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Abstract—Detection of spatial and contextual patterns is of 
great importance to geoscientists interested in understanding 
and analyzing tectonic boundaries. To date, geoscientists have 
developed mostly manual detection methods and only recently 
has interest in the development of automated methods grown 
with the availability of high-resolution satellite data and the 
advancement of technologies such as Geographic Information 
Systems (GIS). Geoscientists are examining different approaches 
to automate the manual detection method of tectonically related 
phenomena, but considering the complexity, time-consumption, 
and assumptions usually made in the manual method, new 
automated detection techniques are anticipated to surface soon 
and will vary in implementation, accuracy, and time 
performance. In this paper, we present a Digital Elevation Model 
(DEM) based automated method for detection of spatial and 
contextual topographic patterns at tectonic boundaries. Our 
automated method was experimented and compared against 
recent existing methods with the same objective and the manual 
method, which is considered as the baseline. The results show 
that our automated method produces more accurate results than 
the existing methods. 

  
Keywords - Automated pattern detection; cluster analysis; 

lineaments; tectonics. 

I.  INTRODUCTION 
Context plays a major role in detecting patterns and can 

help improve the accuracy of the automated detection 
methods. In particular, spatial context is necessary and 
imperative in detection of patterns in natural phenomena. In 
this paper, we discuss a new automated detection method in 
the context of lineaments (such as faults). We chose this 
context, as a representative spatial context, primarily for the 
reason that it is complex and involves several steps, including 
image processing for pixel extraction from raster datasets, 
conversion of extracted pixels to vector lines, and detection of 
line clusters based on the context.  

Tectonic stresses acting upon a region can create 
deformation structures, such as folds, faults, and fractures. 
These structures act as pathways for weathering and erosion, 
influencing topographic pattern development in a region. 
Selecting lines (or lineaments) along changes in topography 
(ridges, valleys, etc.) is a common method in highlighting 
patterns of geologic structures. The scale of the lineaments 
often reflects the most prominent types of geologic structures 
[1]–[3]. Detection and selection of lineament patterns is most 
accurately conducted manually; however, automated methods 

are improving and their results are converging on the accuracy 
of the manually selected data. These automated methods still 
are prone to error, and validation of the dataset is crucial. 
Since large, tectonically sourced lineaments are not just 
expressions of a specific feature, but also a manifestation of 
lithospheric paleostress fields [4]–[7], errors in the orientation 
of lineaments can lead to incorrect interpretations of the 
geologic stress patterns through time [4].  

The most common methods of automatically extracting 
lineament data is from DEMs [8], [9], or from some surface 
derived from a DEM [10]–[12]. Derived surfaces are created 
to better enhance distinct topographic changes (‘edges’), and 
the derived surface most frequently used are hillshades [4], 
[11], [12]. The popularity of utilizing hillshades to select 
lineaments is based on how well it highlights topographic 
changes; however, since a hillshade is based on azimuthal 
direction and vertical angle of a ‘sun’, a single image will 
prominently highlight features perpendicular to the azimuthal 
orientation selected to make the hillshade [13]. Features not 
ideally oriented will be harder to select as the difference in 
Digital Number (DN) value across the ridge will be close to 
negligible. To overcome this hurdle, several hillshades with 
different azimuthal sun orientations can be created from the 
original DEM [13], [14]. Once edges have been enhanced, 
edge linking methods are used for automated line extraction 
[4], or modules such as LINE in PCI Geomatica.  

The line datasets selected from the various hillshades 
sometimes highlight the same topographic features, and the 
resulting final dataset has clusters of lines representing a 
single feature. Manually picking lineaments from the 
hillshades avoids this data clustering [13]; however, these 
clusters are unavoidable in automatically selected lineament 
data based on a multiple hillshade approach, requiring a 
method to de-cluster or assess the data. Assessment of 
automatically picked lineaments has most commonly been 
done subjectively as a visual assessment [12], [15]. There 
have been several objective approaches suggested: [4] used a 
hierarchical clustering of different datasets based on count and 
statistics of orientation and length of lineaments, similarly, 
[16] computed statistics of count and length of lineaments to 
compare different datasets, [8] implemented a confusion 
matrix approach with the distance between lineaments, and [9] 
used calculated reference point data to correlate with ground 
truth datasets as a comparison metric. While these objective 
methods deploy specific metrics to assess or de-cluster data, 
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none reference the original dataset, the DEM, to evaluate lines 
within a cluster as the most representative of the topographic 
feature they are meant to represent. Without consideration of 
what the lines represent, any de-clustering method or 
assessment allows for misoriented linear evaluations of 
topographic features, leading to misinterpretations of geologic 
stresses. 

The objective of this paper is to present a new method in 
assessing the different datasets that result from a multiple 
hillshade (MH) lineament selection approach, referencing the 
original DEM dataset as an objective assessment of lines. Our 
results are to be compared to the leading DEM based 
lineament method by [4] and a manual method, which we 
consider to be the baseline. The manual method, despite being 
very time consuming and in some parts involving subjective 
assumptions, is currently the only known method that 
produces highly accurate results. This, coupled with the 
observation that the geoscience community has spent many 
years refining and improving the manual method, would make 
it suitable to be used as a baseline for comparing the accuracy 
of automated methods, such as the one discussed in this paper. 

The rest of this paper is structured as follows. In section 2, 
we discuss the study area and the digital elevation model we 
use. Section 3 outlines our methods: automated selection of 
lines, derivation of metric to validate lines, and cluster 
analysis. Our results are presented in section 4 and discussed 
in section 5. Concluding remarks and future work are found in 
section 6. 

II. STUDY AREA AND DATA 
The eastern margin of North America has been subjected 

to several mountain building (orogenic) events over the last 
500 million years, the final event constructing the 
Appalachian Mountains. For the purposes of this study, we 
locate our region of interest to an approximately 9km x 9km 
region in central Pennsylvania within the Valley and Ridge 

province of the Appalachian Mountains. This area is 
dominated by folded beds whose preferential weathering and 
erosion dominate the topographic development in the area. 
Ridges and valleys within this particular area trend NE-SW at 
an azimuth of 67°. Our DEM is a 1-arc second (~30m) 
resolution elevation model from the Shuttle Radar 
Topography Mission (SRTM) V2. Within the DEM, there are 
two distinct topographic expressions. In the northern and 
western portions, there is a distinct topographic representation 
of the valleys and ridges associated with the province, with 
high topographic relief. The southeastern portion has no 
pronounced ridge system and the topographic relief in this 
region is low. It is likely that the structures expressed by 
topography in this region are joints (fractures). 

III. METHODS 
Our new method discussed in this paper is similar to the 

Multi-Hillshade Hierarchical Clustering (MHHC) method 
presented in [4]. The selection of clusters follows similar 
steps, but our methods vary in how we process those clusters. 
Our method is composed of three parts: 1) automatic 
selection of lines in PCI Geomatica, 2) derivation of a metric 
to validate the best oriented lines, and 3) the cluster analysis. 

A. Automatic Selection of Lines 
The automatic selection of lines is composed of four steps: 

1) creation or acquisition of a DEM, 2) derivation of 
hillshades from the DEM at various illumination azimuths, 3) 
line extraction based on edge detection, and 4) reduction of 
noise. The DEM can be created from vector or LIDAR data, 
or acquired as a subset or mosaic of existing DEMs. In our 
case, we utilized a subset of a DEM with coverage in central 
Pennsylvania. From the DEM, we derived eight hillshades at 
45° illumination orientations starting with 0° (north) and 
ending with 315° (northwest). We selected these eight 
orientations to best highlight topographic changes 

 
Figure 1.  (a) The final dataset of all lines extracted from the multiple hillshades in PCI Geomatica with noise reduction, and (b) Aspect of the DEM. 
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(ridges/valleys) that may otherwise not be well-highlighted 
given only a single illumination orientation. For example, a 
ridge oriented east-west will best be highlighted with a north-
south illumination and not an east-west orientation. Each 
image was then imported into PCI Geomatica, calling on the 
LINE module to extract lineaments. The LINE algorithm is 
comprised of three steps. The first is the edge detection 
operator (Canny edge detector) followed by thresholding to 
produce a binary edge raster [17]. This image is then 
processed by many substeps to extract the vector lines [4], 
[17]. Further, and more detailed, description of the workflow 
for the LINE module can be found in [17]. The LINE module 
requires several parameters to be input, and these parameters 
can impact the count, length, and spatial accuracy of the 
selected lines [4]. Parameter selection was based on several 
trials and visual assessment of the output. The parameters we 
selected are provided in Table 1. The values in Table 1 are 
expressed in pixels (px) as these are the values of inputs used 
by the software. A vector shapefile of automatically selected 
lineaments is output for each of the eight hillshade images. 
These shapefiles were merged into a single dataset, and each 
line was split at vertices. Splitting the lines increases the 
number of lines and the dataset size, but it also allows for 
interpretation of multiple structures influencing a single 
topographic feature. Azimuthal orientation and length of each 
line was calculated and added as a field to the dataset.  

Noise reduction was performed using a raster approach 
outlined in [4]. The merged dataset was converted to a raster 
image using the line density tool in the computer program, 
ArcMap [18]. In the output raster, considering a relatively low 
value for search radius, clusters of lines are depicted as regions 
with high DN values, while solitary lines have lower DN 
values. Zonal statistics of the line density output raster were 
calculated within a 60m buffer around each line and the mean 
DN value was appended to the line dataset. Lines associated 
with low DN values were deleted from the dataset. It must be 
noted that, while this noise reduction decreases the total 
number of lines, it also may remove small, but structurally 
relevant data. At this stage of the research, we continued with 
the noise reduction, as it is what was employed by [4] in their 
method. As our work continues, we will need to make 
considerations of the validity of noise reduction in the context 
of geologic structural and field data. The final dataset is shown 
in Fig. 1A. Clusters of lines can clearly be seen that follow 
ridge/valley profiles. 

TABLE I.  TABLE OF PARAMETERS FOR LINE SELECTION IN PCI 
GEOMATICA. 

Parameter Value Used 

Filter Radius 10 px 

Edge Gradient Threshold 30 px 

Curve Length Threshold 30 px 

Line Fitting Error Threshold 9 px 

Angular Difference Threshold 30° 

Linking Distance Threshold 20 px 

 

B. Derivation of Metric to Validate Lines 
In deriving a metric to validate lines, special attention must 

be paid to what these line features represent, which, based on 
the MH approach, are changes in topography. Not all lines 
within a cluster are true representations of the topographic 
feature they are meant to highlight. The most accurately 
oriented line will have slopes oriented differently on both the 
right and left side of the line, as that line represents some 
valley or ridge. This will not hold true for lines inaccurately 
oriented, as the same slope orientation can exist on both sides 
of the line. To implement this idea and develop a metric which 
we refer to as the inflection value, we first derive an aspect 
image from our DEM (see Fig. 1B). This provides us with the 
azimuthal orientation each slope is facing within the DEM. 
The aspect image is converted to a point shapefile. We then 
create 60m left and right buffers around each line. 
Unfortunately, the zonal statistics tool does not take into 
consideration circular statistics, so we calculated the sine and 
cosine for the azimuth at each point and developed our own 
zonal statistics tool specifically for circular data. This tool 
uses the aspect point shapefile and the left and right buffers as 
input and calculates the mean of the sine and cosine within 
each buffer, and converts that value back to azimuthal 
notation. The difference between the mean aspect values in 
the left and right buffers of each line gives us the inflection 
value. High inflection values represent lines that more 
accurately represent the feature they are meant to highlight, 
since the slopes on either side of a ridge or valley should face 
opposite directions. 

C. Cluster Analysis 
The following workflow, adapted from [4], is applied to 

the line dataset to reduce clusters to one linear feature: 
 
1) Choose the longest line in the main dataset. 
2) Make a buffer around the chosen line. 
3) Select all lines completely within that buffer. 
4) Select lines with azimuth within 20° from the line 

selected in step 1. 
5) Select the line with the largest inflection value, save it 

to a new shapefile – the final dataset - and delete all 
selected lines in the main dataset. 

6) Repeat from step 1 until no lines remain in the main 
dataset. 

 
We compare our cluster analysis with that suggested in 

[4], which follows a similar workflow up until step 5: 
 
5) If the selection contains more than 4 lines, continue to 

step 6, otherwise save the originally selected line to a 
new shapefile – the final dataset – and continue to step 
8. 

6) Create a buffer around selected lines (=cluster) with 
the following attributes: count of selected lines, 
average length, and average azimuth. 

7) Create a new line using the average length and 
azimuth in step 6, and save it to the final dataset 
shapefile. 

8) Delete all selected lines from the main dataset. 
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9) Repeat from step 1 until no lines remain in the main 
dataset. 

 
In deploying the method outlined in [4], we had to explore 

and make some assumptions as to the size of buffers. The 
buffer size in step 2 is determined by processing the dataset 
using the two methods using 150m, 200m, 250m, and 300m 
buffers. The results are visually assessed to evaluate the buffer 
size that best de-clusters data; where clusters are reduced to a 
single line and not an excess of lines are deleted. In step 6 for 
[4], we utilized a buffer of 60m, which was large enough to 
allow all buffered lines to intersect one another. Beyond these 
assumptions, we maintained the exact process as described in 
[4] to better compare the two methods and assess sources of 
difference. For both methods, the algorithms were written in 
Python in ArcGIS using the ArcPy library. 

IV. RESULTS 
The results of the method by [4] using 150m, 200m, 250m, 

and 300m buffers at step 2 are shown in Fig. 2. Similarly, Fig. 
3 shows the results using our new method. The lines in these 
images represent final de-clustered line datasets within the 
region of interest using different buffer sizes in step 2.  

Both sets of results were compared to a more accurate 
lineament dataset manually selected using hillshades and the 
original DEM. Through visual assessment, we are able to 
identify that a 300m buffer resulted in too few lines in the final 
dataset in both methods. Lower buffer sizes (150m and 200m) 

left too many lines representing single features. A buffer size 
of 250m provided the best results in the case of both methods. 
Results of both methods compared to the manually selected 
lines are shown in Fig. 4. In Fig. 4, the top rose plot is of the 
manual data, middle rose plot is of the data from our method, 
and the bottom is from the method in [4]. 

 

V. DISCUSSION 
We calculate a completeness percentage of the resulting 

output lines from the two methods as compared to a manually 
selected dataset [19]. This calculation was done by buffering 
the lines from the two methods with a buffer size of 50m, and 
extracting the length of manual lines within those buffers. The 
percentage of the length of lines within the buffers is the 
completeness percentage. Our method had a 60% 
completeness compared to 47% that resulted from the method 
in [4]. Upon a visual assessment of the lines output by the two 
methods using a 250m buffer size in step 2 to manually 
selected lines (see Fig. 4), we can note that automatic 
lineament selection in the northern portion of the dataset was 
far more successful than what is seen in the southeastern 
region. Completeness percentages were higher with both 
methods in the north: 80% for the results of our method, and 
68% for the method by [4]. We compared our initial total 
dataset before the clustering method was applied, and were 
able to ascertain that the cluster analysis caused the significant 
loss of data in the southeastern region. This leads us to believe 

 
Figure 3.  Results of our method at (a) 150m, (b) 200m, (c) 250m, and (d) 300 m buffers. 

 
Figure 2.  Results of the method in [4] at (a) 150m, (b) 200m, (c) 250m, and (d) 300 m buffers. 
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that subdivisions of the dataset should be made based on a first 
pass visual assessment of the automatically selected line 
dataset. These subdivisions can then be processed using 
different buffer sizes, or even approaches, to produce a more 
accurate result for that subarea. Since the southeastern portion 
of the area of interest has been identified as compromised, we 
make our assessment on the effectiveness of the two methods 
based on the northern portion. 

In the northern region, both methods do not highlight 
every line, but this happens where the buffer size to select a 
cluster overlaps lines representing an adjacent feature with 
similar orientation and size. One potential way to avoid this in 
the future could be to remove the necessity for buffering at 
step 2 and only select lines that intersect the longest line. Not 
all lines within a cluster intersect every other line, so this could 
lead to additional errors. Additionally, lines in clusters near 
the ends of another cluster could intersect the longest line as 
well.  

A visual assessment between the three datasets in the 
northern area suggests that our method more often picks lines 
that match in orientation with the manual dataset. By creating 
a metric for each line that references the original dataset, we 
have provided a new method in differentiating the most 
representative line in a cluster. Beyond quantitative and visual 
assessments, rose plots have been created for the three datasets 
(see Fig. 4). These rose plots represent the frequency of 
azimuthal orientations of lines in the overall dataset. The 
manually derived dataset has a clear east-northeast trend that 
is bimodal (peaks at 60° and 75°) within a range of 30°. This 
general trend is shared with our method, and the method from 
[4]; however, the bimodal characteristic with similarly 
oriented peaks is seen only in the rose plot of our new method. 

This combination of quantitative, visual, and data trends 
assessment leads us to suggest that our new method is better 
in differentiating datasets (MH lines). Additionally, our new 
method highlights the importance of referencing the original 
DEM when validating or assessing clusters of lines. While our 

 
Figure 4.  Comparison of the manually picked dataset (red lines) to our new method (solid grey lines) and to the results of the method in [4] (dotted 

black lines) using a 250m buffer. Rose diagrams are provided for each dataset. 
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method produces more accurate results, there are still many 
improvements to be considered, such as avoiding the loss of 
adjacent data with similar orientations and lengths. Since the 
algorithms for these improvements are computationally 
complex, processing large datasets would take an enormous 
amount of time. Work has to be done on creating a more time-
efficient approach. Furthermore, we hope to explore more 
quantitative and automated methods of parameter selection 
where parameter selection is based on trial-and-error and 
subjectivity, such as the input values for the module used in 
PCI Geomatica (Table 1). 

VI. CONCLUSION AND FUTURE RESEARCH 
We have successfully proven that referencing the original 

DEM when assessing line data within clusters results in a 
more accurate representation of features in a region. However, 
our method requires adjustments to take into consideration 
distances between clusters, and how regions dense with data 
(southeastern area in our region) should be handled to avoid a 
significant loss of relevant data. Future work will address 
these issues and aim to apply our method to larger regions for 
geologic interpretations based on the resulting linear database. 
We will also improve our method by developing new 
algorithms (e.g., to avoid the loss of adjacent data with similar 
orientations and lengths). Additionally, we hope to explore 
more advanced quantitative methods of evaluating similarity 
between linear datasets by using Hausdorff distances [20]. 
Once these improvements are made, generalization of our 
method for detecting patterns in other contexts will be another 
future research direction. 
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