor: The PortFrequenciesCon-
structore will calculate the port frequencies of all ports used in
all services. It takes the current servicelist as input. The result
- a PortFrequenciesList - is accessible via a get-method.

2) Service_DI_List_Creator: The Service_DI_List_Creator
will calculate the DI of all services. The inputs are the
current service list and portfrequencieslist and the result - a
ServiceDIList - is accessible via a get-method.

3) Service_Split_Evaluator: The Service_Split_Evaluator
will perform a full-carve-out-split. The inputs are the service
to split, the current service list, and the current portfrequen-
cieslist. The result of the split, being the a new ServiceList, a
new ServiceDIList, a new PortFrequenciesList and the value
of the objective function, are accessible via get-methods.

4) Service_Perturbation: The Service_Perturbation will
check if a perturbation is possible and if so, perform it. The
inputs are the current servicelist and the portfrequencieslist.
The results of the split, being the new ServiceList, new
ServiceDIList, new PortFrequenciesList and the value of the
objective function, are accessible via get-methods.

K. The Iterated Local Search Algorithm

Algorithm 1 (see Figure 6), is the ILS algorihtm designed
according to the components described in previous sections.
The important variables are:

e sl = the service list.

e pfl = the portfrequencies list.

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

e sdil = the service DI list.
e of = objective function value of a solution.

e fully_disjoint = boolean indicating if the solution is
fully disjoint.

e end_of_neighbourhood = boolean indicating if the full
neighbourhood has been seached.

e objective_function_improvement = boolean indicating
is the objective function has improved.

e neighbourhoodpointer = index of an element in the
sorted neighbourhood

e service_to_split = service of the neighbourhood that
will be investigated for splitting.

V. SOLUTION DEMONSTRATION

This section starts with describing the platform used to
perform the demonstrations, followed by information on the
different data sets that are used to run the algorithm and
finished with the results of running the algorithm with the
three demonstration sets.

A. Demonstration environment

The algorithm is written in JAVA using JAVA SDM 1.8.181,
developed in the NetBeans IDE V8.2. The demonstration ran
on an MS Surface Pro (5th Gen) Model 1796 i5 - Quad Core
@ 2.6 GHz with 8 GB of MEM, running Windows 10.

B. Demonstration sets

1) Demo set: The first data set consists of a manually
created list of service definitions. The set contains a lot of
exceptions to test the robustness of the algorithm such as
services having different names but identical content, services
having almost the same name (case differences) but different
content, empty service definition, both TCP and UDP ports
etc.

2) Engie Tractebel set: Engie Tractebel Engineering de-
livered the export of a Palo Alto Firewall used in an Azian
branch. The set is a realistic representation of a firewall that
interconnects a branch office with the rest of the company
network.

3) Engie IT data center set: Engie IT delivered the export
of a Palo Alto Firewall used in the Belgium Data centre. The
firewall connects different client zones in the data centre with
a data centre zone containing monitoring and infrastructure
management systems.

C. Demonstration results

The demonstration results show the evolution of 3 in-
dicators. The objective function is the main indicator. Also
visualized are the level 1 and level 2 iteration indicators. The
level 1 indicator is the number of times that the outer DO loop
of the algorithm has run. The indicator measures the number
of times a perturbation is made. The level 2 indicator is the
number of times the inner DO loop of the algorithm runs
within a given level 1 iterations. This means that each time
a new level 1 iteration runs, the level 2 iterator is reset. The
X-axes of the represents the cumulative level 2 iterations.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

Algorithm 1: ILS for service list normalization

sl = load_initial_solution(filename);

pfl = portfrequen-
cies_list_constructor(sl).get_portfrequencies_list();

sdil = service_di_list_creator(sl, pfl).get_service_di_list();

of = service_di_list.get_objective_function();

fully_disjoint = FALSE;

end_of_neighbourhood = FALSE;

objective_function_improvement = FALSE;

while NOT full_disjoint AND NOT end_of_neighbourhood
do

neighbourhood = sdil.sort;

neighbourhood_pointer = 1 (top of list)

objective_function_improvement = FALSE;

while NOT improvement_objective_function AND NOT
fully_disjoint AND NOT end_of_neighbourhood do

servicer_to_split = neighbour-
hood.get_element(neighbourhood_pointer);

service_split_evaluator(service_to_split, sdil, pfl);

objective_function_improvement = ser-
vice_split_evaluator.get_objective_function_improved();

if objective_function_improvement = TRUE then

sl= service_split_evaluator.get_service_list();

pfl = ser-
vice_split_evaluator.get_portfrequencies_list();
sdil =

service_split_evaluator.get_service_di_list();
fully_disjoint =
service_di_list.is_fully_disjoint_check();

else
| neighbourhood_pointer ++
end
end_of_neighbourhood =
sdil.end_of_list_check(nieghbourhood_pointer);
end
if end_of_neighbourhood then
service_perturbation_exists =
service_perturbation.perturbation exists(sl,pfl);
if service_perturbation_exists then
sl= service_split_evaluator.get_service_list();

pfl = ser-
vice_split_evaluator.get_portfrequencies_list();
sdil =

service_split_evaluator.get_service_di_list();
fully_disjoint =

service_di_list.is_fully_disjoint_check();
end_of_neighbourhood = FALSE;

else
| end_of_eighbourhood = TRUE;
end

end

end

if fully_disjoint then

PRINT “Probably the Global Optimum has been
found”;

else
| PRINT “Local Optimum found™;

end

PRINT “Solution = “ + sl.get_overview();

Figure 6. ILS based algorithm

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

1) Demo set: The algorithm produces its result in 1 to
2 sec. The start value of the objective function is 110, and
the end value is 34. The total number of level 1 iterations
is 43, and the total number of level 2 iterations is 568. The
algorithm starts 28 service definitions. The algorithm ends with
34 service definitions. The objective function goes down in an
almost exponential mode. The Level 2 Iterations go up in an
almost logarithmic mode, and the Level 2 Iterations follow a
kind of saw-tooth function, with a frequency that goes towards
the size of the neighbourhood. Figure 7 shows the evolution
of the OF, level 1 and level 2 iterations during the exectution
of the algorithm.

2) Engie Tractebel set: The algorithm produces its result
in 190 sec. The start value of the objective function is 278,
and the end value is 62. The total number of level 1 iterations
is 23, and the total number of level 2 iterations is 358. The
algorithm starts 79 service definitions. The algorithm ends
with 62 service definitions. The objective function goes down
in staged mode. The Level 2 Iterations go up in an almost
logarithmic mode, and the Level 2 Iterations follow a kind
of saw-tooth function, with a frequency that goes towards the
size of the neighbourhood. Figure 8 shows the evolution of the
OF, level 1 and level 2 iterations during the exectution of the
algorithm.

3) Engie IT data center set: The algorithm produces its
result in 360 sec. The start value of the objective function is
3876 and the end value is 418 . The total number of level
1 iterations is 127 and the total number of level 2 iterations
is 10.835. The arlgorithm starts 459 service definitions. The
algorithm ends with 418 service definitions. The objective
function goes down in staged mode. The Level 2 Iterations go
up in an almost logarithmic mode and the Level 2 Iterations
follow a kind of saw-tooth function, with a frequency that
goes towards the size of the neighbourbood. Figure 9 shows
the evolution of the OF, level 1 and level 2 iterations during
the exectution of the algorithm.

Demo set

L2 Iterations —Objective Function

Figure 7. Objective Function, L1 Iteration and L2 Iteration for the demo set.

VI. SOLUTION EVALUATION AND DISCUSSION

In this section, we will evaluate and discuss the algorithm,
starting with the Big O of the algorithm. We continue to spec-
ify the impact of the splits on the rule base and by positioning
the algorithm as an essential building block in the conversion

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

Engie Tractebel set

Ll lterations ---L2 Iterations —Objective Function

Figure 8. Objective Function, L1 Iteration and L2 Iteration for the Engie
Tractebel set.

Engie IT Data Center Set

K

B

Figure 9. Objective Function, L1 Iteration and L2 Iteration for the Engie IT
data center set.

of a rule base into an evolvable rule base. We conclude by
proposing some potential performance enhancement methods
and an alternative for the algorithm.

A. Big O of the algorithm

The algorithm contains two nested loops that both can
iterate over the full neighbourhood, meaning the algorithm
will be quadratic with respect to the size of the neighbour-
hood. The operations performed in the most inner loop, like
Service_DI_list_Creator, Servicer_split_Evalturator are also
proportional to the size of the neighbourhood. We can thus
conclude that the Big O of the complete algorithm is cubic -
O = n?, where n is the size of the neighbourhood (= size of
the solution = the number of service definitions)

B. Impact of the splits on the rule base

Each time a service is split, there is an impact on the
rule base. All rules containing this service must be adjusted
according to the result of the split. Two kinds of adjustments
are required.

e Split rules: The rules containing this service must be
split in 2 rules that contain the results of the split.
Example:

Before split: Rx = source-destination-service

Split: service splits into servicel and service2

After split: Rxl = source-destination-servicel and
Rx2 = source-destination-service2

e Rename services: When service splits result in
existing services, those services will be renamed to
track the changes. All rules that are impacted by this
rename must be adjusted. Example:

Before split: servicex

Split: service x splits in service X’ and service x”, but
those existed already under the names service xV5
and service yV8. Service xV5 becomes service xV6,

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

and service yV8 becomes service yV9.

After split: service x is replaced by service xV6 and
service yV9. Service xV5 is replaced by service xV6
and service yV8 is replaced by service yVO.

The algorithm does not include the adjustments of the rules,
but counts the number of times such an adjustment is required.
Table I shows the different test sets, the initial and final value
of the objective function, while Table II shows, for the different
test sets, the initial rule base size and the number of additional
rules due to the splits. Further work is required to adjust the
algorithm to perform the actual splits and to have a better view
on the actual amount of additional rules.

TABLE L EVOLUTION OBJECTIVE FUNCTION
Test set Inital OF | Final OF
Demo set 110 34
Engie Tractebel set 278 62
Engie IT data center set | 3874 418
TABLE II. IMPACT ON THE RULE BASE
Test set Initial size Extra Service
rule base rules T
Demo set NA 74 55
Engie Tractebel set 37 135 152
Engie IT data center set | 522 2940 2976

C. Building block for evolvable rule base

The list of disjoint services is the essential building block
for building an evolvable rule base. According to artifact of
Section III-A, for each service, there should be as many des-
tination groups created as there are hosts offering this service.
And for each destination group created in this manner, there
should be one source group created. The population of those
destination and source group can happen via investigation of
the existing rule base.

D. Impact on the size of the rule base

The algorithm has been demonstrated in only 3 test cases.
More test cases are required to get a better insight into the
impact of splitting services into disjoint servers on the rule
base’s size. A more detailed study of different firewall types
within Engie is on the researcher’s agenda.

E. Potential performance improvements

1) Pre-processing: The firewall configuration contains both
service definitions and service group definitions. Service
groups aggregate service definitions. In the simulations, service
groups are part of the service list, and logically those are the
first that will undergo the full-carve-out operations. It could
be beneficial to exclude service groups. This would require
the replacement of the service groups used in the rule base
by their individual services and splitting of rules accordingly.
This pre-processing step also takes time, and it remains to be
seen if it improves performance.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

2) Memory: The algorithm would benefit from some mem-
ory as defined in metaheuristics. All groups that are disjoint
no longer require checking if they are disjoint and can be
removed from the search list. This could reduce the size of
the neighbourhood dynamically and improve performance.

3) Deterministic approach: Tests of the algorithm show
that there is always converges to the same solution for a
given initial solution. Although we cannot prove it formally
(yet), for a given initial solution, there is convergence to one
solution that seems to be the Global Optimum. The creation
of the algorithm resulted in a progressive insight about how
to disentangle the service definitions. We now believe that the
disentanglement can be achieved without the the calculation of
the objective function, which is basically saying we no longer
have an Iterated Local Search algorithm but an algorithm that
will follow a predetermined path toward the solution.

VII. CONCLUSION

Using Iterated Local Search, an algorithm was created that
allowed the disentanglement of a set of groups that are nested
and overlapping, into a set of groups that is disjoint from
each other. Such an algorithm can be applied in the specific
context of making firewall rule bases evolvable. The algorithm
has been demonstrated successfully. Progressing insight during
the creation of the algorithm points toward a deterministic
algorithm. More firewall exports are required to get a better
idea on the impact of the splitting of services into disjoint
services, on the size of the rule base.

REFERENCES

[1] H. Shel and A. Spiliotes, “The State of Network Security: 2017 to
2018”, Forrester Research, November 2017

[2] “2018 State of the firewall”, Firemon whitepaper, URL
https://www.firemon.com/resources/, [retrieved: April, 2021]

[3] “Firewall Management - 5 challenges every company must address”, Al-
gosec whitepaper, URL https://www.algosec.com/resources/, [retrieved:
April, 2021]

[4] G. Haerens and H. Mannaert, “Investigating the Creation of an Evolv-
able Firewall Rule Base and Guidance for Network Firewall Architec-
ture, using the Normalized Systems Theory”, International Journal on
Advances in Security, Volume 13 nr. 1&2, pp. 1-16, 2020

[5] H. Mannaert, J. Verelst and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design”, ISBN 978-90-77160-09-1, 2016

[6] E. Al-Shaer and H. Hamed, “Taxonomy of conflicts in network security
policies”, IEEE Communications Magazine, 44(3), pp. 134-141, March
2006

[7]1 E. Al-Shaer, H. Hamed, R. Boutaba and M. Hasan, “Conflict clas-
sification and analysis of distributed firewall policies”, IEEE Journal
on Selected Areas in Communications (JSAC), 23(10), pp. 2069-2084,
October 2005

[8] M. Abedin, S.Nessa, L. Khan and B. Thuraisingham, “Detection and
Resolution of Anomalies in Firewall Policy Rules”, Proceedings of the
IFIP Annual Conference Data and Applications Security and Privacy,
pp. 15-29, 2006

[9] E. Al-Shaer and H. Hamed, “Design and Implementation of firewall
policy advisor tools”, Technical Report CTI - techrep0801, School
of Computer Science Telecommunications and Information Systems,
DePaul University, August 2002

[10] S. Hinrichs, “Policy-based management: Bridging the gap”, Proceedings
of the 15th Annual Computer Security Applications Conference, pp.
209-218, December 1999

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. R. Hevner, S. T. March, J. Park and S. Ram, “Design Science in
Information Systems Research”, MIS Quarterly, Volume 38, Issue 1,
pp. 75-105, 2004

P. Johannesson and E. Perjons, “An Introduction to Design Science”,
ISBN 9783319106311, 2014

W. R. Stevens, “TCP/IP Illustrated - Volume 1 - the Protocols”,
Addison-Wesley Publishing Company, ISBN 0-201-63346-9, 1994

H. Zimmermann and J. D. Day, “The OSI reference model”, Proceed-
ings of the IEEE, Volume 71, Issue 12, pp. 1334-1340, Dec 1983

H. Mannaert, J. Verelst and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability”, Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011

P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert and J. Verelst, “Po-
sitioning the normalized systems theory in a design theory framework”,
Lecture notes in business information processing, ISSN 1865-1348-142,
pp. 43-63, 2013

G. Haerens, “Investigating the Applicability of the Normalized Systems
Theory on IT Infrastructure Systems, Enterprise and Organizational
Modeling and Simulation”, 14th International workshop (EOMAS)
2018, pp. 23-137, June 2018

M. Rafael, P. M. Pardalos and M. G. C. Resende, “Handbook of
Heuristics”, ISBN 978-3-319-07123-7 IS, 2018

Z. Michalewicz and D. B. Fogel, “How to Solve It: Modern Heuristics”,
ISBN 978-3-642-06134-9, 2004

E. Talbi, “Metaheuristics - From Design to Implementation”, ISBN 978-
0-470-27858-1, 2009

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-850-1

10

