
Towards Scenario-based Discovery of Domain-Specific Patterns: a Case Study

Philips Huysmans

Antwerp Management School
Antwerp, Belgium

Email: philip.huysmans@ams.ac.be

Jan Verelst and Gilles Oorts

Normalized Systems Institute
University of Antwerp, Belgium

Email: {jan.verelst,gilles.oorts}@uantwerp.be

Abstract—The lack and need of prescriptive design knowledge
in enterprise architectures is well documented. While knowledge
of various disciplines that are part of enterprise architectures
is captured in principles or patterns, no integration of this
knowledge is available. In order to work towards such knowl-
edge documentation, we propose an inductive documentation
of domain-specific patterns. These patterns can be observed
by analyzing different design alternatives, and evaluating them
against qualitative criteria, such as evolvability. In this paper, we
present a method to systematically analyze and document design
alternatives in a domain, building on scenario-based architecture
evaluation methods. A case study is presented in which the
proposed method is applied. Based on the findings of this method,
domain-specific enterprise architecture patterns can be proposed
in future research.

Keywords–Modularity; Patterns; Design Structure Matrices.

I. INTRODUCTION

It has been argued that the wealth of nations relates with
their ability to deal with economic complexity [1]. In this
perspective, the best performing countries are not the countries
with the highest qualities of inputs, but those which use the
recombinational potential of already available inputs to create
more diverse and complex products. Growth predictions are
based on the ability to create different outputs by adding a
few inputs to the current production capabilities, rather than
the more classical focus of measuring how much value is added
to raw materials or intermediate products. As an example,
agricultural efforts in a developed versus a developing country
can be differentiated based on the ability to integrate with a
logistics network, a supply network, a knowledge network, a
financial network, etc.

This promise of exponential growth by leveraging the
recombination potential is well described by combinatorics
theory. In practice however, the drawbacks of combinatorics
are more easily observable than its advantages. Changes to
any artefact result in ripple effects, causing more changes
than anticipated. As a result, change becomes complex and
expensive. In dynamic markets, change requirements occur at
a frequency which prevents organizations to consider change as
an adaption of a steady state, but necessitates the application of
changes at a constant pace. As a result, products and services,
and their combinations, increase in complexity, which again
limits the possibility to reap the benefits of the recombination
potential because of the ripple effects.

Prescriptive solutions which prevent these ripple effects are
available in various disciplines. The idea of applying patterns
to codify design knowledge is widespread in software architec-
ture. In business process modeling, modularization patterns are

described by e.g., [2]. On the management level, modularity
and coupling are studied as well [3], and certain patterns are
described there as well [4]. In practice however, organizations
have to design artifacts in each of these disciplines (i.e., an
organizational structure performing certain processes which
are supported by software systems). Put differently, the design
knowledge of these different disciplines needs to be combined
and integrated. The field of enterprise architecture has these
disciplines in scope. However, the lack of deterministic design
in each of these separate disciplines demonstrates the difficulty
and complexity of performing such a design in an integrated
way. Unsurprisingly, few patterns are known in the field of
enterprise architecture.

Rather than attempting to solve the integration of design
knowledge of different disciplines in general, we believe a
more feasible approach is to start with the documentation of
domain-specific patterns. A domain has its key challenges,
similar artifacts, and similar integration issues. This limitation
of scope can make the documentation of design knowledge
more focused, and hence, more feasible in the short term.

In this paper, we therefore present a method which was
used to systematically research couplings between artifacts
on the organizational, process and Information Technology
(IT) level of different organizations in a certain domain.
This method is based on scenario-based analysis methods.
These methods propose to compare different architectures by
evaluating how well they support certain scenarios. By docu-
menting relevant domain-specific changes as scenarios, we can
systematically research which designs are susceptible to ripple
effects in various change scenarios. We use design structure
matrices to document the modular couplings (which cause
ripple effects) between artifacts. Different design alternatives
can then be documented and, if sufficient scenarios are tested,
be proposed as design patterns for that specific domain.

In Section II, we introduce the building blocks of the
method. In Section III, we present the designed method.
Section IV demonstrates the method by applying it to three
different organizations in the hospital sector. Finally, we dis-
cuss our findings in Section V.

II. METHOD BUILDING BLOCKS

A. Scenario-based methods
In order to compare and gain insight in different ar-

chitectural solutions, a scenario-based approach for decision
making can be adopted [5]. The Software Architecture Anal-
ysis Method (SAAM) enables the usage of scenarios on a
software level [6]. Various approaches have already elaborated

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

on SAAM, such as the Architecture Tradeoff Analysis Method
(ATAM) [7] and the Architecture-Level Modifiability Analysis
(ALMA) [8]. SAAM is the simplest of the software evaluation
methods. While various methods extended SAAM with other
elements, these additions clearly focused on the evaluation of
software architectures. The basic structure of SAAM is suf-
ficient for our approach. SAAM itself enables the expression
of different quality claims of software architectures such as,
amongst others, modifiability, exibility, and maintainability.
The realization of these quality claims in a certain software
architecture is then evaluated using scenarios. SAAM consists
of six main steps, which are generally preceded by an overview
of the business context and the functional requirements of the
system.

We are not the first to adopt SAAM in a context that is
different from software. For example, in the paper “Character-
ization of Enterprise Architecture Quality Attributes” [9], the
authors clearly state the use of the work of Bass et al [10]
regarding software architectures, software quality attributes
and scenarios as a basis. Moreover, it has been argued that
scenario-based methods can be applied in any field where
modifiability is a concern [11][12].

B. Enterprise Architecture
Enterprise architectures present an overview of strategic

goals and organizational and technical artifacts of an organiza-
tion, in order to manage the challenges of change and complex-
ity. Enterprise architects mainly aim to reduce the complexity
by creating abstractions from real-world artifacts by creating
models [13]. These models are grouped in architectural levels
or layers. Different enterprise architecture frameworks propose
different layers, or require that organizations define their own
sets of layers [14][15][16]. It has been argued that most
publications on enterprise architectures report on contributions
which can be located on a single layer, while few authors
address integrating multiple layers [17]. A modeling approach
for documenting coupling across different layers is usually not
proposed in the various frameworks. As such, a complementary
documentation model for these cross-layer couplings needs to
be adopted.

C. Design Structure Matrices
The modularity paradigm provides tools and models which

allow an explicit focus on modular dependencies. Recently,
organizational modularity has gained much attention in re-
search and practice [3]. In this paradigm, it is argued that
product, processes and organizational structures can be re-
garded as modular structures. Moreover, certain authors claim
that modularization on, for example, the product level drives
modularization on other levels as well. This is referred to as
the mirroring hypothesis [18]. While we do not explicitly use
this hypothesis, it indicates how modularity can be used as a
way to analyze the integration of different architectural layers.
By adhering to the modularity paradigm, we can use theories
and tools which apply modularity in our proposed method.

More specifically, we will adopt Design Structure Matrices
(DSM), which were heavily used by Baldwin and Clark. DSMs
provide an accepted and well-defined notation to represent ar-
chitectural components and interfaces [19][20]. They are used
in traditional modularity approaches (e.g., product modularity)
to visualize dependencies between and within modules. A

modular dependency occurs when a change to an aspect of
a module could require changes to other aspects, within that
module or in other modules.

III. RESULTING METHOD

The six steps of SAAM will be used as the general
outline of our method. The first step (i.e., develop scenarios)
is identical to the original method, with the exception of
the different nature of the selected scenarios (i.e., on the
enterprise architecture level instead of on the software level). A
scenario can be viewed as a brief description of a stakeholder’s
interaction with the system [6].

For the second step (i.e., describe the architecture), we
propose the use of a design structure matrix (DSM). The
different architectural layers (e.g., organizational, process and
IT layers) can be conceptualized as different modular struc-
tures, and coupling between modules of different layers can
be documented as modular dependencies.

In the third step, SAAM advises to classify and prioritize
the scenarios. For each scenario, it needs to be determined
on which layer of the DSM (as constructed in step 2) it
requires a direct functional change. The scenario will then be
positioned as a design element in one of the modules. For
example, a scenario indicating a technological change should
be placed in the IT module. In contrast, a scenario indicating
a reorganization should be placed on the organization module.

In the fourth step, SAAM advises to individually evaluate
the indirect scenarios. However, ripple effects can be present
in direct scenarios as well. The presence of a ripple effect
in a direct scenario would mean that while the architecture
supports the scenario in its current form, it could require
increasing adaptations once the organization needs to scale.
Therefore, an architecture which does not contain ripple effects
for direct scenarios will be preferable to an architecture which
does contain ripple effects for direct scenarios. Consequently,
we advise to include an evaluation of the direct scenarios as
well. For each of the scenarios, any design parameter which
will be affected by the implementation of the scenario needs
to be considered. These design parameters are then added to
the DSM. It should be noted that these design parameters
can be positioned on other layers than the original scenario.
This step already creates awareness for the analyst to take all
organizational aspects into account when evaluating scenarios.
An “x” should be added in the intersection of the column of
the scenario and the row of the design parameters that this
scenario affects.

In the fifth step, SAAM advises to assess the scenario
interaction. In our approach, this requires the completion of
the DSM. For every intersection, a possible dependency needs
to be evaluated. Newly found dependencies should be indicated
with an “x”. This allows for a detailed and systematic evalu-
ation of interactions between previously unknown scenarios
or design parameters. However, the DSM can become too
complex to be used as a basis to communicate. Especially
the identification of chained dependencies can become com-
plicated.

In the sixth step, SAAM advises to perform an overall
evaluation. Using the dependency chains identified in step five,
insight in architectural issues can be communicated easily to
involved stakeholders. The developed artifact can contribute

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

to a systematic approach to identify, communicate, and create
awareness concerning design choices. A comparison of dif-
ferent design alternatives can create pattern candidates, which
can be further evaluated qualitatively.

IV. CASE STUDY: APPLICATION TO THE HOSPITAL
DOMAIN

For this demonstration, the hospital sector was selected.
The selection was motivated by the dynamic nature of the sec-
tor, and the similarity of organizational size of the prominent
players. Large variations in size could have an impact on pref-
erence for certain architectural characteristics. Overall, three
cases were conducted, which consisted of at least two in-depth
interviews and additional review questions through email. The
case participants were selected based on business experience
and knowledge regarding the high-level IT architecture.

1) Step 1: Identify scenarios: The first step was performed
by organizing brainstorm sessions. After an initial draft of the
scenarios, their relevance was checked by discussing them with
stakeholders from the other cases. The respondents agreed that
the resulting set of scenarios either (1) were likely to occur
in the near future, or (2) had an important impact on their
organization in the past.

• Scenario 1: Changing risiv code: the risiv code is
an identification number for a governmental entity
related to sick leave and invalidity insurance. Each
investigation or procedure performed in a hospital
needs to append such an identification number to
determine the reimbursement level of medical costs to
the patient. Changes in legislation can change which
code needs to be attributed to a certain procedure, or
can change the coding scheme as a whole.

• Scenario 2: New medical cabinet supplier: In most
hospitals, a decentralized supply of medicines is used.
The medical cabinets are managed using an IT system
which is integrated with the purchasing system. More-
over, the medicine usage of every patient is registered
and charged individually. Consequently, no medicine
may be retrieved without patient identification.

• Scenario 3: Introduction of a new medical spe-
cialization: Especially in academic hospitals, new
research can result in improved methods or even new
specializations. In order to support these activities,
integration with existing systems and procedures need
to be constructed, as well as new artifacts specific to
the new medical activities.

• Scenario 4: Changes in the patient registration
process: During emergencies, regular registration or
consultation, patients need to register before being
treated. A file is kept for each patient to be able
to consult previous procedures or treatments. During
registration, data from identification cards (regular id
or medical id) needs to be extracted.

• Scenario 5: Changes in the patient classification
system: Patients are classified for various purposes.
In many hospitals, the type of registration impacts the
invoicing and reimbursement procedures.

• Scenario 6: Changes in the procedure classifica-
tion system: In most hospitals, a wide variety of
clinical procedures (1000+) can be performed. The

classification code for a procedure is used during
communication with, for example, the sterilization
department, which prepares the correct set of tools
and delivers them to the operation room. However,
this classification is also used in other contexts, such
as communication in professional journals, which uses
a possibly different and international classification
scheme. Especially in academic hospitals, much dis-
cussion regarding the selection of a certain classifica-
tion system are reported.

• Scenario 7: Opening a new site: The final scenario
attempts to reflect on the scalability of the current
architectures. While no functional changes to existing
systems are required, duplication of existing systems,
information and positions greatly increase the com-
plexity of the organization as a whole. Nevertheless,
the current mergers and push towards centralization in
the sector resulted in an agreement on the importance
of this scenario by all participants.

2) Step 2: Describe the architecture: Currently, none of
the organizations has a documentation of their architecture.
One organization has started an enterprise architecture program
based on the lack of flexibility and presence of integration is-
sues. After educating several employees, it was concluded that
the required documentation and formalization, combined with
the changes which require an effort to keep the models up-to-
date, resulted in too much effort. Moreover, management was
not convinced of the relevance of the resulting documentation.

All three organizations have two main organizational en-
tities: an administrative and a medical entity. Both entities
have separate staff and separate IT systems. A distinction
between the organizations can be made based on the academic
or general nature of the organization. Moreover, a distinctive
characteristic is the mode of employment: medical staff can be
directly employed by the hospital, or operate independently.
Beyond administrative differences, this distinction impacts the
sharing of information and the preference for the selection of
software packages.

3) Step 3: Classify and prioritize scenarios: In this step,
the scenarios need to be classified in the different architectural
layers. Scenarios 2 (new medical cabinet supplier - stakeholder
management), 3 (introduction of a new medical specialization
- business model), and 7 (opening a new site - value clusters)
are strategic in nature and can therefore be positioned in
the organizational layer. Scenarios 1 (changing risiv code), 5
(changes in the patient classification system), and 6 (changes
in the procedure classification system) reflected mainly or-
ganizational changes as well, and are therefore classified as
such. Scenario 4 (changes in the patient registration process)
is considered as mainly a process change.

When asked to position the scenarios as direct or indirect,
our respondents indicated that only the scenario 1 (changing
the risiv code) could be considered a direct scenario. For the
other changes, changes to the current architecture would be
required. The prioritization of scenarios was not elaborated
upon, since this would only impact the selection of a pattern.
Currently, this research focuses on the identification of modular
couplings to motivate the selection of certain design alterna-
tives. The formulation of actual patterns is too ambitious for
the current cases.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

4) Step 4: Evaluate the scenarios: In this step, the scenar-
ios are evaluated. During this step, the DSM should be filled.
An example DSM for this case in presented in Figure 1.

a) Scenario 1: Changing risiv code: Only a single
hospital claimed that this scenario could be supported directly,
because the risiv codes are linked to the procedures by
a centralized invoicing department. The doctors of various
departments do not need to be involved with changes or new
legal requirements. The other hospitals employed both directly
employed and independent doctors. As a result, multiple
applications were needed to register billable activities. For
certain departments, activities are registered and managed by
an invoicing department, while other departments interface
directly with the invoicing application. A change in risiv code
can therefore affect one, two, or many applications, based on
the design alternative employed.

b) Scenario 2: New medical cabinet supplier: The sys-
tems supporting medical cabinets from different suppliers use
various patient identification codes. In the first case hospital,
a different (internal) patient identification code syntax was
used, and personnel had to convert the code formats manually.
In order to remedy this situation in the future, the hospital
will include its own patient identification code syntax as a
requirement during cabinet acquisition. A new medical cabinet
supplier would then result in the integration of a new external
application in the application landscape, but have no impact on
the manual (and time-consuming) processes. As such, a design
rule for this dependency will be created.

In the second case hospital, a supplier switch was made
recently. The design rule for the patient identification code syn-
tax was imposed here as well. Moreover, the external software
provided an application programming interface, which allowed
integration with the pharmacy order administration and patient
administration. A specialized message bus (HL7) was used to
make this integration.

In the third case hospital, no experience with this change
was present, and no design rules have been formulated to guide
a future acquisition process.

c) Scenario 3: Introduction of a new medical special-
ization: Our respondents indicated that the most impactful
change for incorporating a new medical specialization is the
development and integration of new software applications. The
organizational impacts of adding new processes and assigning
locations are well-known. In contrast, previous integration
experiences have caused several maintenance issues. In the first
and second case hospitals, this has led to the use of a middle-
ware bus (HL7). In the second case hospital, no architectural
solution for integrating new applications is present.

d) Scenario 4: Changes in the patient registration pro-
cess: The increased adoption of electronic IDs has resulted
in registration process improvements. However, the effort
required to implement these improvements varied across the
hospitals.

In the first case hospital, the registration procedure is
mainly centralized. Three different registration desks are avail-
able, which each handle the same registrations and use the
same processes. They are responsible for all registrations.

In contrast, the second case hospital has a combination
of centralized and decentralized registration desks. Changes
to the procedures followed by registration desks need to be

implemented in many different places. An example is the in-
troduction of regional hubs: each hospital will need to integrate
with such a hub, so doctors with a therapeutic relationship with
the patients have a central repository. Since information from
all registration desks will need to be included, every desk is
impacted.

In the third case hospital, a combination of centralized and
decentralized registration desks is used as well. The resulting
complexity has led to a specific organizational role which
is created to manage the process of distributing work across
registration desks.

e) Scenario 5: Changes in the patient classification
system: In the second case hospital, patients are categorized in
a classification system during registration. This classification
is the input for the invoicing process. Because of evolving
structure of the classification structure, a re-ordering effort
took place to simplify the structure. However, this initiative
was halted since the changes to the invoicing applications
proved to be too complex. The third case hospital reported
similar issues, and noted that the impacts of changing their
classification system would impact additional processes and
applications.

In contrast, the first case hospital did not use a patient
classification scheme, because the invoicing department bases
its processing on the raw data of the procedures performed
and medicines used. As such, the invoicing process has less
dependencies on derived data.

f) Scenario 6: Changes in the procedure classification
system: The third case hospital reports a vast impact of
changes in procedure classifications. Soon, a new version of
the official classification scheme is expected. This scheme
describes the treatments, diagnoses and procedures performed
which need to be reported to the government. Currently, a team
of 10 employees has the full-time job of determining correct
classification codes based on the data of the medical file and
the lab results. Changes to the reporting scheme are expected
to result in retraining and data changes.

As an example of the impact, we mention the interface
between the surgical and sterilization departments. The surgi-
cal department needs to communicate its need for sterilization
of tools. In the fist case hospital, a classification for the
tools is known in the surgical department, and is linked
to the procedure classification scheme. In the second case
hospital, instead of using tools classification to communicate,
the procedure classification scheme is used.

This distinction shows the difference in impact of scenario
6: based on the way of communicating, different departments
will be impacted. In general, three possibilities are observed for
mapping data between the classification schemes: performed
by the surgical department (case 1), in the sterilization depart-
ment (case 3), or shared on the HL7 bus (case 2). It should
be noted that the mapping of data on the HL7 bus introduces
business knowledge on the integration bus.

g) scenario 7: Opening a new site: The scenario of
opening an extra site allows to reflect of the scalability of
the organization as a whole. It does not require new module
types, only additional instances of existing ones. Nevertheless,
much of the infrastructure is currently not designed to handle
such scaling: for example, the data structure of the reference
lists of patients of a certain hospital service would have to be

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

redesigned, since only patients from that service on the current
site should be included. Moreover, handling of permissions
to applications and data would need to include awareness of
the different sites. In the third case hospital, this scenario was
compared to the future merger with another hospital. Currently,
efforts to standardize patient administration processes and
employee relations are in progress, in order to bring the merger
closer to the scenario of opening a new site. However, the
impact on governance structures and organizational culture
demonstrate that the impact of these changes is outside the
scope of the current approach.

5) Step 5: Assess scenario interaction: In discussion with
the respondents, additional dependencies not directly related
to scenario interactions were analyzed next, and added to the
DSM in Figure 1. This information is crucial to estimate the
size of ripple effects, since this documents knowledge which is
distributed in the organization. For example, the applications
dependent of the syntax of patient identification needed to
be gathered from the different application owners, since no
centralized knowledge regarding this impact was present. The
interviews show that the scheduling application was impacted
in case 1, the invoicing application was impacted in all cases,
the operation management application was impacted in case
2, and the integration on the HL7 bus was impacted in cases
2 and 3. Moreover, dependencies between scenarios, such
as changing the patient classification system and changing
the enrollment process can be identified. These dependencies
are crucial for detecting chained dependencies. The resulting
complexity of the model can be addressed by generating de-
pendency chains that only focus on design parameters relevant
during a certain analysis.

6) Step 6: Perform overall evaluation: In order to propose
domain-specific patterns based on the (absence of) identified
couplings, a comparison of the change impacts in the different
designs needs to be made.

As a first observation, the centralization of registration
desks increases the flexibility of the first case hospital. Changes
in patient registration procedures can be implemented in one
or a few desks, without integration issues with other desks.

A second example where centralization benefits the flexi-
bility is scenario 1. In both the first and third case hospital,
the procedures of all doctors are administered in the invoicing
system directly. In the second case hospitals, doctors use
multiple systems. As a result, changes in for example the risiv
codes need to be applied in 1 (case 1 and 3) or n (case 2)
applications.

Another observation is the application of design rules. In
cases one and two, a design rule for the patient identification
code syntax is created, which enables better functional inte-
grations.

In contrast, certain design choices only shift the respon-
sibility for handling a certain change. In scenario 6, it was
discussed how the interface between surgical and sterilization
departments requires either one or the other department to
implement a change in the procedure classification system.

Finally, a remarkable difference was observed in relation
to scenario 5 (changes in the patient classification system). In
the second and third case hospital, the invoicing process is
based on the patient classification, which can be considered
as derived data: the classification combines different patient

characteristics which result in a similar invoicing category at
a certain point in time. However, changes in how certain pro-
cedures need to be invoiced will not always be distinguishable
in the category classification. This issue has already resulted
in manual data tracking. In contrast, the first case hospital
bases its invoicing process on raw data. As a result, a direct
traceability exists between the invoiced amount and the billable
items.

V. CONCLUSION

The discussion above demonstrates that general engineer-
ing insights can be applied directly to a set of relevant domain
changes. As such, the generalization of design solutions for
domain-specific artefacts which adhere to certain quality char-
acteristic, such as flexibility, should be pursued. While we do
not argue that the number of modular dependencies should
be considered as a hard quantitative metric, the absence of
dependencies, combined with the prioritization of scenarios,
enables a rational argument for a certain design to be proposed
as a pattern.

While the current research does not yet propose concrete
patterns, several contributions to the applied methods can be
claimed. A set of open issues in the SAAM method has been
identified by [21]. Amongst others, it is argued that SAAM
lacks a clear quality metric for architectural attributes, that
architecture descriptions are fuzzy notions without a standard-
ized notation, and that SAAM limits itself to the listing of
the different steps, omitting to provide techniques to actually
perform the steps. Some of these remarks are addressed in
this project. For the enterprise architecture field, a clear lack
of prescriptive solution has been reported [22]. The elimination
of modular couplings in the DSM could lead to such a set of
domain-specific principles.

The current state of this research contains various limita-
tions, which align well with the limitations of other scenario-
based methods discussed by [8]. First, they argued that the
information needed to make fundamental modifiability-related
decisions is not necessarily available in documentation. We ac-
knowledge that the determination of, for example, the attributes
in the DSM remains largely dependent on the knowledge
and experience of the stakeholders. Second, Lassing et al.
argue that the actual evolution of a system remains to a large
extent unpredictable. As a result, one cannot expect that the
list of scenarios is complete, or that every scenario will be
implemented. This remains true in our approach. However, the
scenarios are first and foremost the means to an end: namely
to provide a starting point to discover modular dependencies
Third, architectural changes often concern complex compo-
nents, and this complexity might not be known at the archi-
tecture level. In our approach, the granularity of the modules is
very coarse. Capturing all complexities and interactions would
require a very large DSM. Different techniques might need to
be explored to fulfill this role.

REFERENCES

[1] R. Hausmann, C. A. Hidalgo, S. Bustos, M. Coscia, A. Simoes, and
M. A. Yldrm, The Atlas of Economic Complexity: Mapping Paths to
Prosperity. MIT Press, 2013.

[2] A. Jalali, “Aspect-oriented business process management,” Ph.D.
dissertation, Stockholm University, 2016. [Online]. Available: https:
//su.diva-portal.org/smash/get/diva2:1044437/FULLTEXT01.pdf

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

Figure 1. Cross-Case Design Structure Matrix.

[3] D. Campagnolo and A. Camuffo, “The concept of modularity in
management studies: A literature review,” International Journal of
Management Reviews, vol. 12, no. 3, September 2010, pp. 259–283.

[4] R. Silvestro and P. Lustrato, “Exploring the “mid office” concept as
an enabler of mass customization in services,” International Journal of
Operations & Production Management, vol. 35, no. 6, 2015, pp. 866–
894.

[5] A. Lindstrom, “On the syntax and semantics of architectural principles,”
in Proceedings of the 39th Annual Hawaii International Conference on
System Sciences (HICSS2006), vol. 8, 2006, pp. 178b–178b.

[6] R. Kazman, L. Bass, M. Webb, and G. Abowd, “Saam: A method for
analyzing the properties of software architectures,” in Proceedings of
the 16th International Conference on Software Engineering, ser. ICSE
’94. Los Alamitos, CA, USA: IEEE Computer Society Press, 1994,
pp. 81–90.

[7] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
S. Carriere, “The architecture tradeoff analysis method,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU/SEI-98-TR-008, 1998.

[8] N. Lassing, P. Bengtsson, H. van Vliet, and J. Bosch, “Experiences with
alma: Architecture-level modifiability analysis,” J. Syst. Softw., vol. 61,
no. 1, Mar. 2002, pp. 47–57.

[9] M. R. Davoudi and F. S. Aliee, “Characterization of enterprise archi-
tecture quality attributes.” in EDOCW. IEEE Computer Society, 2009,
pp. 131–137.

[10] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 1998.

[11] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architec-
tures: Methods and Case Studies. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[12] P. Johnson, E. Johansson, T. Sommestad, and J. Ullberg, “A tool for
enterprise architecture analysis,” in 11th IEEE International Enterprise

Distributed Object Computing Conference (EDOC 2007), Oct 2007, pp.
142–142.

[13] J. W. Ross, P. Weill, and D. C. Robertson., Enterprise Architecture as
Strategy – Creating a Foundation for Business Execution. Harvard
Business School Press, Boston, MA, 2006.

[14] J. A. Zachman, “A framework for information systems architecture,”
IBM Systems Journal, vol. 26, no. 3, 1987, pp. 276–292.

[15] The Open Group, “The open group architecture framework (togaf)
version 9,” 2009. [Online]. Available: http://www.opengroup.org/togaf/
[Accessed: 31-01-2017]

[16] O. Noran, Handbook on Enterprise Architecture. Springer-Verlag,
2003, ch. A mapping of individual architecture frameworks (GRAI,
PERA, C4ISR, CIMOSA, Zachman. ARIS) onto GERAM, pp. 65–210.

[17] M. Schenherr, “Towards a common terminology in the discipline of
enterprise architecture.” in ICSOC Workshops’08, 2008, pp. 400–413.

[18] A. Cabigiosu and A. Camuffo, “Beyond the “mirroring” hypothesis:
Product modularity and interorganizational relations in the air condi-
tioning industry,” Organization Science, vol. 23, no. 3, May/June 2012,
pp. 686–703.

[19] O. Becker, J. Ben-Asher, and I. Ackerman, “A method for system
interface reduction using n2 charts,” Systems Engineering, vol. 3, 2000,
pp. 27–37.

[20] C. Y. Baldwin and K. B. Clark, Design Rules, Volume 1: The Power
of Modularity, ser. MIT Press Books. The MIT Press, January 2000.

[21] M. T. Ionita, D. K. Hammer, and H. Obbink, “Scenario-based software
architecture evaluation methods: An overview,” in Workshop on meth-
ods and techniques for software architecture review and assessment at
the international conference on software engineering, 2002.

[22] T. Tamm, P. B. Seddon, G. Shanks, and P. Reynolds, “How does
enterprise architecture add value to organisations?” Communications
of the Association for Information Systems, vol. 28, no. 1, 2011, pp.
141–168.

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

