
(Don’t) Join the Dark Side
An Initial Analysis and Classification of Regular, Anti-, and Dark Patterns

Alexander G. Mirnig and Manfred Tscheligi
Center for Human-Computer Interaction & Department of Computer Sciences

University of Salzburg, Salzburg, Austria
Email: firstname.lastname@sbg.ac.at

Abstract— Patterns describe proven solutions to reoccurring
problems. Anti-patterns describe solutions, which are proven
not to work for solving reoccurring problems. Both concepts
are well understood, documented, and employed in several
different disciplines. Another, more obscure pattern concept, is
that of “dark patterns”. Dark patterns describe solutions used
to trick users and are often considered to be anti-patterns. In
this paper, we show that dark patterns have a different status
and focus. Depending on the circumstances, a dark pattern can
either be a regular pattern or an anti-pattern. Treating and
documenting a dark pattern in the same way as a regular or
anti-pattern could result in making malicious solutions easy to
access and reproduce. We provide a review and delineation
criteria for regular patterns, anti-patterns, and dark patterns
in Human-Computer Interaction (HCI). This enables a more
reflected knowledge transfer via patterns and protection of
users from malicious designs.

Keywords-basics on patterns; design patterns; anti-patterns;
dark patterns.

I. INTRODUCTION
Design is usually not a blind, directionless activity, but

happens with a certain focus. In HCI, ‘design’ is most often
encountered in regards to user interface (UI) design. A good
or well-designed UI should be readable and understandable
for the intended user group, provide quick access to the most
often used commands and functions, not obstruct the view
onto other parts of the program that are not part of the UI, as
well as satisfy the user depending on the specific application
and context. As can be expected, there is no “one size fits
all” solution to good UI design. General guidelines and
knowledge on what constitutes sensible UI design do exist,
but these require the hand of an experienced designer when it
comes to covering specific cases and contexts, where tweaks
and modifications in even the smallest details are often
necessary – details, which general guidelines do not cover
[1][2].

A pattern or design pattern is a documentation of a
working solution to a particular (design) problem, embedded
in its context and with concrete implementation examples. In
contrast to patterns, an anti-pattern (sometimes also written
‘antipattern’) presents a solution that is proven not to work
for solving a particular problem. A dark pattern describes a
design solution intended to trick or otherwise deceive the
user.

Both, regular and anti-patterns, are aimed at carefully
documenting the solutions contained within them and are
tied to approaches and structures that support this aim. With
dark patterns, however, such an approach would arguably
defeat the purpose behind naming and describing patterns,
namely making the described solutions easy to access and
reproduce. A specific level of information is certainly
necessary, but if one wants to protect users from harmful
designs, is providing step-by-step instructions on how to
easily reproduce such designs really the right way or rather
even counterproductive? This is the reason why a more
detailed analysis of dark patterns and their relation to regular
and anti-patterns is important.

In this paper, we provide such an analysis. We explore
patterns, anti-patterns, and dark-patterns and the concepts
behind them. We reflect on available literature in order to
extract the basic characteristics of each type of pattern. We
provide a minimal definition for each type of pattern and
discuss these. As we will eventually discover, dark patterns
carry their name only in the very loosest sense of the word,
due to the lack of focus on reproducibility of the described
solutions and other factors. In Section II, we provide a brief
overview on related work to patterns, anti-patterns, and dark
patterns. In Section III, we take a look at common
definitions, structures, and examples for each pattern type, in
order to extract the minimal requirements for a good or
successful pattern of each of these types. The overall aim of
the paper is to show the potential dangers of not clearly
separating patterns, anti-patterns, and dark patterns and
provide usable classification for all three pattern types to
avoid these dangers. The paper concludes with a discussion
of the results and future work in section IV, and an overall
summary in Section V.

II. RELATED WORK
The term ‘pattern’ in this context was first coined by

Christopher Alexander [3] to document techniques and
solutions in architecture. His idea was to develop these
small, standalone solutions with the eventual goal of making
buildings by “stringing together patterns" [4]. Nowadays, the
term generally refers to documented proven solutions to
reoccurring problems in specific fields and contexts. Various
pattern approaches exist and are applied in different
disciplines, interaction design and software engineering
being the most prominent among these [5][6].

65Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

In HCI, patterns have been adopted for capturing UI
design solutions in several domains, such as web design [7],
contextual User Experience design [8], or the automotive
domain [9]. In this paper, we shall mostly focus on UI design
patterns as they are used in the HCI community, in order to
keep the analysis and discussion condensed, though the
eventual results should be expandable into other domains.

Providing solutions to problems and giving guidance to
novices and experts was traditionally done via guidelines.
Using guidelines is subject to a number of problems [1][2].
They are often too simplistic or too abstract, they can be
difficult to interpret by the designer, or they can even be
conflicting with other guidelines, due to their general nature
and the many different application contexts. Due to this same
general nature, it can be difficult to identify which concrete
problem(s) a guideline actually addresses. One particularity
of patterns is that they are always focused on a certain
problem. Where a guideline would give an overall answer to
a question of the form “How do I do x?” a pattern would
answer “How do I solve x?”.

Patterns are less holistic but more specific, with a focus
on providing a completely retraceable solution to a specific
problem. According to Van Welie and van der Weer [6], this
makes them even potentially better tools than guidelines.
Patterns usually contain more specific knowledge than
guidelines, but with a much narrower thematic focus.
Depending on the abstraction level of a pattern [10], it can
contain little to no guidance towards any greater overall task
the problem might be a part of. Patterns can thus be seen as
complementing guidelines and other means of general
guidance. It is also possible for a pattern to contain
information from several guidelines, but only the parts
pertaining to a particular situation or problem [11].

Pattern creation or “mining”, as it is often called (e.g.,
[5][17]), is a lengthy and structured process, requiring
designers who were actually able to solve a certain problem
to retrace their steps and carefully document how they
arrived at their solution in several iterations. The goal is to
fully document the solution finding and implementation
process embedded in its context, so that the solution can be
faithfully reapplied in a similar or even different context, if
possible. Contemporary pattern approaches still follow
Alexander’s general intention of individual patterns working
together as solution elements to larger problems. Patterns
are, therefore, rarely standalone, but are collected in
collections or repositories, which are either published as
paper volumes or online.

Where patterns describe working solutions to reoccurring
problems, anti-patterns do the opposite; they describe
solutions to reoccurring problems that are proven to not
work. The basic idea is the same as with regular patterns –
carefully document the solution process as well as its
embedded context. The overall goal, however, is to avoid the
solution the anti pattern describes rather than its
implementation. Appleton [12] describes anti-patterns as
descriptions of lessons learned instead of the best practices
described by regular patterns.

A third type of patterns, although not as well documented
as the former two, is that of dark patterns. Brignull [13]

defines dark patterns as descriptions of design solutions,
which “appear[s] to have been carefully crafted to trick
users into doing things […] and they do not have the user’s
interests in mind.” What might be desirable and good design
in one instance could very well be a dark pattern in another –
otherwise, e.g., spoofing would not work as well as it (sadly)
often does.

So the distinction between regular and dark patterns is
not as clear-cut, as it might seem at first glance. Similarly, it
is sensible to expect a dark pattern solution to work at least
moderately well for its envisioned purpose or it would not
warrant the attention. In this case, however, it would be
incorrect to label it an anti-pattern, as anti-patterns document
solutions that do not work well in the first place. This
somewhat muddy situation is reflected in the literature. To
provide an example, in their 2014 DIS Paper, Greenberg et
al. [15] define dark patterns as anti-patterns in a wider sense,
whereas darkpatterns.org [14], a website dedicated to expose
deception and malicious design practices, explicitly separates
dark patterns from anti-patterns as their own pattern
category.

III. ANALYSIS
In the following three sections, we provide common

concepts, structure templates (where available), and
examples of patterns (also referred to as ‘regular patterns’ in
order to not confuse them with the latter two types), anti-
patterns, and dark patterns. We then use these to derive
commonalities for each pattern type. At the end of each
subsection, we transform these commonalities into a brief list
of minimal requirements for each pattern type. The analysis
is a high-level one, with focus on common concepts. It is not
intended to be an encompassing and detailed meta-analysis
of all available pattern literature.

A. Regular Patterns
Since a pattern describes a proven solution to reoccurring

problems, this means that each pattern starts from a problem,
which requires a solution. The solution described in a pattern
needs to be a reliable and proven one. If it worked only once,
then it is not a good solution for a pattern. The general rule
for what constitutes a solution as proven is commonly known
as the rule of three [5]. If a solution has worked to solve the
problem in at least three cases, then it is considered a
working solution. This is not a hard rule, but it has generally
been accepted in most pattern approaches.

As mentioned previously, one of the main ideas behind
pattern approaches in general is to describe only that single
solution instead of giving general guidance. At the beginning
of the pattern mining process, the pattern writer retraces each
step that leads to the eventual solution until s/he has a
complete description of every single step, which led to the
solution, including the exact context the solution was
embedded in, as well as contextual forces and other
variables. The term ‘writer’ might suggest only one
individual, but it is not unusual for several individuals to be
involved in a pattern mining and writing process.

In order to ensure a good end product of such an involved
process, a successful pattern should usually satisfy a number

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

of requirements in order to be considered of sufficient
quality. In a meta-study on pattern requirements and
guidelines, Wurhofer et al. [8] defined the following
requirements for patterns, based on the work of Niebuhr et
al. [18], McGee [19], Khazanchi et al. [20], Borchers [10],
and Dearden et al. [21]:

a) Findability: A pattern needs to be easily findable
within a pattern collection or language. If it already requires
considerable effort to find a pattern in the first place, then
that defeats the aim of patterns to provide easier access to
specific information.

b) Understandability: The described solution must be
understood by its users. A solution, which is not understood,
can hardly be implemented correctly (or at all).

c) Helpfulness: The described solution must be
feasibly realizable within the reader’s available resources. It
must furthermore contain enough information, so that the
reader can realize the solution in practice.

d) Empirical Verification: The pattern solution should
be supported by empirical data. A solution supported by
empirical data is of higher quality than one, which is based
only on individual experiences and/or observations.

e) Overall acceptability: This is an additional criterion
to capture the subjective component of whether or not a
reader agrees with a pattern solution or not, regardless of the
presence or absence of deficiencies in any of the other
quality requirement categories.

To ensure that a pattern satisfies these and similar quality
criteria, they are often written according to predefined
structures or templates. Such templates contain fields for all
the essential information for a successful pattern in a certain
domain. Gamma et al. [5] proposed a detailed structure in
their influential work about design patterns, which consists
of 13 fields, tailored towards documenting object oriented
software solutions. Tidwell [7] proposes a slightly simpler
and more generally suited structure, which consists of the
fields Name, Examples, Context, Problem, Forces, Solution,
Resulting Context, and additional Notes.

In another pattern collection, Tidwell [22] even proposes
a rather minimalistic pattern structure containing only the
four categories What, How, Why, and When. This structure
expresses the minimal requirements of a pattern, in that it
needs to address a problem via its solution (the What),
describe the solution and the steps that need to be taken (the
How), a justification and explanation of why the solution
works as it does (the Why), and an explanation of the context
and conditions for successful reapplication (the When).

Mirnig et al. [11] propose a general pattern structure
intended for use across disciplines. This pattern structure is
very similar to Tidwell’s and consists of only five mandatory
elements: Name, Problem Description, Context and/or
Forces, Solution, and Examples.

B. Minimal Regular Pattern Requirements
Based on these observations, we can conclude that a

successful pattern should at least contain the following
elements:

a) Means of reference: Name, Type, Keywords, and
similar elements serve to distinguish a solution description
from others, help build references between solutions, which
are dependent on other solutions or problems, and aid in
finding or re-finding the particular solution in a collection or
database containing several patterns. Corresponds to the
criterion of findability. At least one such means of finding
and reference should be contained in every pattern.

b) Problem description: Patterns are not general
guidance documents but always targeted at a specific
problem. This problem must be described or explicitly
mentioned at least briefly, to let the reader decide whether
the pattern is of use in the particular case or not.

c) Context description: Since patterns provide solutions
for very concrete problems, these problems need to be
described in the context the solution occurred in. Depending
on the context, some solutions are not feasible or have
different effects than they would have in other contexts.
Ideally, this context description includes a detailed listing of
the forces influencing the solution, but not necessarily. The
basic requirement is a description detailed enough to let the
reader decide whether the solution can be applied in the
particular context or not.

d) Solution description: The solution is arguably the
most important part of a pattern. It must be described, not
merely mentioned, ideally from the identification to the
problem to the fully working implementation of the solution
in a step-by-step manner.

e) At least one example: In order to satisfy the general
requirement of giving practical guidance, the pattern should
contain at least a description of one case of a successful
solution implementation.

It should be noted that none of the examined templates
and structures contained written documentation of the
solution status as “proven” as a requirement. Corresponding
to the criterion of empirical verification by Wurhofer et al.
[8], the assumption is that a pattern ideally contains more
than one example in order to show that it worked in more
than one case. However, the rule of three or other potential
standards in this regard are rarely explicitly mentioned or
enforced in pattern templates or structures. For this reason,
the status as proven or the number of successful solution
applications is also not included in the list of minimal pattern
requirements above.

C. Anti-Patterns
If patterns are the “Dos”, then anti-patterns are the

“Don’ts”. Anti-patterns are documentations of bad or
nonworking solutions to problems. Appleton [12]
distinguishes between two kinds of anti-patterns:

Type 1: Those that describe a bad solution to a problem,
which resulted in a bad situation.

Type 2: Those that describe how to get out of a bad
situation and how to proceed from there to a good solution.

The second type of anti-pattern is also known as an
“Amelioration Pattern” [17]. Type 2 or amelioration patterns
skirt the boundaries between pattern types and are –
depending on their level of detail – more of a combination of
a type 1 anti-pattern (description of the bad solution) and a

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

corresponding regular pattern (description of the working
solution). Anti-patterns are not as widely used as regular
patterns, although they are arguably just as useful as regular
patterns, in that they document solutions that, according to
Coplien [24], might “look like a good idea, but which
backfire badly when applied.” Like regular patterns, the
negative nature of the anti-pattern’s solution might not be
obvious, and the anti-pattern serves to make this fact explicit.

Despite this, anti-patterns are not always documented in
the same level of detail as regular patterns are. For example,
Github’s list of anti-patterns [23] consists of only five
elements, each one to two lines long, with only two of them
containing actual reasons for why the solution is considered
an anti-pattern.

The Portland Pattern Repository Wiki [17], on the other
hand, provides a detailed template very similar to that of a
regular pattern, outlining the components a well-written anti-
pattern should feature. The structure proposed by this
template is very similar to that of most regular pattern
approaches. The main differences are references to other
anti-patterns and positive patterns (in case it is a Type 2 or
amelioration pattern), together with two context sections.

In this paper, we want to understand anti-patterns as
more than a simple listing of things not to do, since a simple
listing does not ensure understandability, non-
reproducibility, verification, and other factors tied to the
concepts the term ‘patterns’ carries. We shall call those,
which satisfy these factors genuine anti-patterns, and those,
which do not (i.e., simple listings or incomplete anti-
patterns) nongenuine anti-patterns.

D. Minimal Anti-Pattern Requirements
Keeping in line with regular pattern requirements and

quality criteria, the following would be sensible high-level
expectations from any (genuine) anti-pattern: (1) ensure
(non-)reproducibility of the solution; (2) foster understanding
why the solution does not work as intended; (3) provide
distinction between the desired and actual outcome; (4) make
the description accessible to experts and novices. Taking
these into consideration and by matching them to the
discussed anti-pattern approaches, we can conclude that a
successful anti-pattern should at least contain the following
elements:

a) Means of reference: An anti-pattern needs to be
easily found and be able to be referenced, so the same
standards as for regular patterns apply.

b) Problem description: An anti-pattern provides a
solution to a problem, just like a regular pattern does. Since
the distinction lies in the (in-)appropriateness of the solution
and since the reader needs to be able to decide whether the
anti-pattern is relevant for him/her, the same standards as for
regular patterns apply.

c) Context description: Just like in a regular pattern,
whether or not a solution works or can be considered “good”,
depends on the application context and influencing factors.
Therefore, the same standards as for regular patterns apply.

d) Solution description: Unlike solution descriptions in
regular patterns, the focus in not on reproducibility of the
described solution. However, anti-patterns can describe well-

intentioned bad solutions, so the instructions should be
detailed enough, so that the individual steps can be retraced.
This way, it is easier to pinpoint where the solution went
wrong (start, middle, end). Therefore, similar standards as
for regular patterns apply here as well.

e) Result description: An anti-pattern describes a
solution, which does not work well or which does not work
as intended. In order to adequately do this, the pattern needs
to contain a description of the result of applying the pattern
solution in the particular context(s), in order to allow the
reader to compare the desired with the actual result.

f) At least one example: Similar to regular patterns, the
anti-pattern should contain at least one example case. In an
anti-pattern, however, the focus is not on reproducing the
solution. Therefore, the example should serve to justify the
implicit or explicit assumption that the solution described by
the anti-pattern leads to the described result.

E. Dark Patterns
A dark pattern describes a design solution, which

“appear[s] to have been carefully crafted to trick users into
doing things … and they do not have the user’s interests in
mind.” [13]. Unlike anti-patterns, this definition by Brignull
et al. does not leave room for well-intentioned solutions,
which did not work out as intended. The definition found on
darkpatterns.org, an adaptation of the previous definition,
makes this even more explicit: “Dark Patterns ... are not
mistakes, they are carefully crafted with a solid
understanding of human psychology, and they do not have
the user’s interests in mind.“ [14]

Where a pattern describes a well-working solution and an
anti-pattern describes one, which does not work well (or as
well as it was intended to work), a dark pattern describes a
solution, where the intention behind it is a negative one.
Documenting a solution as a dark pattern is a way of
exposing often well-hidden malicious practices (e.g., hidden
costs in “free” services or disguised advertisements). There
is no direct requirement of the solution having to work well
(pattern) or not (anti-pattern). Greenberg et al. [15] and
Zagal et al. [16] also highlight the intentionality of a dark
pattern as the main distinguishing characteristic from an anti-
pattern. Nonetheless, they combine both dark patterns and
anti-patterns in a broader sense in their work.

However, it would be reasonable to expect a dark pattern
to be more important or more dangerous, if the solution it
describes worked well rather than the opposite. After all, if a
design intended to trick the user does not work very well as
per its intended use, then that solution is less dangerous than
one, which works very well in tricking users.

So in a way, it would seem more sensible to consider
dark patterns to be closer to regular patterns instead of anti-
patterns. Taking the proposed minimal recommendations we
found for regular patterns and applying them to dark patterns
would also be misguided, however, as the focus of regular
patterns lies in their reapplicability – the exact opposite of
dark pattern solutions, which should not be reproduced [13]-
[16].

As we can see, the distinguishing characteristic of a dark
pattern is not the quality of its solution, and neither is it the

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

level of detail of its solution description. It is rather the
intention behind the design solution and its status of
undesirability, which makes a particular solution a dark
pattern solution. Dark patterns are, much like shallow anti-
patterns, often simply documented as brief statements of the
solution implementation, followed by a list of examples. The
focus is more on warning the user and exposing
malpractices.

F. Minimal Dark Pattern Requirements
Considering that a dark pattern is not about reproducing a

solution, but a statement as to how and why a particular
solution is malicious and should be avoided, we arrive at the
following minimal requirements to satisfy these aspects:

a) Means of reference: If a dark pattern should carry
the name ‘pattern’ for a reason, then it should also satisfy the
general pattern requirement of being easily referenceable, in
order to build a pattern collection or language. Therefore,
similar standards as for regular and anti-patterns apply.

b) Solution description: Just like a regular pattern or an
anti-pattern, a dark pattern is about a particular solution
implementation. This solution needs to be described in
enough detail, so that the reader can recognize it.

c) Solution goal or intention: The focal points of dark
pattern solutions are the malicious intentions behind the
solution implementation. While the intention in regular or
anti-patterns is, in most cases, simply the intention of solving
the problem, malicious goals can be manifold and not always
known to the reader (phishing, spoofing, credit card fraud,
etc.). Therefore, the intention needs to be made explicit in
dark patterns.

d) Undesirability statement: The fact that the solution
with its respective goal is an undesirable one might not be
obvious to every reader, depending on his or her background,
experience or legal knowledge. A dark pattern should,
therefore, contain a statement about the undesirability of the
solution. This also clearly demarcates it as a dark pattern.

e) Undesirability justification: More important than the
undesirability statement itself is an appropriate justification
as to why the intention behind the described solution is
undesired in a particular context (or all of them). This
justification might often be obvious or already implicitly
contained in the solution description, but it is nevertheless
very important for three intuitively plausible reasons. First, a
dark pattern should expose practices that skirt or cross legal
and/or moral boundaries. They should not be based on one’s
subjective sensibilities regarding aesthetics or other
nonrelevant factors. Second, moral codes are still subjective
in a wider sense and not uniform across societies, so an
intersubjectively traceable reference should be provided.
Third, legal constraints are similarly not uniform across
nations, so an adequate reference or justification should be
provided.

f) At least one example: Similar in form to regular
patterns and anti-patterns, examples have an entirely
different function for dark patterns. They should warn users

from interacting with the designs presented in the examples
section. The focus should be on quantity over quality, since
the designs need not be reproduced.

To sum up, a regular pattern provides the reader with
clear reasoning and context as to why and how a certain
solution solved a particular problem. In the same spirit, a
dark pattern provides the reader with a clear reasoning and
context as to why and how a certain solution is undesirable
from a legal and/or moral standpoint.

TABLE I. MINIMAL REQUIREMENTS PER PATTERN TYPE

Requirement Patterns Anti-
Patterns

Dark
Patterns

Reference
means X X X

Problem X X

Context X X

Solution X X X

Goal/Intention X

Result X

Undesirability
statement X

Undesirability
justification X

Example(s) X X X

G. Minimal Requirements - Summary
When comparing the minimal requirements for the three

pattern types we can see that, the only requirements all three
have in common are reference means, solution description,
and examples. Problem statement and context description are
only relevant for regular patterns and anti-patterns. Anti-
patterns require an additional result description, in order to
show how the solution does not work well or as well as
intended. Dark Patterns, having a different focus, require an
additional statement about the solution intention, the
undesirability of it, and a justification for said undesirability.
Since they do not focus on reproducibility of the solution,
problem statement and context description are not required
for dark patterns. An overview of the minimal requirements
for each pattern Type is provided in Table 1.

IV. SUMMARY AND DISCUSSION
From this preceding analysis, we derive that there are

two dimensions, which govern the separation between
regular patterns, anti-patterns, and dark patterns. These two
levels are completeness and focus.

The completeness of a pattern determines whether it is
genuine or non-genuine. Since completeness means fulfilling
the minimum requirements outlined above, it is reasonable to
state that only genuine patterns could be considered good or
high quality patterns. There is no guarantee, however, that a

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

genuine pattern is automatically of high quality, as its
content may still be lacking. This depends on the pattern
mining and writing processes and cannot be dictated by
structural requirements alone.

The focus of a pattern finally decides whether the
solution is a dark pattern solution or not. For the distinction
between anti-patterns and regular patterns, the intentions
behind the solution are irrelevant. Anti-patterns can be well
intentioned with unintended side effects or misguided from
the start, whereas regular patterns do not infer any legally or
ethically relevant intentions beyond simply wanting to solve
the particular problem. Thus, patterns and anti-patterns are
focused on the solution and how well it works. We call these
solution-centered patterns. Dark patterns are focused on
the intentions behind a pattern solution. We call these
intention-centered patterns. In their genuine form, patterns,
anti-patterns and dark patterns are separate, non-overlapping
categories. Only in their non-genuine form there is an
(potential) overlap between anti-patterns and dark patterns.
Regular patterns and anti-patterns share their status as
solution-centered patterns. Only dark patterns are in the
separate category of intention-centered patterns.

A. Intentions Matter
As we have learned, requirements for genuine dark

patterns are different from both pattern and anti-pattern
requirements. Furthermore, reproducibility is not a factor,
and viability of the solution is a secondary rather than a
primary factor. The solution might be easy or difficult to
reproduce. It might be a solution that works well, moderately
well, or not even all that well. But this does not really matter
as to whether the solution description constitutes a dark
pattern. What matters is the intention behind a problem
solution. Consider phishing emails as an example case.
There are more and less convincing phishing attempts – the
more convincing ones are usually grammatically well written
and spoof domain names, as well as corporate designs in
some cases. Whether they are well done or not, the intention
behind them is still a malicious one – be it obtaining personal
information without a user’s consent, stealing passwords,
committing monetary fraud, or a combination of these.

The deciding factor in whether a solution is a dark
pattern solution or not, is the intention with which it is
implemented. This can mean that a dark pattern solution is
newly developed for a certain nefarious purpose, or that a
well-working and proven solution is appropriated and reused
with malicious intent. This also serves as another clear
delineation criterion from anti-patterns, as it might well be
that an anti-pattern solution might lead to private date being
made public with all its negative consequences (identity
theft, credit card fraud, public shaming, etc.). If the intention
behind the solution was, however, a positive one and the
solution simply misguided for whatever reason, then the
pattern is clearly an anti-pattern and not a dark pattern.

B. What is a Pattern?
This brings us to the issue of whether a dark pattern

justifiably carries the term ‘pattern’ in its name at all.
Describing a dark pattern solution at the same level of detail

as a regular pattern or anti-pattern can lead to the opposite of
what a dark pattern should do. A dark pattern should warn
both users and designers from malicious solutions. They
should not encourage such designs. If a dark pattern
describes the malicious solution in great detail, however,
then it does just that by making it more accessible and easier
to (re-)implement. In order to be protected from a dark
pattern solution, one needs to know what it looks like, what
the intentions behind it are, and where it is or can be
encountered. Knowing how to reproduce the malicious
solution is hardly relevant at all in this context.

The only time in which it seems appropriate to conflate
dark patterns and anti-patterns is when we talk about non-
genuine patterns. Non-genuine patterns are patterns only in a
wider sense, as they are problem solution descriptions of
some sort, but without the level of detail, reproducibility
focus and accessibility of genuine patterns. So if it is only
appropriate to conflate dark patterns with other pattern types
when they are incomplete, which essentially lowers their
quality potential, there is little reason for dark patterns
carrying ‘pattern’ in their name. However, it seems
inappropriate to police the use of the term ‘dark pattern’ too
strictly, as it is already widely used and usually understood
in a somewhat consistent way. But we want to stress that
dark patterns should not be considered patterns in the same
way that regular patterns and anti-patterns are. The focus and
purpose of dark patterns are decidedly different, and the
‘pattern’ in ‘dark patterns’ should be used with care.

C. A View Ahead and the Dangers of Knowing Too Much
Informing user-centered design solutions and protecting

the user from malicious intentions is often a difficult
balancing act. Knowledge transfer is important, as is design,
which caters to individual user needs and requirements.
Well-documented and well-working solutions – especially
those focused on trustworthiness, acceptance, and similar
factors – are in constant danger of being “hijacked” by those
with sinister intents. We cannot realistically expect to come
up with user-centered designs, which are completely safe
from being used with malicious intent. Neither can we
expect phishing, scamming, spoofing, and other forms of
cyber crime to disappear anytime soon.

What we can do, then, is to be more careful when
collecting, summarizing, and editing information. This keeps
the knowledge transfer more focused by including necessary
and omitting unnecessary information. Treating regular
patterns, anti-patterns, and dark patterns as complex concepts
with concrete purposes and requirements lessens the danger
of a dark pattern containing instructions on how to easily
reproduce its solution. Similarly, it lessens the chance of a
regular pattern solution being used with malicious intent
without anybody noticing. While it is probably true for dark
pattern solutions that knowing too much can be bad, the
opposite can be said to be true for knowledge about dark
patterns. By knowing exactly what the purpose and
requirements of a particular pattern type are, the patterns
themselves can be more easily molded to fit that, and only
that, particular purpose. This, in turn, raises their
effectiveness, while at the same time reducing the potential

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

of misuse, misdocumentation, or over documentation. Thus,
preserving knowledge and protecting the user need not
always be at odds.

V. CONCLUSION
Dark patterns are different from both regular patterns and

anti-patterns due to their focus. Dark patterns are not patterns
in the sense that they describe solutions embedded in their
context with a focus on (non-)reproducibility, but serve more
as warnings. They, therefore carry the name ‘patterns’ only
in a very loose sense of the word. In order to satisfy quality
requirements, which are often associated with patterns in the
tradition of Alexander [3][4], Gamma et al. [5], and others,
we provided a minimal definition for genuine dark patterns,
thus bridging the gap between dark patterns and other pattern
types as much as possible. A fundamental difference in focus
and requirements between the pattern types still remains and
the ‘pattern’ in ‘dark patterns’ should be used with care.

Future work will focus on refining dark pattern structures
and centralization of information collection about malicious
practices for use both within and outside of HCI. The
definitions provided in this paper should serve to structure
pattern approaches within and outside of HCI, especially
regarding the sometimes neglected concepts of anti-patterns
and dark patterns, as well as inspire more careful and
focused handling of user-centered design knowledge.

ACKNOWLEDGMENT
The financial support by the Austrian Science Fund (FWF):
I 2126-N15 is gratefully acknowledged.

REFERENCES
[1] A. Dix, G. Abowd, R. Beale, and J. Finlay, “Human-

Computer Interaction,” Prentice Hall, Europe, 1998.
[2] M. J. Mahemoff and L. J. Johnston, “Principles for a

Usability-Oriented Pattern Language,” In Proc. Australian
Computer Human Interaction Conference OZCHI’98, IEEE
Computer Society, 1998, pp. 132–139.

[3] C. Alexander, “A Pattern Language: Towns, Buildings,
Construction,” Oxford University Press, New York, USA,
1997.

[4] C. Alexander, “The Timeless Way of Building,” Oxford
University Press, New York, USA, 1979.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software.”
Pearson, 1994.

[6] M. Van Velie and G. C. van der Veer, “Pattern Languages in
Interaction Design: Structure and Organisation,” In Proc.
Ninth Int. Conf. on Human-Computer Interaction, IOS Press,
2003, pp. 527-534.

[7] J. Tidwell, “Common Ground: A Pattern Language for
Human-Computer Interface Design,”

http://www.mit.edu/~jtidwell/interaction_patterns.html,
retrieved: January 2017.

[8] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, “A
Quality Criteria Framework for Pattern Validation,”
International Journal on Advances in Software 3, no. 1&2,
IARIA, 2010, pp. 252-264.

[9] T. Kaiser, A. G. Mirnig, N. Perterer, A. Meschtscherjakov,
and M. Tscheligi, “Car User Experience Patterns: A Pattern
Collection in Progress,” In Proc. Eighth International
Conference on Pervasive Patterns and Applications
(PATTERNS 2016), IARIA, 2006, pp. 9-16.

[10] J. Borchers, “A Pattern Approach to Interaction Design,” AI
& Society 12, Springer, 2001, pp. 359-376.

[11] A. G. Mirnig et al., “User experience patterns from scientific
and industry knowledge: An inclusive pattern approach,
International Journal On Advances in Life Sciences 7, no.
3&4, IARIA, 2015, pp. 200-215.

[12] B. Appleton, “Patterns and Software: Essential Concepts and
Terminology,” http://www.bradapp.com/docs/patterns-
intro.html, retrieved: January 2017.

[13] H. Brignull, “Dark Patterns: Deception vs. Honesty in UI
Design,” http://alistapart.com/article/dark-patterns-deception-
vs.-honesty-in-ui-design, 2011, retrieved: January 2017.

[14] H. Brignull, M. Miquel, and J. Rosenberg, Dark Patterns
Library. http://darkpatterns.org, retrieved: January 2017.

[15] S. Greenberg, S. Boring, J. Vermeulen, and J. Dostal, “Dark
Patterns in Proxemic Interactions: A Critical Perspective,” In
Proc. 2014 conference on Designing interactive systems (DIS
’14), ACM (2014), pp. 523-532.

[16] J. Zagal, S. Bjork, and C. Lewis, “Dark Patterns in the Design
of Games,” In Proc. Foundation of Digital Games, 2013.
http://www.fdg2013.org/program/papers.html, retrieved:
January 2017.

[17] The Portland Pattern Repository Wiki. http://c2.com/cgi/wiki,
retrieved: January 2017.

[18] S. Niebuhr, K. Kohler, and C. Graf, “Engaging patterns:
Challenges and means shown by an example,” Engineering
Interactive Systems, Springer, 2008, pp. 586–600.

[19] K. McGee, “Patterns and Computer Game Design
Innovation,” In Proc. 4th Australasian conference on
Interactive entertainment, RMIT University, 2007, pp. 1–8.

[20] D. Khazanchi, J. Murphy, and S. Petter, “Guidelines for
Evaluating Patterns in the IS Domain,” In Proc. MWAIS,
AISeL, 2008, paper 24.

[21] A. Dearden and J. Finlay, “Pattern Languages in HCI: A
Critical Review,” Human-Computer Interaction 1, Lawrence
Erlbaum Associates Inc., 2006, pp. 49–102.

[22] J. Tidwell, “Designing Interfaces,” 2nd Edition, O’Reilly,
Sebastopol, CA, USA, 2011.

[23] Anti-patterns on Github.
https://github.com/angular/angular.js/wiki/Anti-Patterns,
retrieved: January 2017.

[24] J. O. Coplien, “Software Patterns,” SIGS Books, New York,
NY, USA, 1996.

[25] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J.
Mowbray, “AntiPatterns,” 1998, Wiley.

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

