
Toward Evolvable Document Management for Study Programs Based on Modular

Aggregation Patterns

Gilles Oorts and Herwig Mannaert

Normalized Systems Institute
University of Antwerp

Antwerp, Belgium
Email: gilles.oorts,herwig.mannaert@uantwerp.be

Ilke Franquet

Unit for Innovation and Quality Assurance in Education
Faculty of Applied Economics

University of Antwerp, Belgium
Email: ilke.franquet@uantwerp.be

Abstract—Despite technological and operational business ad-
vances over the past decades, organizations are still required to
draft and manage documents. Although a lot of these documents
have taken an electronic form, their structure is in essence still
the same as their analogue and physical predecessors. In this
paper, we present a different view of documents as we imagine
them as modular structures. Based on the patterns of the artifacts
they describe, documents can be modularized and decomposed
into fine-grained text modules. This leads to easier maintenance
of the text modules as they offer a clear aggregate structure and
any information is stored in only one text module. This enables
re-usability and allows for a greater versatility of the information
stored in the text modules. One can generate several new types
of documents with different purposes as to the ones imaginable
at this moment. All of this enables the creation of truly evolvable
documents according to the Normalized Systems theory.

Keywords–Normalized Systems theory; Modularity; Document
Management; Prototype; Evolvable Documents; Modular Docu-
ments; Text Modules.

I. INTRODUCTION

Despite technological and operational business advances
over the past decades, organizations are still required to draft
and manage documents. These documents can take a plethora
of forms, such as books, spreadsheets, slide decks, manuals,
legal contracts, emails, reports, etcetera. Although a lot of
these documents have taken an electronic form, their structure
is in essence still the same as their analogue and physical
predecessors. Invoices are often just printed and sent by mail,
after which they are opened and scanned by the receiving
organization. Or instead of printing and handing out new
operational procedures, they are often just exported as a pdf-
file and saved on a server.

Despite the endless opportunities the revolution in Informa-
tion Technologies (IT) brought along, most efforts in document
management were limited to just digitizing documents, i.e.,
transforming them from analogue to digital form as mono-
lithic blocks. In this paper, we show how this view of static
documents that are a mere representation of their analogue
predecessors is out-of-date. Instead, we will present a view of
multidimensional and ever-changing documents, based on the
insights from modularity and Normalized Systems reasoning.
The practical implications of this view will be discussed based
on a case study of a document management system for study
program documentation.

In Section II, we will first demonstrate the need for variabil-
ity and evolvability in documents. Next, we will show how to
achieve these document characteristics using the principles of
modularity and evolvability based on Normalized Systems the-
ory in Section III. To illustrate this approach we first introduce
the case of study programs in Section IV before discussing a
prototype of such a document system in Section V.

II. THE NEED FOR EVOLVABILITY AND VARIABILITY OF
DOCUMENTS

Documents are rarely invariant artifacts. In todays com-
petitive business environment, companies need to be able to
adapt to changing requirements of customers, government,
competitors, suppliers, substitute products or services, and
newcomers to the market [1]. These changes also require
adaptations to the documents used in the organization. As these
documents are managed in a digital way and can be easily
edited by multiple people throughout time, they are changed
more frequently and have several concurrent variants. In terms
of change over time, consider for instance the following change
events:

• a new legislation may require companies to add addi-
tional safety measures to their operational guidelines
in order to avoid oil leaks on drill platforms;

• a software or product manual may need to be updated
because a new version with added functionality or
fixed bugs was designed and is put into production;

• an audit report may need to be updated with new
information about the audited objects or new auditing
criteria;

These are just a few examples of business changes that
require adaptations of documentation. Enumerating a full list
of change events that require documentation changes in con-
temporary businesses is impossible, as they are countless. For
this reason, documents need to be designed to be changed with
ease -to be evolvable- from the start. This will be discussed in
the next sections of this paper.

The continuous change of documents also contributes to
the creation of variability in documents. Adaptations in docu-
ments do not necessarily lead to the deletion of the previous
document, as both versions might need to exist. Consider for
instance the following possible variants [2]:

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

• a similar slide deck on a subject may be created for
a one day seminar to a management audience, a one
week course for developers, a full-fledged course for
undergraduate students;

• a product manual may be drafted in different lan-
guages, several product variants (standard – profes-
sional – deluxe) may contain a partly overlapping
set of production parts requiring similar yet different
manuals, etcetera;

• similar, but slightly different, legal documents (con-
tracts) may be drafted for different clients purchasing
the same service (based on the same contract tem-
plate), etcetera;

These are of course just a few examples of how different
versions of a document can arise. To manage the concurrent
and consequential document variants, most companies use so-
called Document Management Systems (DMS). To the best
of our knowledge, these systems store the documents at the
“document” level. As we will discuss in this paper, we propose
a solution to store and manage documents at more fine-grained
modular levels, enabling the creation of evolvable and reusable
documents.

III. MODULAR AND EVOLVABLE DOCUMENTS

The concept of modularity has proven to be a very suc-
cessful as a design principle in various settings. It has been
cited to be very useful in product, system and organizational
design [3][4].

Based on these insights, it was demonstrated how systems
such as accountancy, business processes and enterprises can
be regarded as modular systems in previous work [5][6][7].
This research shows that applying the modularity principle to
systems entails benefits in the design, maintenance and support
to the system.

We are convinced that documents can be considered to be
clear examples of modular structures. Take for instance these
examples [2] :

• A book or a report typically consists of a set of
chapters. Each of these chapters will contain a set of
sections, subsections, subsubsections, and so on. Each
of these (sub)sections can then contain paragraphs
with the actual text, tables and/or figures;

• A product manual will contain guidance sections re-
garding the different product parts and/or functionali-
ties;

• A legal document may contain different parts, within
each part different clauses, and each clause may
contain different paragraphs.

All of these document parts can be considered to be
modules. In our approach, we define a module as a part of
the system that is used or activated separately. Once a part of
the system cannot be used or activated as such, it is considered
to be on a sub-modular level.

Modularity is however but a prerequisite in obtaining adap-
tive documents. For documents to easily assimilate changes
over time, they need to exhibit evolvability. Based on the mod-
ularity concept, Normalized Systems (NS) theory was proposed
to achieve such modular evolvability. Although originally

defined for software architectures, its applicability and value in
other domains (e.g., organizational design, business processes,
accountancy) quickly became clear [5][6][7].

To obtain flexible systems that can easily evolvable over
time, NS theory states that so-called combinatorial effects
should be eliminated. These effects occur when changes to
a modular structure are dependent on the size of the system
they are applied to [8]. This means the impact of the change
does not solely depend on the nature of change itself. Assum-
ing systems become more complex over time, combinatorial
effects would therefore become ever bigger barriers to change.
As such, it is clear how combinatorial effects should be avoided
if systems need to be changed easily (i.e., be evolvable).

To obtain evolvability, NS theory proposes four theorems,
two of which are of importance in this paper [8]:

• Separation of Concerns, stating that each change
driver (concern) should be separated from other con-
cerns. This closely relates to the concept of cohesion;

• Version Transparency, stating that modules should be
updatable without impacting any linked modules;

In practice, the consistent application of these theorems results
in a very fine-grained modular structure.

The theory also defines cross-cutting concerns. This con-
cept is often used in information technology and refers to
functionality or concerns that cut right across the functional
structure of a system. These cross-cutting concerns should
also be encapsulated to exhibit any form of evolvability. As
we will illustrate in this paper, this is not self-evident as
the functionality of these concerns are embedded deep down
within systems.

An important cross-cutting concern in documents is a
mechanism for “relative” embedding of text parts in the
hierarchical structure of overarching documents. This means
one should be able to include a text module on several
hierarchical levels in a document without this inclusion causing
any changes in the text module. As such, a text module can
be variably used as a chapter, section, subsection, etc. without
any changes to the module. Preliminary research shows there
are several other cross-cutting concerns for documents, such
as for example typesetting (layout), language, target audience,
etc.

Besides the cross-cutting concerns resulting form the nature
of documents, there are also concerns specific to the underlying
artifact(s) described in the document. These are mostly cross-
cutting concerns that stem from content or descriptions of the
artifact(s). Take for example technical documents describing
the machines used in the production process of a manufacturer.
These documents will contain machine specifications, operat-
ing instructions, power requirements, maintenance instructions,
etc. This are necessary subjects needed in the description of
every machine and can as such be defined as cross-cutting
concerns according to the previous stated definition.

Based on these concepts of modularity and evolvability
based on Normalized Systems Theory, a prototype was built
to manage the documents of the study programs at the faculty
of Applied Economics at the University of Antwerp.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

IV. STUDY PROGRAM DESIGN AT THE FACULTY OF
APPLIED ECONOMICS

Before we can study program documentation, we first need
to take a look at the underlying artifacts. The study programs at
the Faculty of Applied Economics at the University of Antwerp
were recently redesigned to be modular and evolvable. Natu-
rally, an evolvable study program design enables all related
documents to be adaptable as well. Furthermore, the well-
defined modular structure of the study programs allows for
new possibilities in generating related supporting documents.

The new study program design was formulated to include
learning-teaching tracks and sub-tracks. As such, additional
levels of modularity were added to the existing 258 courses
offered in five distinct bachelor study programs and seven
study programs at a master level. As proposed in previous work
[9], this leads to the study program design shown in Table I.
Each of the 258 courses belongs to one main (sub)track, but
can be connected to other (sub)tracks as it may contain subject
matters belonging to several (sub)tracks.

Besides the addition of two new modular levels in the
study program design, considerable efforts were put into
defining cross-cutting concerns that manifest themselves in
the courses taught in the faculty. In total, 10 cross-cutting
concerns were identified specific to the studied artifacts (i.e.,
study programs). These concerns are a short content descrip-
tion, regular content description, internationalization, blended
learning, assignments, ethical awareness, sustainability, social
impact, learning outcomes and teaching method(s). These
cross-cutting concerns represent important aspects of a study
programs, and therefore its underlying learning-teaching tracks
and courses. In Figure 1, some of these cross-cutting concerns
are presented on the vertical axis. On the horizontal axis, the
learning-teaching tracks and sub-tracks are listed, each with
the included courses. Besides allowing to check the presence
of certain concerns in courses and learning-teaching tracks,
this matrix shows the extensive modular design of documents
describing the courses and learning-teaching tracks. How we
design and generate documents to support this modular and
evolvable study program design will be discussed in the next
section.

V. A PROTOTYPE FOR GENERATING STUDY PROGRAM
DOCUMENTS

A. Decomposing Documents into Text Modules
The new modular and evolvable design of the study

programs allowed for a similar redesign of documents de-
scribing the study programs. Therefore the existing content
describing the courses was looked at and modularized to allow
the generation of different kind of documents. Previously,
most content on study programs was contained in course
descriptions that were published on the faculty’s website.
From this descriptions, text modules with similar content were
identified. In total, 10 types of text modules were recognized.
These are the content cross-cutting concerns mentioned in
the previous section and include for example a short content
description, internationalization, etcetera. Combined, these 10
types of text modules allow for a complete representation
of the courses. And as learning-teaching tracks and study
programs are considered to be mere compositions of courses
according to modularity reasoning, the text modules can be
used to represent these parent artifacts as well. Taking into

TABLE I. OVERVIEW OF THE LEARNING-TEACHING TRACKS AND
SUB-TRACKS

Learning-teaching track Sub-track

General economics Fundamentals
Policy

Business economics

Accountancy
European and international business
Finance
Marketing
Strategy and organization
Transport and logistics

Engineering
Fundamentals
Sustainable technology
Supply chains and operations

Information systems
Fundamentals
Engineering and architecture
Governance and audit

Quantitative methods Mathematics
Statistics

Practice Apprenticeship and internship
Summer school

Broadening areas of study Social sciences
Jurisprudence

Business communication

English
French
German
Spanish

Projects and dissertations
Bachelor project
Master dissertation
Master integration project

account the total number of 258 courses and 10 content cross-
cutting concerns, the modularization of the course descriptions
resulted in a total of 258 ∗ 10 = 2580 text modules. These
represent all aspects of the courses, learning-teaching tacks
and study programs of the faculty.

Although this amount of text modules seems cumbersome
to achieve and maintain, this fine-grained decomposition actu-
ally simplifies several aspects of document management. First,
this imposed separation of concerns creates structure across all
course descriptions. This gives professors (who are responsible
for the content of the text modules) something to hold on to
in describing their courses. Furthermore it is easier to retrieve
certain information, as the text modules are in separate files.
This also allows for easier maintenance of the information.
But by far the biggest advantage of the decomposition is the
endless possible document types that can be generated with the
decomposed course descriptions. The information included in
the decomposed text modules allows for the generation of a
vast variety of documents with different purposes. This system
for example allows one to generate documents containing
a short description of all courses in a study program. But
the system can also generate a document listing all courses
or learning-teaching tracks using a specific teaching method.
Furthermore, if students were to be added, the system would
allow to generate a document detailing all sustainability or
social impact aspects a student has encountered in his study
program. Or how much hands-on experience he has gained
due to assignments or case studies. As such, it allows to draw
up student-specific diploma’s with one click of a button. In
general, the decomposition thus allows for a versatile use of
document modules and allows the definition of new types of
documents with new purposes.

B. Relative Sectioning
As mentioned before, an important aspect of allowing text

modules to be re-usable is to implement relative sectioning.

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

Marketing

Course 1 Course 2 …

Fundamentals

Course 2 …

Accountancy

Course 1 Course 2
…

…

…

Course 2

Business economics Engineering

Sustainable technology

…

…

Content

Teaching method

Learning outcomes

Assignments

Internationalization

Social impact

Sustainability

Ethical awareness

Course 1 Course 1 Course 1 Course 2

Figure 1. The cross-cutting concern presence in learning-teaching tracks and courses

To implement this prototype, the LATEX document preparation
system was used. This was done because it allows the hierar-
chical inclusion of sub-files (i.e., text modules) and allows the
layout cross-cutting concern to be handled in a separate layout
file. LATEX however does not provide a system for relative
sectioning out of the box. The hierarchical structure of sections
(i.e., whether something is a chapter, section, subsection,
subsubsection, etcetera) should be hard coded within .tex files
and therefore limits the potential for text modules to be freely
combined into final documents which might use the same
text excerpts at different levels within their own document
hierarchy. To overcome this problem, a LATEX style file needed
to be used that provided the functionality of relative sectioning
[10]. This allows the prototype to generate a LATEX structure
file, of which the first part is shown in Figure 2. In this file,
text modules are imported via the \input{} command. The
names included in this command are the files that should
be part of the generated document. More importantly, the
\leveldown and \levelup commands are automatically
added by the prototype whenever the next text module of the
document should be added on a lower or higher level. As such,
the basic text modules exist of solely a title (included within
the \dynsection{} that is provided by the custom style
file) and the content of the module.

C. Practical implementation
The practical implementation of the prototype was done

in Java. A graphical user interface (GUI) was developed that
allows documents to be developed as easily and efficiently as
possible. The result of this effort is shown in Figure 3. In this
screen, the user can enter the document title (which will also
be the file name) and create up to three document levels. This
is done by first selecting the content of a level, which can be
cross-cutting concerns, learning-teaching tracks, sub-tracks or
courses. When this selection is made, the user must specify

Figure 2. The LATEX Structure File generated by the prototype

whether he wants one single instance of content on that level,
multiple instances or all of them (by using the “Select all”
button). In this way, one or multiple levels can be defined.

Once the user made his selection, he can press the “Gener-
ate” button to start the process of generating the document he
specified. At this point, the system will generate two LATEX
files. First, a “Structure” file is created, which is partially
shown in Figure 2. This file is procedurally generated based on
the selections the user made. It takes into account the amount
of document levels and amount of instance selections on each
level.

Next, a “Generator” file is created by the system, of which
an example is shown in Figure 4. This file contains code
needed for LATEX to generate a PDF version of the designed

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

Figure 3. The Graphical Interface of the Prototype

Figure 4. The LATEX Generator File generated by the prototype

document. Apart from the LATEX -specific code, this file simply
contains the \include{} command to refer to the structure
file and as such the structure and text modules defined in
that file. This shows how the structure of the document is
also clearly separated from the generation implementation,
according to the separation of concerns principle.

Once these two files have been created, the system simply
uses the LATEX document generation functionality to generate
a PDF file of the document.

D. Document Versatility, Variability, and Evolvability
Having described the prototype, we can now illustrate the

possibilities of document versatility this system provides. Let’s
explain this in numbers. As mentioned previously, the faculty
offers 12 study programs (5 Bachelor and 7 Master programs).
For each study program, one can generate a document con-
taining three document levels. Abstracting from the courses
to make things easier, there are 3 possible selections for
the first document level (i.e., cross-cutting concerns, learning-
teaching tracks and sub-tracks). This means there are only two
possible selections for the second level (the two remaining
ones), and two possible selection for the final level (i.e.,
either choosing the remaining selection or not including a
third level). This totals up to 12 possible selections for the
document levels. Considering either including or not including
the 10 cross-cutting concerns, the amount of combinations
adds up to 210 = 1024 possibilities. Multiplying the 12 study
programs, 12 possible document level selections and 1024
possible combinations of 10 cross-cutting concerns inclusions
gives us a total of 147,456 possible document combinations
that can be generated based on the 2,580 defined text modules.

If the approximate 3,000 students of the faculty were to be
included in the system, the document versatility would increase
exponentially. Let’s assume of all students, there are 1,000
unique versions of study programs, which is a cautious esti-
mate considering the amount of courses students can choose in
some study programs. Substituting the 12 study programs by
1,000 study program versions in the previous multiplication
results in 12,288,000 possible document combinations. This
example clearly shows the combination potential of decom-
posing course descriptions into fine-grained text modules.

The decomposition in text modules also allows more fine-
grained version control to manage the variability in all types
of documents that can be generated. If version control is
managed on a text module level, changes can be tracked more
specifically. Each version of a text module can be archived
based on their moment of change, allowing the generation

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

of documents according to specific time specifications. One
important application of this version control system is for
example the re-generation of a student diploma after it has
been lost. It may have been a few years since the student
graduated, so courses and study programs will have changed.
Yet it is important for a university to be able to generate the
diploma with the correct descriptions of the version of the
courses the student took. This example shows the importance
of tracking changes on a fine-grained modular level.

The implementation of modular text modules also shows
the importance of eliminating combinatorial effects to achieve
evolvability. A change in the description of a course needs to
be made in only one of the 2580 files/text modules. By creating
a script that regenerates all documents in which this module
is included, this change is easily applied to all documents it
is included in. As such, combinatorial effects are avoided and
the system generates evolvable documents.

VI. CONCLUSION

In this paper, we presented an alternative to the view of
static and monolithic documents. By applying the concept of
modularity and decomposing documents into text modules,
several advantages can be achieved. First, modularity leads
to easier to maintain text modules. This because the modules
show a clear structure and specific information is stored in
only one module that is easily recognized. Second, the text
modules enable a greater versatility: new types of documents
can be composed by combining text modules in new ways. As
such new types of documents can be created with new goals
and purposes. This is shown in the paper by calculating the
number of possible document combinations. And finally, the
systematic decomposition of modules allows for the elimina-
tion of combinatorial effects to create evolvable documents.
These advantages of modular document design are clarified in
the paper by the description of system to generate documents
containing study program information.

In future research, other cases will be studied to corroborate
the findings of the case discussed in this paper. Furthermore,
the theoretical basis of modularity and evolvability of docu-
ments will be solidified.

REFERENCES

[1] M. E. Porter, “Strategy and the Internet.” Harvard Business Review,
vol. 79, no. 3, 2001, pp. 62–78, 164.

[2] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable design. Koppa, 2016.

[3] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity
Volume 1. Cambridge, MA, USA: MIT Press, 1999.

[4] D. Campagnolo and A. Camuffo, “The Concept of Modularity in
Management Studies: A Literature Review.” International Journal of
Management Reviews, vol. 12, no. 3, 2010, pp. 259–283.

[5] D. Van Nuffel, “Towards Designing Modular and Evolvable Business
Processes,” Ph.D. dissertation, University of Antwerp, 2011.

[6] P. Huysmans, “On the Feasibility of Normalized Enterprises: Applying
Normalized Systems Theory to the High-Level Design of Enterprises,”
Ph.D. dissertation, University of Antwerp, 2011.

[7] E. Vanhoof, P. Huysmans, W. Aerts, and J. Verelst, Advances in
Enterprise Engineering VIII: EEWC 2014. Springer International
Publishing, 2014, ch. Evaluating, pp. 76–90.

[8] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, 2012, pp. 89–116.

[9] G. Oorts, H. Mannaert, P. De Bruyn, and I. Franquet, On the evolvable
and traceable design of (under)graduate education programs. Springer
International Publishing, 2016, vol. 252.

[10] C. Leichsenring, “Relsec style file,” 2013. [Online]. Available:
https://github.com/mudd1/relsec/blob/master/relsec.sty [Accessed: 31-
01-2017]

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

