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Abstract—In today’s quest for knowledge, there is a need
for accurate and fast measures for pattern matching. While
numerous new metrics and algorithms are published every year,
researchers are unaware of which metric to choose. There
does not exist an established strategy for pattern matching of
cluster algorithms, which may explain why new hypothesis and
algorithms are often forgotten. In this work, we address this issue.
The paper presents a new benchmark for automated evaluation
of pattern matching algorithms. From key characteristics of
training data, the benchmark deduce fast and accurate cluster
quality metrics, hence enabling pattern searches in big data. The
benchmark address key issues in pattern analysis: while recent
algorithms improve prediction accuracy by less than 2x, there is a
5x+ inaccuracy in established pattern matching algorithms. The
evaluation of 100+ real-life data-sets reveals how the benchmark
manages to identify patterns which are otherwise hidden, hence
paving the ground for improved quality in the field of big-data
pattern matching.

Keywords: patterns; clustering; similarity metrics; data analysis.

I. INTRODUCTION

Data mining and big data analysis have experienced a surge
of interest in the recent years [1]. In data analysis, it is essential
to know the trustworthiness of other’s findings. An example is
seen in the work of [2], where the authors report the patterns
to have a difference of 1.67x: is the improvement reported by
[2] sufficient to discard the earlier ground-truth?

The motivation of many research papers is to demonstrate
that some algorithms are superior to other [3]–[5]. In contrast,
our hypothesis is that the choice of clustering algorithms
depends on both the data and the local configurations of the
clustering algorithms (code-listing 1): the established strategy
results in a 100x+ prediction error.

Of importance is to identify the reasons for why measure-
ment data, presented in different research papers, diverge.
The diverging recommendations, which seems to be the rule
in benchmarking of algorithms, raises several questions. To
exemplify, is the rarely discussed choice of benchmark data
the determining factor?

While the choice of validity metrics (e.g., Silhouette) de-
termines the outcome of experiments (best column in Table
II), the established strategies have a poor trustworthiness
in seperating between false versus true hypothesis (Section
VI). For some data-sets the VRC metric [6] is unable to
spot differences in data predictions. Hence, perturbations in
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Fig. 1. Ambiguities in cluster analysis. Above figure demonstrates why it is
impossible to use a a single number (e.g., ’0.8’) to describe pattern similarities
between two cluster partitions, e.g., when comparing a null-hypothesis to the
results of a clustering algorithm.

data will remain unknown to VRC users. The issue of VRC
inaccuracy arises from how metrics weight differences in data
(sub-section V-A).

To address this challenge, this paper constructs an auto-
mated method for capturing the bias in metrics and training
data. The method explores the parameter space of pattern
matching algorithms (Fig. 1). The measurements reveals how
the approach addresses issues in [2]–[5].

The results demonstrate how the proposed framework in-
creases the accuracy of data classification by 5x+ (sub-section
VI-C). The benchmark captures peculiarities in turf specific
data-sets. This knowledge is important in a number of do-
mains:

1) trustworthiness: the significance of differences when no
hypothesis is valid;

2) experimental design: the accurate and efficient explo-
ration of a hypothesis in large data volumes;

3) new metrics: the automated identification of new metrics
from training data (code-listing 1).

The remainder of the paper is organized as follows. Section
II identifies the contributions of this paper. Section III briefly
surveys related approaches, and Section IV describes a new
algorithm for automated evaluation and identification of met-
rics. Section V describes an approach to evaluate the influence
of strategies for pattern matching, a method which is applied
in the result Section VI. This paper ends with a brief summary
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TABLE I
APPLICABILITY OF ALGORITHMS FOR PATTERN MATCHING. THE TABLE
CAPTURES THE ACCURACY AND RESOLUTION OF PATTERN MATCHING

ALGORITHMS.

Year Name Cite Gold
Diff. /
Equal

Equal:
Worst /

best

Diff.:
Worst /

best
1971 Rand’s Index x 100x - -
1974 VRC - 100x -
1974 Dunn -
1974 Dunn x
1979 Davis-Bouldin x ∞ 1x 1x
1979 Chi-squared x ∞ 4.5x
1982 SSE x 1x
1982 SSE - 79x
1983 FM x 20x
1987 Silhouette x -
1987 Silhouette ∞ -
2001 R-squared - 2x
2001 ARI x ∞
2001 Mirkin - ∞
2003 Fred & Jain x 25x 5x
2003 Strehl & Gosh x 25x 5x
2007 Wallace - 1x
2007 VOI - 25x 10x
2015 MMM x 1x
2017 Dogen x ∞
2010 RMSSTD - 78x

of observations in Section VII.

II. CONTRIBUTIONS

This paper presents a benchmark identifying the drawbacks
of clustering metrics. The work manages to both quantity
the trustworthiness–threshold for algorithms, and provide a
software for automated benchmarking of users own data. The
results reveal how the proposed benchmark provides users with
software which identifies fast and accurate cluster algorithms
(Fig. 2). Hence, a new approach which deduces fast and
accurate cluster quality metrics.

Today, it is impossible to check if results (e.g., produced
by new algorithms) makes sense. This due to configuration
parameters not described in research papers, i.e., hidden factors
which are left unexplained to the users. Of importance is there-
fore to identify benchmarks, and a software tool, for capturing
the algorithms which produce the best cluster predictions at
lowest possible execution time.

To address this issue, this paper provides users with a
tool for big-data analytics. The tool covers a big assortment
of metrics and databases. The results are presented through
generalization of algorithms and metrics, hence easing the
accessibility (of the findings) across a wide spectrum of
research domains.

The proposed method may be applied to existing algorithms
and clustering (code-listing 1). Hence, the work avoids the
pitfall of proposing new algorithms (instead of improving the
existing). The work analysis the patterns used in clustering
algorithms, and the clustering evaluation, for which a Pareto
Boundary is identified. The Pareto Boundary provides the
means to identify when a given algorithm provides improves
beyond the noise threshold (Fig. 2).

To summarize, the paper presents a new algorithm and
software. The the software enables users to select metric
combinations with high prediction accuracy at low execution
time, hence paving the ground for improved quality in the field
of big-data pattern matching.

III. RELATED WORK

Application of data analysis requires accurate strategies to
capture the similarities across measurements, hypothesis, data
perturbations, etc. There are more than 30+ metrics for captur-
ing the patterns of data, for which a subset is listed in Table
I. Below section demonstrates how researchers are unaware
of the ambiguity in “Cluster Comparison Metrics (CCMs)”.
While accurate algorithm configuration increases prediction
quality by 10x+ (Fig. 2), new algorithms provides less than
a 2x prediction improvement. Prediction improvements are
measured through algorithms such as “Rand’s Index”

Accuracy of data analysis is fundamental in all parts of
research, such as bio-medicine [1], language processing [7],
image recognition and reconstruction [5], [8], etc. An ap-
plication of data analysis is to establish the significance of
new findings: to identify the degree of correlation between
hypothesis and experimental outcomes. Examples of widely
used metrics are “Sum of Squared Error (SSE)”, Silhouette,
“Rand’s Index”, etc.

Pattern matching in big-data represents the performance
crux in drug discovery [1], epidemiology [9], etc. Clustering
is able to group mixed data into groups, called clusters,
focusing on the similarity between the data points [10]. The
requirements for big data differ from other application and
domains. The work of [11] observes how “big data analytics
requires technologies to efficiently process large quantities of
data” [11]. Software for pattern matching suffers from high
execution time, as observed for “Sci-kit learn” [12] and the
“Moa” software [13].

Partitioning of data into clusters involves assumptions of the
data: to use metrics for similarities between groups to partition
data. For example, the default “k-means” implementation uses
Euclidean distance to cluster numerical data points [14], “k-
modes” groups categorical data [15], while “k-prototypes”
uses cost functions to group mixed data [16].

A challenge concerns how to evaluate and interpret the
identified patterns (Fig. 1). The ambiguity of CCMs is due to
its purpose: from variance and agreements inside each cluster,
and between multiple clusters, to infer a representative number
(to capture the fit between hypothesis and data) [17].

However, the ambiguities of CCMs are not reflected in
their application. In pattern analysis, there does not exist
any agreement in which CCMs to use. To exemplify, [3]
combines “ARI” [18] with “Silhouette index”, “Jaccard in-
dex”,“Minkowski measure”, “Silhouette index”, “Dunns in-
dex” and “Davies-Bouldin index” to judge the cluster-accuracy
of their proposed algorithm. [20] combines “FJ” with “ARI”
in order to validate their new-proposed algorithm. The work of
[4] combines “Rand’s Index” with “Calinski-Harabasz (VRC)”
[6], “Silhouette Index” and “logSS”.
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When research agrees in which CCMs to use, they disagree
in how to interpret the CCM scores. To exemplify, the work
of [2] asserts that a change in ARI [18] prediction score
of 0.46 into 0.76 implies a significant difference in cluster
accuracy. However, the authors do not discuss ambiguities
in their gold standard, nor the significance of the scores.
Measurements reveal how the difference may be explained by
the unawareness of the metrics sensitivity (Table I).

To summarize, the established metrics for pattern matching
are applied irrespective of their inaccuracy. The choice of
strategy for pattern matching is applied without discussing the
dependency between CCMs (Fig. 3), hence it is unknown when
methods and algorithms are better than others.

Algorithm 1 An algorithm for unbiased selection of best-
performing pattern matching algorithm in real-life data-sets.
To simplify, the selectMax(rg , a, t, n, s) method is omitted
from the evaluation, a method which identifies the best-
performing algorithm permutation.

1: procedure EVALUATE(ENSEMBLE)
2: for each a ∈ clustAlg do
3: for each t ∈ [0, 1] do . are we to t(transpose)?
4: for each n ∈ normMetrics do
5: for each s ∈ simMetrics do
6: rM = ccmMatrix(ensemble, a, t, n, s)
7: selectMax(rM , a, t, n, s)
8: rg = ccmGold(ensemble, a, t, n, s)
9: selectMax(rg , a, t, n, s)

10: procedure CCMMATRIX(ENSEMBLE, A, T, N, S)
11: ranks = [][] Ranks for ’not gold’ CCM (Table I)
12: for each data ∈ Ensemble do
13: clusters = a(data, t, n, s)
14: for each ccm ∈ matricCCM do
15: ranks[ccm,data] = ccm(clusters, data)
16: ranks[ccm] = rank(ranks[ccm])

return ranks
17: procedure CCMGOLD(ENSEMBLE, A, T, N, S)
18: ranks = [][] Ranks for each ’gold’ CCM (Table I)
19: clusters0 = a(Ensable[0], t, n, s)
20: for each data ∈ Ensemble do
21: clusters = a(data, t, n, s)
22: for each ccm ∈ ccmGold do
23: ranks[ccm,data] = ccm(clusters0, clusters))
24: ranks[ccm] = rank(ranks[ccm])

return ranks

IV. METHOD: NEW BIG-DATA TOOLS FOR DATA
PERTURBATION AND ALGORITHM IDENTIFICATION

This section describes a new method for capturing the trust-
worthiness of “Cluster Comparison Metrics (CCMs)” (code-
listing 1):

1) data perturbations: a new approach and API to capture
the accuracy of CCMs (Table I);

2) execution time: a strategy to reduce the time cost, hence
a methodology supporting big-data analytic;

3) unbiased evaluation: a new algorithm which combines
clustering with metric permutations to avoid bias in
gold-data from influencing the prediction outcome.

The method enables the automated identification of best-
performing metrics in an ensemble of data, hence its broad
applicability. The algorithms are integrated into the “hpLysis”
machine learning software [21]. Hence, users are provided
with software for fast classification of large data-sets.

A. Data perturbations: a new API to detect accuracy and
resolution of CCMs

Motivation is to trap the differences among CCMs. A large
number of data topologies and CCMs argues for an automated
approach, for which a new method and API for synthetic
evaluation of CCMs is designed:

1) cluster shapes: construct different co-occurrence matri-
ces and cluster partitions;

2) perturbations: compare cluster shape with exactly simi-
lar data topologies;

3) CCMs: apply permutations of the 30+ CCMs, and then
select the extreme cluster predictions.

The strategy enables an automated and unbiased quantification
of differences in CCM prediction.

B. Execution Time: the feasibility of big-data evaluation

The large number of CCMs requires an approach to reduce
the computational complexity. The crux in CCM computation
concerns the time cost of computing similarity metrics. The
computation of CCMs involves the steps of 1) compute a
covariance matrix (time: O(n3)), and 2) similarities between
features in Fig. 1 (time: O(n2)).

The performance O(n3) issue is addressed through applica-
tion of optimized implementation of matrix multiplication, as
discussed in our earlier work [22]. The “hpLysis” software [21]
provides fast access to the 320+ pairwise similarity metrics.

C. An algorithm for unbiased exploration of data

Code-listing 1 describes an algorithm for enabling the
qunaitifciaotn of pattern matching algorithms. The algorithm
takes as input data-sets with a well-defined order of pre-
dictions. Example input is a feature matrix combined with
multiple hypotheses representing different data segmentation.

To avoid bias in clustering from hampering the prediction
accuracy, the 20+ cluster algorithms supported by the hpLysis
software [21] are combined with the 320+ established similar-
ity metrics. Hence, the approach address issues in regression
analysis.

The algorithm makes use of heuristics to reduce its ex-
ecution time. The choice of the metrics is tuned towards
different data ensembles. When partitioning the data-sets into
clusters three categories of cluster algorithms are explored:
threshold based cluster algorithms (e.g., “DBSCAN” [23]);
hierarchical cluster algorithms (e.g., “SLINK”); randomized
cluster algorithms (e.g., “k-means”). For computation of the
cluster algorithms the hpLysis software [21] is used, hence
ensuring fast execution.
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msq 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
chorSub 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
pulpfiber 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

randu 0.0 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.7 0.7 0.0 0.0 0.0 0.7 0.0 0.7 0.7 0.7 0.0 0.7
cf 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9

airquality 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.5 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7
UScrime 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
pottery 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
Hedonic 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

Melanoma 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
affect 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9

Holzinger 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.8
smoking 0.2 0.7 0.2 0.7 0.7 0.7 0.2 0.7 0.2 0.8 0.2 0.8 0.2 0.7 0.7 0.7 0.2 0.2 0.2 0.8 0.2 0.8 0.7 0.7 0.2 0.7

airquality 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7
bfi 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.9 0.0 1.0 0.0 1.0 0.0 0.9

Hartnagel 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
attitude 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
gilgais 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
cancer 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
burt 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
votes 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

attitude 0.1 0.6 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.6 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.6 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
msq 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0

Arbuthnot 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8
LifeCycleSavings 0.1 0.5 0.1 0.8 0.8 0.8 0.1 0.8 0.1 0.5 0.1 0.8 0.1 0.8 0.8 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.8 0.8 0.1 0.8

phosphate 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8
alcohol 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8
aldh2 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.2 0.9 0.1 0.9 0.1 0.9 0.1 0.9
pbc 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

Airline 0.0 0.6 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.6 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.6 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8
l 0.0 0.0 0.0 0.8 0.8 0.8 0.0 0.8 0.0 0.0 0.0 0.8 0.0 0.8 0.8 0.8 0.0 0.0 0.0 0.8 0.0 0.8 0.8 0.8 0.0 0.8

Nursing 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7
wood 0.0 0.6 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.6 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.6 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8
rock 0.0 0.8 0.0 0.8 0.8 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.8 0.8 0.0 0.0 0.0 0.8 0.0 0.8 0.8 0.8 0.0 0.8
affect 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

Cavendish 0.0 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.7 0.7 0.0 0.7
Boston 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9

heptathlon 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8
salinity 0.2 0.7 0.2 0.7 0.7 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.7 0.7 0.2 0.2 0.2 0.7 0.2 0.7 0.7 0.7 0.2 0.7
Fertility 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
bladder 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
barro 0.1 0.8 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.9 0.1 0.9
epi 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.8 0.0 0.9
iris 0.5 0.5 0.5 0.7 0.7 0.7 0.5 0.7 0.5 0.5 0.5 0.7 0.5 0.7 0.7 0.7 0.5 0.5 0.5 0.7 0.5 0.7 0.7 0.7 0.5 0.7

environmental 0.0 0.0 0.0 0.8 0.8 0.8 0.0 0.8 0.0 0.5 0.0 0.8 0.0 0.8 0.8 0.8 0.0 0.5 0.0 0.8 0.0 0.8 0.8 0.8 0.0 0.8
neuro 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8

NOxEmissions 0.2 0.2 0.2 0.7 0.7 0.7 0.2 0.7 0.2 0.2 0.2 0.7 0.2 0.7 0.7 0.7 0.2 0.2 0.2 0.7 0.2 0.7 0.7 0.7 0.2 0.7
crimtab 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
Pines 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8

toxicity 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
Cigarette 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9

ambientNOxCH 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
Crime 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

MetabolicRate 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.7 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8
phosphate 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9

BudgetItaly 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
USJudgeRatings 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

milk 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
swiss 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7
Cigar 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
msq 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0

Electricity 0.0 0.7 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
nuts 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.9 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8

Ginzberg 0.1 0.6 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
affect 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

Forward 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.8 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9
coleman 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.9 0.1 0.9 0.1 0.7 0.1 0.7 0.1 0.7

neo 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
BudgetUK 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.8 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9

1

Fig. 2. How the choice of metrics influences algorithms accuracy. The above table compares 20 clustering algorithms.

V. EVALUATION FRAMEWORK

The section identifies an experimental benchmark setup
capturing the effect of data and metric perturbations. The
framework provides an unbiased strategy for measuring the
accuracy of different pattern matching algorithms (Section III).

A. Axis of variability: hypothesis testing & result ranking

An accurate benchmarking of CCMs for big-data analytic
requires:

1) representative: investigate the CCMs applied in big-data
analytic, e.g., SSE [25] and Silhouette

2) features variation: data with different spread and skew-
ness in both column features and row features;

3) configurations: different sizes of rows, columns, clusters,
and score density.

Importantly, all of the proposed metrics share a set of common
artifacts.

Fig. 1 exemplifies the axis of variability through the use
of different shapes (Table I). The figure captures complexities
in cluster analysis: to correctly describe the distance between
vertices versus the arbitrary clusters h, o, and t.

Fig. 1 identifies how the cluster within distance is com-
puted through permutations of

∑
d(vertex(...), vertex(...)):

when metrics such as VRC and Dunn’s Index agrees in

the prediction, it is due to the agreements between different
interpretations of minimum(between–within) distance. Hence,
for controlled topologies, it is sufficient to evaluate a small
subset of the proposed cluster algorithms and metrics.

B. Core characteristics captured through representative data

Motivation is to identify representative data ensembles.
Therefore, data-sets are explored for different perspectives:

1) controlled: synthetic clusters and hypothesis to evaluate
the the linear relationship between hypothesis, data
topology, and cluster segmentation;

2) real-life: an evaluation of 100+ real-life data-sets taken
from [26].

The 100+ real-life data-sets. are modified through increased
use of Gaussian noise. The application of linearly distorted
data enables users to capture the effects of randomness, e.g.,
when evaluating the CCMs ability to correctly rank different
hypothesis.

The CCMs are evaluated through comparison of outputs
from different algorithms. As input, the evaluation takes both
randomized data and randomized cluster partitions. An issue
concerns the different scores (and ranges) provided by metrics
(Table I). To address the issue of different scales, the prediction
results are ranked separately for each [data permutations] x
metric.
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vertices 1 2 3 4 5 6 7 8 9
0 0.58 0.22 0.17 0.18 0.17 0.16 0.17 0.17 0.17
100 0.56 0.17 0.11 0.09 0.08 0.08 0.08 0.08 0.08
300 0.56 0.16 0.09 0.07 0.06 0.05 0.05 0.05 0.05
600 0.56 0.15 0.08 0.06 0.05 0.04 0.04 0.04 0.04
1000 0.56 0.15 0.08 0.05 0.04 0.04 0.03 0.03 0.03
1500 0.56 0.15 0.07 0.05 0.04 0.03 0.03 0.03 0.03

Zero clusters for the SSE CCM:
vertices 1 2 3 4 5 6 7 8 9

10 0.57 0.72 0.67 0.65 0.6 0.6 0.6 0.6 0.6
100 0.5 0.89 0.87 0.87 0.87 0.87 0.87 0.87 0.86
300 0.5 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.92
600 0.5 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94
1000 0.5 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95
1500 0.5 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96

Zero clusters for the Silhouette CCM:

vertices 1 2 3 4 5 6 7 8 9
10 0.43 0.04 0.13 0.04 0.04 0.04 0.04 0.04 0.04
100 0.5 0 0 0.01 0.01 0.01 0.01 0.01 0.01
300 0.5 0 0 0 0 0 0 0 0
600 0.5 0 0 0 0 0 0 0 0
1000 0.5 0 0 0 0 0 0 0 0
1500 0.5 0 0 0 0 0 0 0 0

Zero clusters for the Dunn CCM:

vertices 1 2 3 4 5 6 7 8 9
10 19.55 1.22 0.62 0.39 0.27 0.13 0 0 0
100 141.6 0.79 0.62 0.49 0.41 0.33 0.27 0.23 0.19
300 379.45 0.52 0.46 0.41 0.35 0.3 0.26 0.23 0.2
600 739.44 0.38 0.36 0.33 0.3 0.27 0.24 0.22 0.19
1000 1,221.6 0.3 0.3 0.29 0.27 0.25 0.22 0.2 0.18
1500 1,819.44 0.25 0.25 0.25 0.24 0.22 0.21 0.19 0.18

Zero clusters for the VRC CCM:

Fig. 3. Prediction difference when no clusters are present. The above figure captures the result (of pattern matching algorithms) when no clusters are present
in the input data.

Table I introduce the notation of Gold. The Gold column
refers to cases where two hypothesis (e.g., for the use-case
where cluster partitions are compared), which is an alternative
to comparing a hypothesis with a feature matrix. On the other
hand, the table’s Equal Clusters (Equal) column identifies the
metrics sensitity to comparing two equal cluster partitions, an
effect is compared to the case where they do not (Diff.). In
the measurements, each algorithm is evaluated across multiple
feature matrices and multiple hypothesis (e.g., the result of a
cluster algorithm).

VI. RESULT: EMPIRICAL EVALUATION

This paper presents an automated approach for unbiased
evaluation of 30+ CCMs. For brevity, the details of the 30+
CCMs are included in the benchmark scripts (appended into
the hpLysis software). The results reveal how the proposed
method outperforms established metrics and algorithms (Fig.
2), answering questions such as:

1) 30x+: How CCMs differ in their prediction scores? (Fig.
3);

2) 4x+: How differences in data size influence the CCM
score? (Table II);

3) 0x–79x: Is SSE able to separate between false versus
true hypothesis? (Table I).

While the above results are specific for the evaluated topolo-
gies, they capture the pitfall of making strong conclusions from
inaccurate pattern metrics.

A. How disagreements in CCMs capture topological features

The motivation of CCMs is to grasp the differences between
data using a few numeric indicators (Table II): to apply
independent metrics to capture similarities and distortions in
data.

The correct applicability of CCMs depends on both the data-
sets and the gold standards (Table I). A linear increase in
random perturbations is not recognized in the Davids-Bouldin
metric. In contrast, SSE and Silhouette detect a variation
in data perturbed with Gaussian noise. When compared to

TABLE II
HOW CATEGORIZATION OF CCMS REVEALS UNDERLYING DATA

TOPOLOGY. THE TABLE SUMMARIZES THE OBSERVATIONS FROM FIG. 3:
WHILE n = 10 REFERS TO A MATRIX WITH ROWS=COLUMNS=10,
n = 1500 CAPTURES THE RESULT OF EVALUATING A MATRIX WITH

ROWS=COLUMNS=1500; “THE n=10 – n=1500” DESCRIBES THE
RELATIVE DIFFERENCE BETWEEN worst–best; THE “worst–best” COLUMNS
IDENTIFIES THE SPREAD IN CCM SCORE; THE “best:column” IDENTIFIES

THE HYPOTHESIS WHICH IS FARTHEST AWAY FROM THE INPUT DATA.

CCM
n=10

– n=1500
n=10:

worst–best
n=1500:

worst–best
best:

column
SSE 2.6x – 3.5x 0.22 – 0.58 0.56 – 0.15 6

Silhouette 1.3 – 2x 0.7 – 0.57 0.97 – 0.50 2
Dunn 10.5 – ∞ 0.42 – 0.04 0.58 – 0.00 all
VRC 16.1x – ∞ 19.6 – 1.22 1819.4 – 0.18 9

Silhouette and SSE, the VRC metric is distinctively different.
The results demonstrate how the combination of different
CCMs provides users with a unique ability to reject a false
hypothesis: there is no uniform agreement in which CCMs to
select.

B. The correct choice of CCM provides accurate predictions

The performance of CCMs is determined by:
1) metric choice: 10x+ difference when using “Davids-

Bouldin” instead of “Dunn’s” or “Euclidean” (Table I);
2) topology sensitity: while metrics such as VRC are highly

sensitive to score perturbations, metrics such as Silhou-
ette and SSE provides higher granularity (as derived
from underlying measurements);

3) score difference: a 100x+ score-difference between ma-
trix with rows=columns=[10, 1500] (Fig. 3).

The above differences is due to the metrics definition, hence
the importance of relating CCMs to topolgoical traits. An
example is an assumption that the within cluster distance
has a uniform distribution, for which CCMs, such as VRC
and Dunn’s Index, becomes overlapping. When evaluating the
algorithm for CCM identification (code-listing 1), the results
demonstrates how the new-identified CCMs outperforms met-
rics for regression analysis. Hence, the benchmark of cluster
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quality metrics improves the broad turf of regression analysis.
Fig. 3 demonstrates how CCMs have different score sensi-

tivity: while VRC indites an = 1819.4/0.18 = ∞ separation
between correct hypothesis versus wrong hypothesis, SSE has
a sensitivity of 0.56/0.04 = 14x, as summarized in Table II.

C. Summary: pattern recognition versus data topologies

The measurements identifies the importance of applying
independent CCMs to capture differences in data-sets and
cluster predictions. Hence, the choice of CCMs should reflect
the given use-case. For the same data, there is a 5x prediction
difference between “Fred & Jain” [27] versus Davies-Bouldin
(Table I). Similarly, SSE and Silhouette disagrees in which of
the cluster prediction is the best (Fig. 3).

While the established strategy is to apply CCMs irrespective
of the topologies, this paper has demonstrated how the implicit
assumptions of data topology directly influences the accuracy
of pattern matching (Fig. 2). While this knowledge is known
among authors of algorithms (e.g., [23]), users of pattern
matching are unaware of these findings (Section III).

VII. CONCLUSION AND FUTURE WORK

In this paper, we have identified how established pattern
matching strategies in big data suffers from bias. The 30x+
inaccuracy of metrics for pattern recognition goes undetected
in large research projects (Fig. 3). The proposed benchmark
software enables quantification of the trustworthiness of es-
tablished recommendations (Section IV).

Importantly, the approach may be applied for big data-sets,
which is due to the combination of optimized software imple-
mentation and heuristics deduced from metrics (code-listing
1). The benchmark deduces fast and accurate cluster quality
metrics: code-listing 1 identifies the metric combination to be
used (for a given data ensemble), hence enabling an increase
in the accuracy of algorithms.

The new methodology and software provide users with a
tool enabling the insight into when and how data is captured
by hypothesis: to identify patterns which are otherwise hidden.
The results highlight the importance of not always following
the established guidelines for cluster validity.

In the future, we plan to apply the proposed method and
benchmark to the 1000+ recently proposed cluster algorithms,
hence easing the applicability of our findings into all turfs
relying on pattern matching algorithms.
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