
Evolvable Documents – an Initial Conceptualization

Marek Suchánek and Robert Pergl

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: marek.suchanek,robert.pergl@fit.cvut.cz

Abstract—We may say that documents are one of the cornerstones
of our civilization. Information technologies enabled unparal-
leled flexibility and power for retrieving, storing, and sharing
documents. However, in a daily documents-intensive job, one
needs to deal with severe complications of documents evolvability
and reusability of their parts. Maintaining consistency across
several documents and their versions is typically a tedious and
error-prone task. Similar evolvability challenges have been dealt
with in software engineering and principles such as modularity,
loose coupling, and separation of concerns have been studied
and applied. There is a hypothesis that they may help in the
domain of evolvable documents, as well. We perceive devising a
conceptualization of documents as the first step in this endeavor.
In this paper, we present a generic conceptualization leading to
evolvable documents applicable in any documentation domain,
and we propose next steps.

Keywords–Electronic documents; Evolvability; Modularity;
Conceptualization; Separation of Concerns.

I. INTRODUCTION

Documents are a vital carrier for storing and distributing
knowledge - the precious result of various human activities.
The amount of documents grows rapidly primarily thanks to
their “cheapness” in the digital era. However, an interesting
observation may be made: In spite of various means of storing,
retrieving, and sharing documents in electronic forms, the
foundations did not change, and the documents are the same
hard-to-maintain and evolve structures as they always were.
Imagine for example a document capturing regulations of a
study program enrollment. Such a document is issued and
maintained by the Dean of a faculty. However, it must be
compliant with the university’s regulations document, which
in turn must be compliant with the regulations of the Ministry
of Education. We have three levels of documents where the
more specific ones contain parts of the more general ones,
take them as-is or elaborate more specific versions, add further
regulations, etc. Now, imagine that there is a change in the
Ministry’s regulations, which must be appropriately dealt with
in the referring documents. This situation affects at least tens of
Faculty’s agendas which results in inefficiency, inconsistency,
and other related problems.

The first observation is that documents are seen as mono-
lithic wholes or wholes composed of highly coupled parts
which cannot be separated or even reused. If we would be
able to decouple parts of documents, make them loosely
coupled just by higher concerns, and design them as reusable,
it would significantly help in many domains, such as teaching
materials, corporate documents, manuals, regulations, etc. The
practice of software engineering suggests that if done properly,

evolvability may be significantly improved, the efficiency of
document management gained, and error rate decreased [1].

In Section II, we first briefly introduce a wide variety
of related work affecting documents domain in terms of the
modularity and evolvability. Section III is divided into three
steps of our approach to creating a generic conceptualization,
i.e., independent on a type of enterprise or domain involved.
We apply concepts from theories used in computer science
and software engineering verified by practice. Furthermore, we
build our approach on the Normalized Systems (NS) theory [1],
which is dealing with evolvability of information systems
and it has been reported to be successfully applied in other
domains than software development including documents [2]-
[4]. In Subsection III-A, we split the domain into key parts
and then, in Subsection III-B, we introduce conceptual models
for them using the ontologically well-founded conceptual
modeling language OntoUML [5]. After this exploratory and
inductive part, Subsection III-C contains deduced possible and
potentially suitable next steps and future work.

II. RELATED WORK

Over the years of Information and Communication Tech-
nologies (ICT) field development, many solutions for working
with documents and documentation emerged [6]. In this sec-
tion, we briefly discuss some key areas and approaches related
to electronic documents. This review of the current state-of-
the-art provides a foundation for our conceptualization of the
documents problem domain in general.

Nowadays, there are many different text processing tools,
syntaxes and complex systems for dealing with documents
within their whole life-cycle [6]. The goal of this part is
not to describe particular existing solutions, but to briefly
emphasize essential and interesting approaches or ideas that
should be considered before developing new solutions. All
of the mentioned approaches strife to make dealing with
documents simpler and more effective.

A. Formats and Syntax
There is a plethora of markup languages and ways how

to encode a document providing different advantages, some
are focused to be easily readable in plain text, and others
provide ways to encode complex document elements [6]. An
interesting concept of versatility and evolvability is represented
by the Pillar markup language for the Pharo environment [7].
It consists of a document model which is easily extensible
by implementing new classes and visitors defining syntactic
constructs meaning and handling. Furthermore, the provided
tool allows export in many other formats and markups.

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

Converting between formats is also important to mention.
A great example of a markup converter is Pandoc, which
enables to convert from over 20 formats to more than 30
formats [8]. The lower number of input formats illustrates the
fact that some of them are harder to process. At the same
time, an output format of a document should be expressive
and extensible. For example, LATEX has mechanisms of custom
packages and commands, environments, and macros. It is then
a considerable challenge to convert it to another format lacking
these extensions [9].

B. Templates and Styles
Separation of a graphical design and content is the first

notion of separation of concerns in documents. A document,
or any piece of data in general, can be rendered using an
independent template associated with one or various styles.
This approach can be seen in many documentation systems
and languages, such as Extensible Markup Language (XML),
HyperText Markup Language (HTML) and Cascading Style
Sheets (CSS), LATEX or even in various What you see is what
you get (WYSIWYG) Office suites. This separation leads to
good evolvability of document structure and style without
touching the content itself. [6][9]

Using templates with styles to easily form and design
complex structures is well observable in the field of web
development. Many web frameworks are supplied with one
of many template engines, namely, Twig, Jinja, JavaServer
Pages, Mustache, or other. Template engine takes structured
data and a template as input and then produces a rendered
document, e.g., query result in the form of HTML document
with table or JavaScript Object Notation (JSON) array based
on the request. Moreover, it is usually possible to extend and
compose templates together, and to create reusable components
and macros. [10]

C. Sharing and Collaboration
Documents are often written by more than one person.

Collaboration possibilities are related to the format used. If
the document files are in plain text, then one of the solutions
is to use Git or other version control system (VCS) [11]. There
are also many cloud services allowing users to create and edit
documents collaboratively, for instance, Google Documents,
Overleaf, or Microsoft Office Online.

When mentioning Git and other VCSs, it is important to
emphasize that it already provides a lot of functions that a
powerful document system needs [11][12]. Such features are
among others:

• tracking of history and comparing changes of version,
• tagging a specific version,
• signing and verifying changes,
• looking up who changed a particular line of text,
• working with multiple sources/targets and linking

other projects submodules,
• logging and advanced textual or binary search within

the changes,
• allowing changes in multiple branches,
• merging or combining changes.

Moreover, services like GitLab, GitHub, or BitBucket
provide more collaborative tools for issues, change reviews,

project management, other services integrations. One of impor-
tant related services type is continuous integration (CI), which
allows to build, check, and distribute results seamlessly. It can
be used for example to compile the LATEX document and send
the Portable Document Format (PDF) to a file server or email
address. [12][13]

D. Document Management Systems and Wikis
A document management system (DMS), as explained

in [6] and [14], is an information system that is able to manage
and store documents. Most of them are capable of keeping a
record of the various versions created and modified by different
users. The term has some overlap with the notion of content
management systems. It is often viewed as a component of
enterprise content management (ECM) systems and related
to digital asset management, document imaging, workflow
systems and records management systems.

One of the leading current DMS is an open source system
Alfresco that provides functionality, such as storing, backing
up, archiving, but also ISO standardization, workflows, ad-
vanced searching, signatures and many others [15]. From our
perspective, the problem is that DMSs are mainly focused just
on working with a document as a whole – documents stored
as files with rich metadata, which doesn’t contribute to an
evolvability itself.

Knowledge can be gathered, formatted, and maintained
in a wiki – a website allowing users collaboratively modify
content and structure directly from the web browser [16].
Wikis are extensible and simple-to-use sets of pages that can
be edited via a WYSIWYG field or manually with some
simple or custom syntax, e.g., Markdown, reStructuredText, or
DokuWiki. The system keeps track of changes within pages as
well as the attachments, so it enables to compare differences
and see who and when changed the document. Common
extensions of wikis are tools for exporting to various formats
or extending syntax and other user-friendly functionality [17].
There are many diverse commercial and open-source solutions
with slightly different functionality. Commercial solutions are
often called enterprise content management and consist of a
wiki system and a DMS to manage documents in a better way
than just with a plain DMS [14].

E. The Normalized Systems Theory
The Normalized Systems theory [1] deals with modu-

larity and evolvability of systems and information systems
specifically. It introduces four principles in order to identify
and eliminate combinatorial effects (i.e., dependencies that
are increasing with the system size): Separation of Concerns,
Data Version Transparency, Action Version Transparency, and
Separation of States. Applying the principles leads to evolvable
systems composed of fine-grained and reusable modules. In the
documents domain, only the first two principles are applica-
ble [4], because actions and states are workflow-related.

The principles and concepts of the theory have been re-
ported to be used in other domains, such as study programs [2]
and documents [3]. In the paper [4], it is shown in a form
of the prototype, how the theory can be used (especially the
separation of concerns and creating modular structures) in the
domain of documents for study programs. The prototype is
able to combine selected fine-grained independent modules and
to generate a resulting LATEX document.

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

F. Source Code Documentation
Basically, for every widely-used programming language,

there are one or more systems for building a documentation
from annotations and comments that are placed directly in a
source code. Such systems are, e.g., Javadoc for Java, Doxygen
for C/C++, Sphinx for Python (see Listing 1), or Haddock for
Haskell.

The fundamental idea is to place parts of documentation di-
rectly into a documented artifact (a variable, a function, a class,
a module, a source file, etc.). The resulting documentation is
as modular and evolvable as the writer creates it according to
guidelines and with Don’t Repeat Yourself (DRY) principle. It
is then indeed easy to edit just a part of documentation related
to one concern if the concern is separated in the source code.
Another observation is that such documentation is composed
of reusable parts. Linking the source file to different project
results in its inclusion to a documentation of a different project,
too. [18]

Listing 1. Documentation of Python source code

class Person:
"""This is simple example Person class

You can create new person like this:

.. code::

bd = datetime.datetime(1902, 1, 1)
p = Person("Peter Pan", bd)

:ivar name: Full name of the person
:vartype name: str
:ivar birthdate: Birthdate of the person
:vartype birthdate: datetime
"""

#: Number of people instantiated
people = 0
...

@property
def age(self):

"""Age of the person (birthdate-based)"""
t = date.today()
b = self.birthdate
return self._age_diff(t, b)

III. OUR APPROACH

Our approach to investigate and understand the problem
domain of evolvable documents is to split it into four separate
key areas and to build conceptual models of the domain in
ontologically rich language OntoUML based on them. Next,
we suggest possible solutions which can be based on them and
could lead to improvement of documents evolvability.

A. Key Document Viewpoints
After the brief overview of current approaches in the

ICT support for documents, this section introduces various
key viewpoints that are not ICT-related but are typical for
documents in any form. Each of them is shortly described, and
a possible implication in the computer science domain follows.
The viewpoints are defined with respect to the semiotic ladder
that introduces several steps from social world to physical
world: pragmatics, semantics, syntactics, and empirics [19].

Pragmatics and semantics, that are related to the meaning
and intentions, are covered within first three subsections.
Syntactics is related to the last subsection called Structure.
Encoding the document in the physical world, as other parts
of empirics, is out of the this work’s scope.

1) Meaning: Apparently, the meaning is the key part of
a document, as the purpose of the document is to store and
carry a piece of information that can be retrieved in the
future [20]. As the triangle of reference says, the meaning is
encoded in symbols of some language via concepts [21]. The
common problem is that in case of documents, the language
is a natural language. Because of that, documents are hard
to be understood by computers effectively in the sense of
their true meaning. Advanced methods in data mining and text
processing disciplines are trying to address this [22]; however
sometimes the meaning is hard to be decoded even by human
beings themselves. . .

Meaning, purpose, concern and other content information
may be provided as metadata of the document. Considering
such metadata, there should be a simple, single and flexible
model for such description of documents for an easy automated
processing. [23][24]

If a meaning of a text is captured in a machine-readable
way, then it is possible to extract desired information, compare
the meaning of different documents, find logical dependencies,
and many others with an automated processing. The most
basic form of captured meaning are triplets that consist of
subject, predicate, and object [24]. Such an assertion is very
simple but powerful. For specific languages, it is possible to
derive them more easily than from the others (e.g., English
with its stable sentence structure vs. Slavic languages); text
mining may also be used for derivation [22]. The assertions can
naturally have relations between themselves and form a swarm
of assertions, which is helpful for comparing different sources
of information. The information storing based on triplets is
typical especially for bioinformatics.

2) Concerns: Writing a document happens with concern
in mind, and typically there are multiple concerns across a
document. We can understand a concern in a document as a
principle that binds sentences in a paragraph, paragraphs in
a section, and sections in a document together. The whole
document then speaks about the highest-level concern that is
then split into parts recursively, until we reach some atomic
level such as paragraphs containing a set of statements. Lower-
level concerns can act as a separator of document modules,
and higher level concerns are then composed by multiple
submodules. It indicates that splitting the concerns further is
not intended by the author.

For example, considering manual for a product, the top-
level concern is about the product in general with sub-concerns
installation, usage, license, and warranty. The usage can be
then again split into concerns related to usage of specific parts
of the product. On the other hand, the warranty might not have
any further sub-concerns.

3) Variants: Apart from the primary concerns in a docu-
ment, there are also cross-cutting concerns that are not related
to meaning and information inside a document, but rather to its
usage. Such cross-cutting concerns are an intended audience,
a language, a form of document (slides, handout, book, etc.),
and so on. Those represent variants of a single document. They
are a source of possible combinatorial effects.

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

«Role»
Rendered
Document

«Relator»
Representation

{ordered}

«Subkind»
Atomic

Concern

«Subkind»
Complex
Concern

Data Version
Transparency

Separation of Concerns

Meaning & structuring

Design & format separated

«Kind»
DocModule

Content

«Kind»
Template

«Kind»
DocModule

Variant

«Role»
Cross-cutting

concern

«Kind»
Concern

«powertype»
DocModule

«Collective»
Document

«mediation»
1..*

1

«material»
/rendered with 0..* 1..*

{complete, disjoint}

{essential}
1

1

«mediation»
0..*

1

subconcern of

0..*

1..*

classified by
0..*

1

creates
1..* 1

is about
0..* 1

M 0..* 1..*

Figure 1. Conceptualization of concern-based document modularization in the OntoUML ontologically well-founded language.

For example, teaching a course requires a textbook and
lecture slides which are, of course, very closely related. When
you do some update in the textbook, you need to update
the affected slides. Now, imagine teaching the course in two
languages and some classes for seniors and some for juniors.
So, you have 8 different variants and adding one more language
would lead to another 4. Apparently, it is becoming hard to
manage these separate documents correctly. This is the core
challenge, where combinatorial effect-free documents should
help.

4) Structure: A structure of a document is essentially a
hierarchy of the document composition: chapters, sections,
subsections in various levels, paragraphs, and parts of para-
graphs. Then there are also other block elements, such as lists,
tables, figures, code examples, equations and similar. Next, we
distinguish so-called inline elements, which are parts of text
inside a block to capture the different meaning of words (e.g., a
link, important, math, a quote, a superscript, etc.) or to provide
additional information, for example, a reference or a footnote.
Notice that we don’t state anything about the style here.

The flexibility of a document structure is an enabler of
evolvability. Aligned with the notion of modules in program-
ming, every modular unit should be loosely coupled with
remaining parts and allow to be moved to a different place even
in a different document. A heading level represents a typical
problem: there is a level of the unit involved, and it gets more
complicated with cross-references. It goes even deeper when
we consider that its position in a document may form a list of
prerequisites that the reader should know beforehand.

Finally, we would expect a possibility to define a new
custom element, based on those already specified in the
structure, to increase usability and flexibility. That indicates
the need for multilevel modeling in the document structure.
For example, a table with predefined rows and columns can
be used for invoices, or a special type of paragraph can indicate
the higher importance of content for readers.

B. Conceptualization of Documents
Based on the previous considerations, we can now as-

semble the conceptual models. We use already mentioned

language OntoUML which uses high-level and well-defined
terms from the Unified Foundational Ontology (UFO) as
stereotypes and significantly enhances semantics and expres-
siveness of basic Unified Modeling Language (UML). Details
about the language and the ontology are fully explained in [5].
The connector of all the introduced models is the document
content, the carrier of information. All models are connected,
compatible, and describe different viewpoints introduced in the
previous section. Moreover, NS patterns and modularization
are well observable in the following models.

1) Concern-based Document Modularization: Figure 1
shows the diagram of the conceptual model with the separation
of concerns pattern for documents. A document is a modular
structure composed of module variants. Concerns as the drivers
of modularization are naturally binding elements of documents
to groups. Cross-cutting concerns are then the special case of
general concerns in case they produce variants of document
modules. Documents can be rendered using many templates,
while the content is still the same. That separates a used style
and typography from the actual content.

For example, in a manual for a software product, there
are the following concerns: installation, usage, warranties, etc.
Some of those have sub-concerns, which creates submodules,
e.g., installation for various platforms. A cross-cutting concern,
in this case, can be the language. Variants of “installation” are
formed by using different natural languages. The manual is
an ordered collection of various variants. Thus it is possible
to have a multi-language manual, but also language specific
manual, or just installation manual in English and then reuse
these module variants easily. Finally, the manual can be then
rendered with a template for printing, website, annotated XML,
eBook, and so on.

Language is a typical cross-cutting concern in documents,
but it can also be a case of general concern for creating
modules. Consider a document about some ancient language.
Probably some top-level module will be about the language
concern with sub-concerns related to different parts of the
language. Such document can be published in many languages
as a cross-cutting concern as well.

42Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

Instances need to be
uniquely identified and/or
carry the related context.

{disjoint}

«formal»
/antonym

«Kind»
DocModule

Content

Instance of sentence is the
composition of assertions
and can be reused (with
the same context).

«characterization»

«characterization»

«Mode»
Publication Info

«Model»
Provenance

«Kind»
Natural Sentence

«Kind»
Knowlet

(Nanopublication)

«Role»
Predicate

«Role»
Object

«Kind»
Assertion

«Subkind»
Verb

«Kind»
Word

«Subkind»
Noun

«Role»
Subject

{essential}

0..*

1..*
1

1
1

1

0..*1
{essential}

0..* 1..*

*

1

*

1

*

1

«formal»
/opposite_direction

*

*

«formal»
/synonym

*

**

*

Figure 2. Conceptualization of meaning encoded in nanopublications.

2) Meaning in Nanopublications: The way a meaning
is encoded within a document module content is shown in
Figure 2. A content is formed by natural sentences, which are
essential for the content as a whole. In a sentence, there can be
one or more assertions, which are triplets in a simplified view:
subject, predicate, and object. It is possible to form multiple
assertions with the same meaning by using synonyms, and
by switching subject with objects while using predicate for
opposite direction.

Knowlet, or so-called nanopublication, is such an assertion
with additional information and provenance as characteriza-
tions. Nanopublications are widely used within semantic webs
and Resource Description Framework (RDF) in general, as
described in [22] and [25]. Each instance of a word should be
uniquely identifiable, in semantic web this problem is solved
by the use of Uniform Resource Identifier (URI). For example,
even with a simple assertion like cat is white, we need to know
which cat the assertion is about, or if it is about all cats. The
context is crucial for assertions, but it is hard to be adequately
captured [22].

This expression of meaning could allow machines to read
and understand the content in a more efficient way than
is possible with text mining. Moreover, a semantic search,
comparison, or reasoning can be built in a more straight-
forward way. It could lead to easier work with the documents,
their parts and changes, and significant resource savings.

3) Document Content Structuring: The task of document
content structuring has been addressed many times through
syntax for composing documents and systems like the already-
mentioned Pillar. For our purpose, the conceptualization is
designed on a higher abstraction level, as shown in Figure 3.
A content of the module is composed of block elements that
contain text and inline elements that decorate part of text
within a block element. Those types of elements are essentially
powertypes [26] in the conceptualization, and their instances
are particular usages of them. For example, the most common
instance of a block element is a paragraph, and an instance of
a paragraph is a particular paragraph containing a particular
text, which is in our model covered by the atomic content kind
not further subdivided. It works similarly for figures, pieces of
data, file imports, and so on.

«Mode»
Revision

{ordered}

{ordered}

{ordered}

{complete, disjoint}

«Kind»
Plain content

«Mode»
Metadata

«Subkind»
Inline Element

«Subkind»
Block Element

«powertype»
Document

Element Type

«Kind»
Document
Element

«Kind»
DocModule

Content

«characterization»
1..*

1

decorates

0..*

1

«characterization»
1 1

1

1..*

«formal»
/can contain

* *

0..1

*

{essential}

1

1..*

classified by
0..* 1

Figure 3. Conceptualization of structuring document module content.

Element type instances can be the well-known unordered
or ordered lists, tables, definition lists, links, forms, cross-
references, figures, quotes, external references, etc. On top of
that, using powertypes allows defining new structural elements
with different semantics, e.g., an important paragraph, specific
table combined with a form, or external file. Metadata for
each module content and document element can be provided.
Content may be maintained as revisions that allow keeping
track of changes.

C. Next Steps Towards Evolvable Documents
The last part of our approach is about the next steps which

are suggested to be done in the near future as a consequence

43Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

based on the introduced conceptualization. Of course, the
domain of documents is changing rapidly as well as the
computer science which affects it significantly. Therefore is not
just single possible way how to achieve evolvable documents
and many options need to be explored, evaluated and then
found out if there is some more suitable way. Mentioned steps
seem to us very promising based on our own experience.

1) A Prototype of Evolvable Documents System: One of
the possible next steps is to design and develop a simple
prototype which further elaborates ideas from this paper and
implements them. The result should be easy to use in any
domain. The prototype would serve to find proof(s) of concept
and to uncover new challenges.

The process of prototype development would be simplified
by using the provided conceptualization and could explore
missing, incorrect or unnecessary concepts by induction. Very
important is to develop a system which is evolvable itself re-
garding Normalized Systems theory and it is not discouraging
users with a complicated user interface.

2) A Methodology for Evolvable Writing: The prototype
itself is not something that can be used directly and widely.
However, during the process of further elaboration, some form
of generic guidelines for creating evolvable documents can
emerge. The possibility to write evolvable documents is highly
affected by selected tools and formats.

Instead of developing a new solution, there is an alternative
to build a more generic methodology and try to implement it
as an integration of solutions currently available. Many of such
current tools have been already mentioned: Git, Pandoc, LATEX,
Markdown, XML, GitHub, Pillar, etc.

IV. CONCLUSION

In this paper, we presented our initial approach to evolvable
documents based on the principles of Normalized Systems
theory but, compared to the related work, applicable in generic.
The presented conceptualization is the basis of this genericity.
By incorporating modularization based on the semiotic lad-
der and the NS concepts together with the ontology-driven
conceptual modeling language OntoUML, we uncovered dif-
ferent aspects and challenges in the documents domain. The
presented tightly-related conceptual models demonstrate the
power of modularization and they can become a foundation
for further discussion and building of a methodology or a
system prototype using the model-driven development (MDD)
methods. During the future research, it is likely that the models
will need to be extended both in scope and detail.

ACKNOWLEDGMENTS

This research was supported by the CTU grant
No. SGS17/211/OHK3/3T/18, and was partially done as part
of Summer Camp ’17 organized by the FIT CTU in Prague,
and also of Normalized Systems Summer School ’17 organized
by the University of Antwerp. This work also contributes to
the CTU’s ELIXIR CZ Service provision plan.

REFERENCES

[1] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Kermt (Belgium): Koppa, 2016.

[2] G. Oorts, H. Mannaert, P. De Bruyn, and I. Franquet, “On the evolvable
and traceable design of (under) graduate education programs,” in
Enterprise Engineering Working Conference. Springer, 2016, pp. 86–
100.

[3] G. Oorts, H. Mannaert, and P. De Bruyn, “Exploring design aspects
of modular and evolvable document management,” in Enterprise Engi-
neering Working Conference. Springer, 2017, pp. 126–140.

[4] G. Oorts, H. Mannaert, and I. Franquet, “Toward evolvable document
management for study programs based on modular aggregation pat-
terns,” in PATTERNS 2017: the Ninth International Conferences on
Pervasive Patterns and Applications, February 19-23, 2017, Athens,
Greece/Mannaert, Herwig [edit.]; et al., 2017, pp. 34–39.

[5] G. Guizzardi, Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology, 2005.

[6] B. Duyshart, The Digital Document. Taylor & Francis, 2013.
[7] T. Arloing, Y. Dubois, S. Ducasse, and D. Cassou, “Pillar: A versatile

and extensible lightweight markup language,” in Proceedings of the
11th edition of the International Workshop on Smalltalk Technologies.
ACM, 2016, p. 25.

[8] M. Dominici, “An overview of pandoc,” TUGboat, vol. 35, no. 1, 2014,
pp. 44–50.

[9] S. Kottwitz, LaTeX Cookbook. Packt Publishing, 2015.
[10] Wikipedia, Template Engines: JavaServer Pages, WebMacro, ASP. NET,

Template Engine, Web Template System, Web Template Hook Styles,
Haml, Template Processor. General Books, 2011.

[11] K. Ram, “Git can facilitate greater reproducibility and increased trans-
parency in science,” Source code for biology and medicine, vol. 8, no. 1,
2013, p. 7.

[12] S. Chacon and B. Straub, Pro Git, ser. The expert’s voice. Apress,
2014.

[13] E. Westby, Git for Teams: A User-Centered Approach to Creating
Efficient Workflows in Git. O’Reilly Media, 2015.

[14] K. Roebuck, Document Management System (DMS): High-impact
Strategies - What You Need to Know: Definitions, Adoptions, Impact,
Benefits, Maturity, Vendors. Lightning Source, 2011.

[15] V. Pal, Alfresco for Administrators. Packt Publishing Ltd, 2016.
[16] B. Leuf and W. Cunningham, The Wiki Way: Quick Collaboration on

the Web. Addison-Wesley, 2001.
[17] A. Porter, WIKI: Grow Your Own for Fun and Profit. XML Press,

2013.
[18] C. Bunch, Automated Generation of Documentation from Source Code.

University of Leeds, School of Computer Studies, 2003.
[19] R. K. Stamper, “Applied semiotics,” in Proceedings of the Joint ICL/U-

niversity of Newcastle Seminar on the Teaching of Computer Science,
Part IX: Information, B. Randell, Ed., 9 1993, pp. 37–56.

[20] B. Frohmann, “Revisiting ”what is a document?”,” Journal of Docu-
mentation, vol. 65, no. 2, 2009, pp. 291–303.

[21] C. K. Ogden and I. A. Richards, “The meaning of meaning: A study
of the influence of thought and of the science of symbolism,” 1923.

[22] B. Mons, H. van Haagen, C. Chichester, J. T. den Dunnen, G. van
Ommen, R. Hooft et al., “The value of data,” Nature genetics, vol. 43,
no. 4, 2011, pp. 281–283.

[23] E. Duval, W. Hodgins, S. Sutton, and S. L. Weibel, “Metadata principles
and practicalities,” D-lib Magazine, vol. 8, no. 4, 2002. [Online].
Available: http://www.dlib.org/dlib/april02/weibel/04weibel.html

[24] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 concepts and
abstract syntax. W3C Recommendation,” 2014. [Online]. Available:
https://www.w3.org/TR/rdf11-concepts/

[25] T. Kuhn, P. E. Barbano, M. L. Nagy, and M. Krauthammer, “Broadening
the scope of nanopublications,” in Extended Semantic Web Conference.
Springer, 2013, pp. 487–501.

[26] G. Guizzardi, J. P. A. Almeida, N. Guarino, and V. A.
de Carvalho, “Towards an ontological analysis of powertypes,”
in JOWO@IJCAI, 2015. [Online]. Available: http://ceur-ws.org/Vol-
1517/JOWO-15 FOfAI paper 7.pdf

44Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

