
Detection of Hidden Encrypted URL in Image Steganography

Moudhi Aljamea, Tanver Athar, Costas S. Iliopoulos, M Samiruzzaman
Department of Informatics,

Kings College London,
WC2R 2LS, London

Email: [mudhi.aljamea@kcl.ac.uk, tanver.athar@kcl.ac.uk, c.iliopoulos@kcl.ac.uk,
mohammad.samiruzzaman@kcl.ac.uk]

Abstract—Steganography is the science of hiding data within the
data, either for the good purpose of secret communication or for
the bad intention of leaking confidential data, embedding
malicious code or Uniform Resource Locator (URL). Various
carrier file formats can be used to hide this data (network, audio,
image etc.). The most common steganography carrier is
embedding secret data within images. We can hide different
formats (another image, text, video, virus, URL etc.) inside an
image. To the human eye, the changes in the image appearance
with the hidden data can be imperceptible. This paper proposes
an implementation of a novel detection approach that will
concentrate on detecting any kind of hidden URL in most types
of images and extract the hidden URL from the carrier image
using the Least Significant Bit (LSB) hiding technique. We have
recently introduced an algorithm for Detection of URL in Image
steganography. In addition, we have extended the algorithm to
detect and extract encrypted URLs. In this paper, implement the
proposed algorithm, successfully test it and compare it with
various results, using different images.

Keywords–Steganography; Image Steganography; Security;
String Matching; Steganalysis; URL Detection.

I. INTRODUCTION

Steganography is the science of hiding data within data. The
word steganography is derived from the Greek words stegos,
meaning cover, and grafia, meaning writing [1]. There are
some differences between steganography and cryptography.
Cryptography is the art of scrambling messages to make them
difficult to understand, whereas steganography is the art of
hiding messages to make them difficult to find. Therefore,
steganography is an extra layer that will support transferring
secret information securely whereas, cryptography, in this
case, is data protection. Besides, when steganography fails and
the message can be detected, it is still of no use as it is
encrypted using cryptography techniques [2].

Steganographic techniques started in ancient Greece. One
early example consisted in writing text on wax-covered
tablets. Another example involved shaving the head of a
messenger and tattooing a message or an image on the
messenger’s head and let the hair grow back. The message
would remain undetected until the head was shaved again [3].

The science of steganography has developed significantly to
more sophisticated techniques, allowing a user to hide large
amounts of information within images, audio files, and even
networks. In fact, the main difference between the modern
steganographic techniques and the previous ones is only the

form of carrier for the secret information. Researchers are
devising new steganographic applications and techniques and
old methods are given new twists [3].

Our Contribution: We have recently introduced an algorithm
for Detection of URL in Image Steganography [4]. In this
paper, we extend the algorithm to detect and extract encrypted
URLs. We implement the proposed algorithm and successfully
test it and compare it to various results using different images.

Structure of the paper: In Section II, we present some
background related to image steganography. In Section III, we
discuss stegonalysis, which is the main component of
detecting hidden messages inside the image. In Section IV, we
discuss the problem of hiding URLs inside an image. In
Section V, we discuss and present the algorithm, algorithm
complexity analysis, implementation and results of the
experiments. In Section VI, we present the conclusion and
future work.

A. The Concept of Steganography

The concept of steganography is to embed data, which is to
be hidden. However, this process will require three files:

Figure 1. Stego application scenario

First, we have the secret message, which is the information
to be hidden and, as mentioned before with the new
steganography techniques, almost any kind of data can be
hidden. Second, we have the cover file that will hold the
hidden information and, similarly, almost any kind of file can
be used as a carrier. Finally, we have the key file to find the
hidden message and extract it from the cover file. The result of
these three files is a file called stego file, as shown in Fig. 1.

The most common steganography technique is embedding
messages within images, as it is considered the best carrier to
hide all types of files within it. For example, it is possible to
hide another image, virus, URL, text, exe file, audio etc.
without changing its visible properties [5].

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

B. Steganography Applications

Steganography can be used in many useful ways. For
example, to help in transferring secret data, copyrights control
of materials and smart identity cards (IDs), where individuals’
details are embedded in their photographs [6]. It can be used in
printed images, where the data can be embedded after printing
the image. The user can scan the printed image with a smart
device and the embedded information will appear on his/her
device. This technique is useful in exhibitions and displaying
the product’s information.

Cybercrime is believed to benefit from steganography in
transferring illegal data or embedding viruses and malicious
URLs. To counter this threat, new techniques and methods are
being developed and this area is getting more attention among
researchers.

There are many sophisticated steganography pieces of
software available online, which can be used for cybercrime.
Xiao steganography [7] is one such tool. Any user can use this
tool to leak his/her company’s confidential information.

For this reason, many companies are finding it difficult to
detect the stego files even after scanning all their employees
outgoing emails.

II. IMAGE STEGANOGRAPHY

Images can be more than what we see with our eyes. To use
an image as a cover file is considered to be one of the most
useful and cost effective techniques [8]. All image
steganographic techniques to hide data are based on the
structure of the most commonly used image format on the
Internet: graphics interchange format (GIF), portable network
groups (PNG) and Bit Map Picture (BMP).

• Cover Image: In steganography, the original image that
was chosen as a carrier for the secret data is called a
cover image.

• Stego Image: This is the result image of choosing the
right cover image and embedding the secret data inside
it.

• Stego Key: The sender should have an algorithm for
create the stego image to embed the data, and the
receiver should have the matching algorithm to extract
the hidden data from that particular stego image.
Sometimes, the process will require a key, which is
similar to a key used in cryptography, to extract the
hidden message, and that key is called stego key.

Image Embedding Process: Let C be the chosen cover
image, and C’ be the stego image, K be the stego key, and M be
the hidden message then:

C⊕M⊕K→C’

as shown in Fig. 2.

Figure 2. Image Steganography Embedding process

The main challenge in image steganography is that many
image manipulation techniques might destroy the hidden
message on any image, since it will change the feature of the
stego image. Cropping might destroy or corrupt part of the
hidden message if the hidden image is located where the image
is cropped. Rotation might give the receiver difficulty in
finding the hidden message. Filtering might destroy the hidden
message completely.

A. Current Image Steganography Techniques

There are some naive implementations of image
steganography, such as by feeding windows operating system
(OS) command some code to embed the text file which
contains the secret message into a specific image and produce
the stego image (Fig. 3).

Figure 3. Stegocode

Steganography embedding techniques can be divided into
two groups. The first is the Spatial Domain, also known as
Image Domain, which embeds the secret data directly in the
intensity of the image pixels, usually the Least Significant Bit
(LSB) in the image. The other is the Transform Domain,
which is also known as Frequency Domain, where images are
first transformed and then the secret data is embedded in the
image [9].

The focus of this paper will be on the spatial domain. In the
spatial domain, the steganographer modifies the secret data
and the cover image, which involves re-encoding the LSBs in
the carrier image. To the human eye, these changes in the
image value of the LSB are imperceptible [10]. This technique
can be applied for most image formats.

Least Significant Bits: This technique embeds bits of the
secret data directly into the LSB plane of the cover image [6].
LSB is considered to be one of the simplest approaches of
embedding data in a cover image. Yet, it is one of the most
difficult approaches to detect.

On average, the changes will be only made on three bits
with a byte. Only half of the bits within an image are modified
to hide the secret data using the maximal cover size. The result
of these changes is too small to be recognized by the human
visual system (HVS) [1].

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

III. STEGAANALYSIS

Steganalysis is the main step in the steganography technique
to discover the hidden messages. It is the way of identifying
the suspected medium, determine whether or not they have an
embedded data into it, and, if possible, recover that data.
Steganalysis is the science of attacking steganography in a
battle that never ends [6].

Steganlysis can sometimes be more challenging than
cryptanalysis. The steganalyst first has to identify the
suspected cover file, then locate the hidden message. The
hidden message might be scattered in different locations inside
the cover file. In some cases, the hidden message might be
encrypted to make it more difficult to detect. The main
mission of the cryptanalyst is to decrypt the encrypted
message.

There are 4 types of Steganalysis listed below:

1) If the steganography attack is known to the
stegnalysis: since the cover file, the hidden message
and the steganography tool (algorithm) are all known to
the steganlysis, the hidden message can be identified
quite easily.

2) Only the original file (before embedding the
message) and the cover file are known to
stegnalysis: the objective will be to compare the two
files, and using pattern difference between the two
files, to identify the hidden message.

3) If only the secret message is known to the
stegnalysis: the objective is to identify a known pattern
in all the files. This is a difficult approach.

4) Only the cover file is known to the stegnalysis:
similarly to the previous attack, it can be very
challenging to identify the hidden message location,
since it may be scattered to more than one place.

Image analysis forms the backbone of the image
steganalysis programs. Image manipulations techniques, such
as translating, filtering, cropping and rotation are used in
steganalysis. Discrete cosine transform (DCT)-based image
steganography hints can be identified using JPEG double
compression and the DCT transform [6].

The focus of this paper will be a new kind of attack where
the type of the hidden message is URL and the hiding
technique LSB are both known.

A. URL in Image Steganography
Embedding data in images is not a new technique. This

method is getting better and more sophisticated. One of the
recent improvements is embedding a URL in the image LSBs
(see Fig. 4). The objective of the URL is to direct the receiver
to a web page. The web page might contain a virus that will
harm the image receiver, either by destroying or stealing data.

The main reason behind embedding an URL in an image
instead of the whole secret data is that the URL requires very
little space in the carrier [11]. This ensures that the URL can

be difficult to detect and there is less chance of losing the URL
by image manipulations.

Figure 4. URL Stego Embedding Scenario

In [12], the authors discusses about stegoloader malware. It
was noted that the malware authors are evolving their
techniques to evade network and host-based detection
mechanisms. Stegoloader could represent an emerging trend in
malware, hiding malicious code inside a digital image.
Stegoloader has a modular design and it uses digital
steganography to hide its main module’s code inside a
legitimate PNG image.

One malware, Lurk Downloader [12] specifically embeds
URLs into an image file by inconspicuously manipulating
individual pixels. The resulting image contains additional data
that are virtually invisible to an observer. Lurk’s primary
purpose is to download and execute secondary malware
payloads [13].

IV. THE PROBLEM

There are various types of information that can be hidden in
the LSB of an image. In this paper, we are dealing with an
URL hidden inside an image. Any malicious code can be
embedded by using LSB. To modify the LSB means to modify
the colour, by using LSBs of an image.

There are different colour ranges which require different
amounts of memory, such as 2 bits, 8 bits, 24 bits etc. They
have both colour and grey scale. 8 bits colour means each
pixel can have any of 256 (28) colours. The same calculation is
applicable 8 bits grey scale or 24 bit colours. Since there are
many colour combinations, modifying the LSB does not make
much difference to the human eye. URL attack uses this
weakness in colour LSB.

For example, an URL ”http://exampleattack.com” has 24
characters. Each character of this URL takes 8 bits in ASCII
format. The URL will require 192 significant bits from an
image.

For simplicity, let us see how the first character ’h’ of our
example URL ”http://exampleattack.com” can be added by
using LSBs of an image. The ASCII value for ’h’ is decimal
104 and binary 01101000

Before LSB insertion let us assume that 8 consecutive bytes
of an image are:
10000010 10100110 11110101 10110101 10110011 10010111
10000100 10110001

After inserting ’h’ (01101000) in LSBs, the result is below.
10000010 10100111 11110101 10110100 10110011 10010110
10000100 10110000

In this way, by using more significant bits of images, we can
embed the rest of the characters of the intended URL.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

V. URL DETECTION ALGORITHM

We are going to present an algorithm overview to detect a
hidden URL from the LSBs of an image.

TABLE I. LIST OF TOP-LEVEL DOMAINS (TLD) BY THE ICANN FOR FULL

LIST PLEASE REFER TO [14]
AAA AARP ABB ABBOTT ABOGADO

AC ACADEMY ACCENTURE ACCOUNTANT ACCOUNTANTS

ACO ACTIVE ACTOR AD ADS

ADULT AE AEG AERO AF

AFL AG AGENCY AI AIG

AIRFORCE AIRTEL AL ALLFINANZ ALSACE

AM AMICA AMSTERDAM ANALYTICS ANDROID

AO APARTMENTS APP APPLE AQ

AQUARELLE AR ARAMCO ARCHI ARMY

ARPA ARTE AS ASIA ASSOCIATES

AT ATTORNEY AU AUCTION AUDI

AUDIO AUTHOR AUTO AUTOS AW

AX AXA AZ AZURE ..etc

A. Algorithm Overview

Step 1: Create a sorted list, DOMAIN[], from the static
official top level domain list.

Step 2: Create an array called BITMAP[], from an image
taking each bit in the array.

Step 3: Make a character array called, LSBCHARARRAY[]
from an intermediate array of LSBARRAY[] by converting
each 8 bits to an ASCII character.

Step 4: Loop through the LSBCHARARRAY[], find out
possible hidden URL is formed by http or https, www, domain
name and TLD.

B. Complexity Analyses

1) Step 1 (Create a sorted list from the static official top
level domain):: Space complexity: We have a known TLD list
[14]. So, in the pre-processing stage, we have created an
indexed array, DOMAIN[] considering each TLD as a string.
It is linear to the size of all characters plus the index of each
string position in a sorted order. We have created a separate
index list with just starting position of TLDs with a specific
character.

For example, if .co and .com both starts with c, so if we
know where the c starts on the whole sorted list, we just can
look at the block starts with ’c’. The overall space complexity
of the sorted list is O(M) +O(t) + O(i), where M is the total
number of characters, it is the index on each TLD string which
is limited to the official static list.

Time complexity: This step of computation can be a pre-
processing step, so complexity is not a major issue. However,
it is possible to build up a sorted list by radix sort [15] where
an LSD radix sort operates in O(nk) in all cases, where n is the
number of keys, and k is the average key length.

2) Step 2 (Create a sorted list from the static official top
level domain list):: Space complexity: O(M) where M is the
number of bits.

Time complexity: O(n) where n is the number of bits. This
means in just a single iteration the array is built.

3) Step 3 (Make a character array by converting each 8
bits to an ASCII character):: Space complexity: The
complexity is O(n) here where n=M/8 where M is the number
of bits in BitMap and only one in each 8 bits are placed in a
character array by converting 8 such Least Significant bits into
character. So, the complexity here is sub linear. Although an
intermediate LSBARRAY has been introduced in Step 3 for
clarity purpose of the flow, it is possible to calculate the
LSBCHARARRAY directly from BITMAP[] array. So
LSBARRAY[] is not required in the implementation.

Time complexity. This is looping through the BitMap array
just once and producing a character array by taking each 8
significant bits together and converting to ASCII. So, the time
complexity is linear here with O(n) where looping n bits just
once produces the result. Converting to ASCII and character
has happened just 1 in 1/64 where 1 byte (8 consecutive LSB)
comes from 64 bits. This operation produces a time
complexity of O(n+n/64) which is linear.

4) Step 4 (Loop through the array, find out possible

hidden URL is formed by http or https, www, domain name
and TLD): Space complexity: The space complexity is linear
with O(n), where n is the number of characters in the array.

Time complexity: This is a loop through the character
array. Finding the first 3 parts of an URL (http/https and/or
www, domain name) are done in one go in the single loop.
They are part of the inside loop, used to find the position and
calculation purpose for the string ’http’, ’https’ and ’www’.
The actual counter of the characters array is incremented in
each go whether it is inner loop or outer loop. The complexity
holds linear for the operations because the whole character
array are traversed just once.

Looking at the 4th part, TLD requires a short lookup in a
sorted array described in Step 1. For the whole character array,
this lookup is just done to complete the search in a sorted and
indexed Top Level Domain array which we called in step 1 as
DOMAIN[]. In a sorted list, the binary search works as log(n)
complexity in the worst case where n is the number of items in
an array. But, in our case, n is narrowed down by the index of
each character. So, each block of searched area is n/m, where
m is the number characters in the alphabet. So, the search
takes log(n/m)time because we know the starting character
what to lookup DOMAIN[] array. The overall complexity
stays linear for step 4.

C. Next Level Detection (Detecting and Extracting Encrypted
URL)

The previous tool can be considered as one of the first tools
to detect the hidden text in images and extract these hidden
messages. We have taken the algorithm to the next level, to
detect and extract encrypted URLs.

In this new algorithm, the sender will encrypt and store the
URL using the NOT encryption technique in the LSB of the
image.

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

The following proposed algorithm is a linear time algorithm
so, it terms of time and space, it does not add any more
complexity compared to the previous algorithm.

D. The NOT Encryption Technique

This level of text encryption will not be detectable using the
previous algorithm, since it will evade the URL detection
through using the binary operation NOT to encrypt the plain
text.

We continue with the example that was mentioned in the
Problem Definition section:

The ASCII value for ’h’ is decimal 104 and binary
01101000
Before the LSB insertion, let us assume that 8 consecutive
bytes of an image are below.
10000010 10100110 11110101 10110101
10110011 10010111 10000100 10110001

To add the extra encryption level to the plain text before
embedding it in the image, the ’h’ binary NOT will transform
from 01101000 to 10010111

Therefore, after inserting the encrypted ’h’ (10010111) in
the LSBs the result is below.

10000011 10100110 11110100 10110101
10110010 10010111 10000101 10110001

The strength of this technique is that it will encrypt the
URL, which is a very short text embedded in a very large
number of pixels. It gives the sender the advantage of hiding
the text without any key for the receiver to use to extract the
text. The receiver will only need to know the hiding technique
and the text location to extract the hidden text. There are many
encryption mechanisms. The complement is one of the easiest
mechanism to encrypt data.

E. Experiments

The solution was implemented using Visual Studio 2015
Studio, ASP.Net 4.5 and javascript. The solution is available
her [18]. It was tested using BMP, PNG and GIF images of
different sizes, colour depth, colour palettes and compression
types. The solution has been tested using different browsers
such as IE11, Firefox 4 and Chrome Ver 50.0. We have used 2
dozen different images with image size ranging from 300
bytes to 10 KB, colour depth ranging 2 bits to 24 bits, colour
palettes ranging from 2 to 65K.

It uses javascript as a client side scripting language and it
will work only on the browser where javascript is enabled. It
also needs to access files from client machines or folders, so if
there are restrictions on accessing image files, the browser will
not be able to read the image files.

It cannot accept compressed and lossy images as there is a
possibility that the URL data will be lost or corrupted when
the images are compressed and the solution will not be able to
extract the URL from the stego image [9].

Furthermore, for monochrome images, changing the LSB
technique might alter the image in such a way that the changes
are visible to the viewers and raise suspicion that the image
have been altered, therefore, it will be eliminated.

F. Checking Experiment Results

1) Image Difference: We tested the generated images
with the original images using a free image comparison
website [16]. The website found no difference between the
original and the image containing the hidden URL. In
comparing the pixel value and colour between the images,
there is a threshold (3 points) which the pixel must exceed in
order to register as a difference. It confirms that the statistics
steganalysis techniques will not be effective in detecting and
extracting the hidden encrypted URLs since they are very
short and the changes that they do to the images are
imperceptible.

2) Histograms Analysis: We have analysed the
histograms of the original image and the generated stego
image using the website [17]. There was no difference
between the histograms of both the original image and the
stego image. It also confirmed that the steganalysis depending
on the histograms of images will not detect the hidden URL
even if the original image is known and the stego image is
known as well.

VI. DISCUSSION AND FUTURE WORK

This paper describes in detail the existing research on how
data can be hidden in an image. It also explains how to extract
the hidden URL detection in images and the new algorithm to
detect encrypted URL.

The URL detection problem in images was simplified with
respect to string matching approach, which can be used in
other kind of string matching problems in an image. For
example, users may be interested to search for malicious
commands or other kind of strings hidden in the image using
the LSB of the image. The proposed solution has taken the
previous URL detection algorithm to the next level, detecting
and extracting encrypted hidden URLs. We have implemented
and successfully tested this new algorithm using different
images.

The experiments showed that the solution is very effective
in detecting and extracting the URLs.

Detecting and extracting URL as it is, specifically in
images, is a novel approach in image steganography analysis.
The reason of concentrating on this problem is a response to
the introduction of the new technique of embedding malicious
URLs in images recently, and that is relatively a new
technique for hiding/spreading viruses. The approach time and
space complexity are promising. Therefore, as a future work
the detection tool can be improved to cover more encrypting
techniques.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

VII. REFERENCES

[1] M. Hariri, R. Karimi, and M. Nosrati, ”An introduction to
steganography methods,” World Applied Programming, vol. 1,
no. 3, 2011, pp. 191- 195

[2] R. Krenn, ”Steganography and steganalysis,” Retrieved
September, vol. 8, 2004, p. 2007.

[3] N. F. Johnson and S. Jajodia, ”Exploring steganography: Seeing
the unseen,” Computer, vol. 31, no. 2, 1998, pp. 26-34.

[4] M. M. Aljamea, C. S. Iliopoulos, and M. Samiruzzaman,
”Detection of url in image steganography,” in Proceedings of the
International Conference on Internet of Things and Cloud
Computing, ser. ICC 16. New York, NY, USA: ACM, 2016, pp.
23:1-23:6. [Online]. Available:
http://doi.acm.org/10.1145/2896387.2896408

[5] N. Provos and P. Honeyman, ”Hide and seek: An introduction to
steganography,” Security and Privacy, IEEE, vol. 1, no. 3, 2003,
pp. 32- 44.

[6] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, ”Digital
image steganography: Survey and analysis of current methods,”
Signal pro-cessing, vol. 90, no. 3, 2010, pp. 727752.

[7] softonic. Xiao steganography. Accessed:
2017-01-15. [Online]. Available: http://xiao-

steganography.en.softonic.com/ (2015)

[8] C. Mohapatra and M. Pandey, ”A review on current methods
and application of digital image steganography.” International
Journal of Multidisciplinary Approach and Studies, vol. 2, no. 2,
2015.

[9] T. Morkel, J. H. P. Eloff, and M. S. Olivier, ”An overview of
image steganography,” in Proceedings of the Fifth Annual
Information Security South Africa Conference (ISSA2005), H.
S. Venter, J. H. P. Eloff, L. Labuschagne, and M. M. Eloff, Eds.,
Sandton, South Africa, 6 2005, published electronically.

[10] Y. J. Chanu, T. Tuithung, and K. Manglem Singh, ”A short
survey on image steganography and steganalysis techniques,” in
Emerging Trends and Applications in Computer Science
(NCETACS), 2012 3rd National Conference on. IEEE, 2012,
pp. 52-55.

[11] O. K. E. Satir, ”A distortionless image steganography method
via url,” in The 7th International Conference Information
Security and Cryptology, 2014.

[12] D.S.C.T.U.T. Intelligence Stegoloader: A stealthy information
stealer.Accessed:2017-01-15. [Online]. Available:
http://www.secureworks.com/cyber-threat-
intelligence/threats/stegoloader-a-stealthy-information-stealer/
(2015)

[13] D.S.C.T.U.Brett Stone-Gross,Ph.D. Malware analysis of the lurk
downloader. Accessed: 2017-01-15. [Online].
Available:http://www.secureworks.com/cyberthreat-
intelligence/threats/malware-analysis-of-the-
lurkdownloader/?view=Standard (2014)

[14] ICANN. List of top-level domains.
https://www.icann.org/resources/pages/tlds-2012-02-25-en.
[Online].Available:https://www.icann.org/resources/pages/tlds-
2012-02-25-en (2016)

[15] R. Sedgewick and K. Wayne. Radix
sorts. [Online]. Available: https://www.cs.princeton.edu/

rs/AlgsDS07/18RadixSort.pdf (2014)

[16] J. Cryer. Image analysis and comparison. Accessed: 2017-01-
15.[Online].Available: https://huddle.github.io/Resemble.js/
(2015)

[17] LunaPlc.com. Histogram of image colors.Accessed:2017-01-15.
[Online]. Available:
http://www169.lunapic.com/editor/?action=histogram (2017)

[18] http://tanvera-001-site2.htempurl.com (2017)

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

