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Abstract—Detection of spatial and contextual patterns is of
great importance to geoscientists interested in understanding
and analyzing tectonic boundaries. To date, geoscientists have
developed mostly manual detection methods and only recently
has interest in the development of automated methods grown
with the availability of high-resolution satellite data and the
advancement of technologies such as Geographic Information
Systems (G1S). Geoscientists are examining different approaches
to automate the manual detection method of tectonically related
phenomena, but considering the complexity, time-consumption,
and assumptions usually made in the manual method, new
automated detection techniques are anticipated to surface soon
and will vary in implementation, accuracy, and time
performance. In this paper, we present a Digital Elevation Model
(DEM) based automated method for detection of spatial and
contextual topographic patterns at tectonic boundaries. Our
automated method was experimented and compared against
recent existing methods with the same objective and the manual
method, which is considered as the baseline. The results show
that our automated method produces more accurate results than
the existing methods.

Keywords - Automated pattern detection; cluster analysis;
lineaments; tectonics.

l. INTRODUCTION

Context plays a major role in detecting patterns and can
help improve the accuracy of the automated detection
methods. In particular, spatial context is necessary and
imperative in detection of patterns in natural phenomena. In
this paper, we discuss a new automated detection method in
the context of lineaments (such as faults). We chose this
context, as a representative spatial context, primarily for the
reason that it is complex and involves several steps, including
image processing for pixel extraction from raster datasets,
conversion of extracted pixels to vector lines, and detection of
line clusters based on the context.

Tectonic stresses acting upon a region can create
deformation structures, such as folds, faults, and fractures.
These structures act as pathways for weathering and erosion,
influencing topographic pattern development in a region.
Selecting lines (or lineaments) along changes in topography
(ridges, valleys, etc.) is a common method in highlighting
patterns of geologic structures. The scale of the lineaments
often reflects the most prominent types of geologic structures
[1]-[3]. Detection and selection of lineament patterns is most
accurately conducted manually; however, automated methods
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are improving and their results are converging on the accuracy
of the manually selected data. These automated methods still
are prone to error, and validation of the dataset is crucial.
Since large, tectonically sourced lineaments are not just
expressions of a specific feature, but also a manifestation of
lithospheric paleostress fields [4]-[7], errors in the orientation
of lineaments can lead to incorrect interpretations of the
geologic stress patterns through time [4].

The most common methods of automatically extracting
lineament data is from DEMs [8], [9], or from some surface
derived from a DEM [10]-[12]. Derived surfaces are created
to better enhance distinct topographic changes (‘edges’), and
the derived surface most frequently used are hillshades [4],
[11], [12]. The popularity of utilizing hillshades to select
lineaments is based on how well it highlights topographic
changes; however, since a hillshade is based on azimuthal
direction and vertical angle of a ‘sun’, a single image will
prominently highlight features perpendicular to the azimuthal
orientation selected to make the hillshade [13]. Features not
ideally oriented will be harder to select as the difference in
Digital Number (DN) value across the ridge will be close to
negligible. To overcome this hurdle, several hillshades with
different azimuthal sun orientations can be created from the
original DEM [13], [14]. Once edges have been enhanced,
edge linking methods are used for automated line extraction
[4], or modules such as LINE in PCI Geomatica.

The line datasets selected from the various hillshades
sometimes highlight the same topographic features, and the
resulting final dataset has clusters of lines representing a
single feature. Manually picking lineaments from the
hillshades avoids this data clustering [13]; however, these
clusters are unavoidable in automatically selected lineament
data based on a multiple hillshade approach, requiring a
method to de-cluster or assess the data. Assessment of
automatically picked lineaments has most commonly been
done subjectively as a visual assessment [12], [15]. There
have been several objective approaches suggested: [4] used a
hierarchical clustering of different datasets based on count and
statistics of orientation and length of lineaments, similarly,
[16] computed statistics of count and length of lineaments to
compare different datasets, [8] implemented a confusion
matrix approach with the distance between lineaments, and [9]
used calculated reference point data to correlate with ground
truth datasets as a comparison metric. While these objective
methods deploy specific metrics to assess or de-cluster data,
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Figure 1. (a) The final dataset of all lines extracted from the multiple hillshades in PCI Geomatica with noise reduction, and (b) Aspect of the DEM.

none reference the original dataset, the DEM, to evaluate lines
within a cluster as the most representative of the topographic
feature they are meant to represent. Without consideration of
what the lines represent, any de-clustering method or
assessment allows for misoriented linear evaluations of
topographic features, leading to misinterpretations of geologic
stresses.

The objective of this paper is to present a new method in
assessing the different datasets that result from a multiple
hillshade (MH) lineament selection approach, referencing the
original DEM dataset as an objective assessment of lines. Our
results are to be compared to the leading DEM based
lineament method by [4] and a manual method, which we
consider to be the baseline. The manual method, despite being
very time consuming and in some parts involving subjective
assumptions, is currently the only known method that
produces highly accurate results. This, coupled with the
observation that the geoscience community has spent many
years refining and improving the manual method, would make
it suitable to be used as a baseline for comparing the accuracy
of automated methods, such as the one discussed in this paper.

The rest of this paper is structured as follows. In section 2,
we discuss the study area and the digital elevation model we
use. Section 3 outlines our methods: automated selection of
lines, derivation of metric to validate lines, and cluster
analysis. Our results are presented in section 4 and discussed
in section 5. Concluding remarks and future work are found in
section 6.

Il.  STUDY AREA AND DATA

The eastern margin of North America has been subjected
to several mountain building (orogenic) events over the last
500 million years, the final event constructing the
Appalachian Mountains. For the purposes of this study, we
locate our region of interest to an approximately 9km x 9km
region in central Pennsylvania within the Valley and Ridge
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province of the Appalachian Mountains. This area is
dominated by folded beds whose preferential weathering and
erosion dominate the topographic development in the area.
Ridges and valleys within this particular area trend NE-SW at
an azimuth of 67°. Our DEM is a 1-arc second (~30m)
resolution elevation model from the Shuttle Radar
Topography Mission (SRTM) V2. Within the DEM, there are
two distinct topographic expressions. In the northern and
western portions, there is a distinct topographic representation
of the valleys and ridges associated with the province, with
high topographic relief. The southeastern portion has no
pronounced ridge system and the topographic relief in this
region is low. It is likely that the structures expressed by
topography in this region are joints (fractures).

I1l.  METHODS

Our new method discussed in this paper is similar to the
Multi-Hillshade Hierarchical Clustering (MHHC) method
presented in [4]. The selection of clusters follows similar
steps, but our methods vary in how we process those clusters.
Our method is composed of three parts: 1) automatic
selection of lines in PCI Geomatica, 2) derivation of a metric
to validate the best oriented lines, and 3) the cluster analysis.

A. Automatic Selection of Lines

The automatic selection of lines is composed of four steps:
1) creation or acquisition of a DEM, 2) derivation of
hillshades from the DEM at various illumination azimuths, 3)
line extraction based on edge detection, and 4) reduction of
noise. The DEM can be created from vector or LIDAR data,
or acquired as a subset or mosaic of existing DEMs. In our
case, we utilized a subset of a DEM with coverage in central
Pennsylvania. From the DEM, we derived eight hillshades at
45° illumination orientations starting with 0° (north) and
ending with 315° (northwest). We selected these eight
orientations to best highlight topographic changes
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(ridges/valleys) that may otherwise not be well-highlighted
given only a single illumination orientation. For example, a
ridge oriented east-west will best be highlighted with a north-
south illumination and not an east-west orientation. Each
image was then imported into PCI Geomatica, calling on the
LINE module to extract lineaments. The LINE algorithm is
comprised of three steps. The first is the edge detection
operator (Canny edge detector) followed by thresholding to
produce a binary edge raster [17]. This image is then
processed by many substeps to extract the vector lines [4],
[17]. Further, and more detailed, description of the workflow
for the LINE module can be found in [17]. The LINE module
requires several parameters to be input, and these parameters
can impact the count, length, and spatial accuracy of the
selected lines [4]. Parameter selection was based on several
trials and visual assessment of the output. The parameters we
selected are provided in Table 1. The values in Table 1 are
expressed in pixels (px) as these are the values of inputs used
by the software. A vector shapefile of automatically selected
lineaments is output for each of the eight hillshade images.
These shapefiles were merged into a single dataset, and each
line was split at vertices. Splitting the lines increases the
number of lines and the dataset size, but it also allows for
interpretation of multiple structures influencing a single
topographic feature. Azimuthal orientation and length of each
line was calculated and added as a field to the dataset.

Noise reduction was performed using a raster approach
outlined in [4]. The merged dataset was converted to a raster
image using the line density tool in the computer program,
ArcMap [18]. In the output raster, considering a relatively low
value for search radius, clusters of lines are depicted as regions
with high DN values, while solitary lines have lower DN
values. Zonal statistics of the line density output raster were
calculated within a 60m buffer around each line and the mean
DN value was appended to the line dataset. Lines associated
with low DN values were deleted from the dataset. It must be
noted that, while this noise reduction decreases the total
number of lines, it also may remove small, but structurally
relevant data. At this stage of the research, we continued with
the noise reduction, as it is what was employed by [4] in their
method. As our work continues, we will need to make
considerations of the validity of noise reduction in the context
of geologic structural and field data. The final dataset is shown
in Fig. 1A. Clusters of lines can clearly be seen that follow
ridge/valley profiles.

TABLE I. TABLE OF PARAMETERS FOR LINE SELECTION IN PCI
GEOMATICA.
Parameter Value Used

Filter Radius 10 px

Edge Gradient Threshold 30 px

Curve Length Threshold 30 px

Line Fitting Error Threshold 9 px

Angular Difference Threshold 30°

Linking Distance Threshold 20 px
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B. Derivation of Metric to Validate Lines

In deriving a metric to validate lines, special attention must
be paid to what these line features represent, which, based on
the MH approach, are changes in topography. Not all lines
within a cluster are true representations of the topographic
feature they are meant to highlight. The most accurately
oriented line will have slopes oriented differently on both the
right and left side of the line, as that line represents some
valley or ridge. This will not hold true for lines inaccurately
oriented, as the same slope orientation can exist on both sides
of the line. To implement this idea and develop a metric which
we refer to as the inflection value, we first derive an aspect
image from our DEM (see Fig. 1B). This provides us with the
azimuthal orientation each slope is facing within the DEM.
The aspect image is converted to a point shapefile. We then
create 60m left and right buffers around each line.
Unfortunately, the zonal statistics tool does not take into
consideration circular statistics, so we calculated the sine and
cosine for the azimuth at each point and developed our own
zonal statistics tool specifically for circular data. This tool
uses the aspect point shapefile and the left and right buffers as
input and calculates the mean of the sine and cosine within
each buffer, and converts that value back to azimuthal
notation. The difference between the mean aspect values in
the left and right buffers of each line gives us the inflection
value. High inflection values represent lines that more
accurately represent the feature they are meant to highlight,
since the slopes on either side of a ridge or valley should face
opposite directions.

C. Cluster Analysis

The following workflow, adapted from [4], is applied to
the line dataset to reduce clusters to one linear feature:

1) Choose the longest line in the main dataset.

2) Make a buffer around the chosen line.

3) Select all lines completely within that buffer.

4) Select lines with azimuth within 20° from the line
selected in step 1.

5) Select the line with the largest inflection value, save it
to a new shapefile — the final dataset - and delete all
selected lines in the main dataset.

6) Repeat from step 1 until no lines remain in the main
dataset.

We compare our cluster analysis with that suggested in
[4], which follows a similar workflow up until step 5:

5) If the selection contains more than 4 lines, continue to
step 6, otherwise save the originally selected line to a
new shapefile — the final dataset —and continue to step
8.

6) Create a buffer around selected lines (=cluster) with
the following attributes: count of selected lines,
average length, and average azimuth.

7) Create a new line using the average length and
azimuth in step 6, and save it to the final dataset
shapefile.

8) Delete all selected lines from the main dataset.
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9) Repeat from step 1 until no lines remain in the main
dataset.

In deploying the method outlined in [4], we had to explore
and make some assumptions as to the size of buffers. The
buffer size in step 2 is determined by processing the dataset
using the two methods using 150m, 200m, 250m, and 300m
buffers. The results are visually assessed to evaluate the buffer
size that best de-clusters data; where clusters are reduced to a
single line and not an excess of lines are deleted. In step 6 for
[4], we utilized a buffer of 60m, which was large enough to
allow all buffered lines to intersect one another. Beyond these
assumptions, we maintained the exact process as described in
[4] to better compare the two methods and assess sources of
difference. For both methods, the algorithms were written in
Python in ArcGIS using the ArcPy library.

IV. RESULTS

The results of the method by [4] using 150m, 200m, 250m,
and 300m buffers at step 2 are shown in Fig. 2. Similarly, Fig.
3 shows the results using our new method. The lines in these
images represent final de-clustered line datasets within the
region of interest using different buffer sizes in step 2.

Both sets of results were compared to a more accurate
lineament dataset manually selected using hillshades and the
original DEM. Through visual assessment, we are able to
identify that a 300m buffer resulted in too few lines in the final
dataset in both methods. Lower buffer sizes (150m and 200m)

left too many lines representing single features. A buffer size
of 250m provided the best results in the case of both methods.
Results of both methods compared to the manually selected
lines are shown in Fig. 4. In Fig. 4, the top rose plot is of the
manual data, middle rose plot is of the data from our method,
and the bottom is from the method in [4].

V. DISCUSSION

We calculate a completeness percentage of the resulting
output lines from the two methods as compared to a manually
selected dataset [19]. This calculation was done by buffering
the lines from the two methods with a buffer size of 50m, and
extracting the length of manual lines within those buffers. The
percentage of the length of lines within the buffers is the
completeness percentage. Our method had a 60%
completeness compared to 47% that resulted from the method
in [4]. Upon a visual assessment of the lines output by the two
methods using a 250m buffer size in step 2 to manually
selected lines (see Fig. 4), we can note that automatic
lineament selection in the northern portion of the dataset was
far more successful than what is seen in the southeastern
region. Completeness percentages were higher with both
methods in the north: 80% for the results of our method, and
68% for the method by [4]. We compared our initial total
dataset before the clustering method was applied, and were
able to ascertain that the cluster analysis caused the significant
loss of data in the southeastern region. This leads us to believe
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Figure 3. Results of our method at (a) 150m, (b) 200m, (c) 250m, and (d) 300 m buffers.
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that subdivisions of the dataset should be made based on a first
pass visual assessment of the automatically selected line
dataset. These subdivisions can then be processed using
different buffer sizes, or even approaches, to produce a more
accurate result for that subarea. Since the southeastern portion
of the area of interest has been identified as compromised, we
make our assessment on the effectiveness of the two methods
based on the northern portion.

In the northern region, both methods do not highlight
every line, but this happens where the buffer size to select a
cluster overlaps lines representing an adjacent feature with
similar orientation and size. One potential way to avoid this in
the future could be to remove the necessity for buffering at
step 2 and only select lines that intersect the longest line. Not
all lines within a cluster intersect every other line, so this could
lead to additional errors. Additionally, lines in clusters near
the ends of another cluster could intersect the longest line as
well.

A visual assessment between the three datasets in the
northern area suggests that our method more often picks lines
that match in orientation with the manual dataset. By creating
a metric for each line that references the original dataset, we
have provided a new method in differentiating the most
representative line in a cluster. Beyond quantitative and visual
assessments, rose plots have been created for the three datasets
(see Fig. 4). These rose plots represent the frequency of
azimuthal orientations of lines in the overall dataset. The
manually derived dataset has a clear east-northeast trend that
is bimodal (peaks at 60° and 75°) within a range of 30°. This
general trend is shared with our method, and the method from
[4]; however, the bimodal characteristic with similarly
oriented peaks is seen only in the rose plot of our new method.

This combination of quantitative, visual, and data trends
assessment leads us to suggest that our new method is better
in differentiating datasets (MH lines). Additionally, our new
method highlights the importance of referencing the original
DEM when validating or assessing clusters of lines. While our
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Figure 4. Comparison of the manually picked dataset (red lines) to our new method (solid grey lines) and to the results of the method in [4] (dotted
black lines) using a 250m buffer. Rose diagrams are provided for each dataset.
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method produces more accurate results, there are still many
improvements to be considered, such as avoiding the loss of
adjacent data with similar orientations and lengths. Since the
algorithms for these improvements are computationally
complex, processing large datasets would take an enormous
amount of time. Work has to be done on creating a more time-
efficient approach. Furthermore, we hope to explore more
quantitative and automated methods of parameter selection
where parameter selection is based on trial-and-error and
subjectivity, such as the input values for the module used in
PCI Geomatica (Table 1).

VI. CONCLUSION AND FUTURE RESEARCH

We have successfully proven that referencing the original
DEM when assessing line data within clusters results in a
more accurate representation of features in a region. However,
our method requires adjustments to take into consideration
distances between clusters, and how regions dense with data
(southeastern area in our region) should be handled to avoid a
significant loss of relevant data. Future work will address
these issues and aim to apply our method to larger regions for
geologic interpretations based on the resulting linear database.
We will also improve our method by developing new
algorithms (e.g., to avoid the loss of adjacent data with similar
orientations and lengths). Additionally, we hope to explore
more advanced quantitative methods of evaluating similarity
between linear datasets by using Hausdorff distances [20].
Once these improvements are made, generalization of our
method for detecting patterns in other contexts will be another
future research direction.
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