
Knowledge Extraction from German Automotive Software Requirements

using NLP-Techniques and a Grammar-based Pattern Detection

Mathias Schraps

Software Development

Audi Electronics Venture GmbH

85080 Gaimersheim, Germany

e-mail: mathias.schraps@audi.de

Alexander Bosler

Fakultät für Informatik

Technische Universität München

85748 Garching, Germany

e-mail: alexander.bosler@tum.de

Abstract—In Requirements Engineering, natural language is

often used to specify the system under development with

textual requirements. Especially in the automotive industry it

is used to specify the processing of signals and parameters, as

well as the behavior of sensors or actuators. During the

creation of a specification first executable software models

were developed, which have to be implemented according to

the corresponding requirements. Due to the asynchronous

development of specifications and software models,

inconsistencies and defects may occur. To overcome this issue,

we developed an approach using Natural Language Processing

(NLP) techniques and a formal grammar to match semantic

patterns in order to extract knowledge of requirements and

represent it in an ontology. This approach will be introduced

based on an example of an automotive software requirement.

Keywords-Natural Language Processing; Requirements;

Ontology; Knowledge Representation; Semantic Annotated

Grammar; Knowledge Extraction; Pattern Detection.

I. INTRODUCTION

The development of embedded software in the
automotive domain is a challenging task. First, requirements
regarding architecture, data communication and behavior of
the system under development have to be elicited and
documented. This involves several stakeholders like
electronic engineers, software developers, architects and
other domain engineers.

During the phase of Requirements Elicitation, first
executable software models are created, so-called Rapid
Prototyping [1]. Therein, a partial amount of these
requirements are implemented so far. During the progress of
the project more and more requirements will be specified and
have to be covered by the model and later by the
implementation. This procedure implies a high linkage
between two project phases: Requirements Elicitation and
Modelling. If the artifacts of these both phases were not
updated permanently by the involved developers and
stakeholders, defects, errors or inconsistencies may occur
and could be propagated across the entire development
process. The later these issues are detected and solved, the
more cost-intensive is their removal [2]. Therefore, the
artifacts created in early phases of a software development
project have to be consistent as much as possible.

In the automotive industry, a software requirement
specification consists of more than only one document. Even

though these documents come from many authors with
different background and interests, they share one thing in
common to specify their requirements: a natural language.
Unfortunately, these natural language requirements can be
incomplete, ambiguous and error-prone [3]–[5], especially in
early phases of development.

This paper presents a method of extracting knowledge
from textual requirements formulated in German natural
language using Natural Language Processing (NLP)
techniques. According to the detected patterns within a
single requirement, this knowledge will be transferred into a
requirements ontology in order to be able to check
consistency between several requirements and for reuse
purposes.

The structure of this paper is as follows. Section II gives
an overview about the annotation of textual requirements
using NLP-techniques. This is illustrated on a sample
requirement given at the end of this section. In Section III,
the pattern detection and the mapping of the sample
requirement into an ontology will be introduced. Section IV
provides a conclusion and outlines possible future work. The
sample requirement on which all illustrations in the
following sections are based, is formulated as follows:
“Wenn die Klemme 50 eingeschalten ist und
s_MTrig=p_MAn, dann ist der Motor zu starten
(s_MStart=1).“ An English translation of this requirement
would be: “If clamp 50 is switched on and s_MTrig=p_Man,
then the engine must be started (s_MStart=1).”

II. REQUIREMENTS ANNOTATION USING NLP

The NLP annotation process is the concatenation of
different NLP-tools in a pipeline-style manner, where each
tool provides additional information about the processed
requirement (cf. Fig 1). This process was inspired by Arora
et al [6] and adds a possibility to map the knowledge within
the requirement about the system under development into an
ontology.

If needed, tools are able to query the underlying
ontology, where the knowledge is stored. This knowledge is
extracted from the requirements in later steps. At the
beginning of the requirement acquisition, it is possible to
initialize the underlying ontology with a priori knowledge
about predefined signals, constants and parameters.
Furthermore, it is possible to add an existing taxonomy,
which in this case is extracted from an existing High Level

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Requirements (HLRs) Specification [7]. To improve the
results of the OpenNLP-tools [8], which are based on
machine learning models the AEV-Corpus (internal Audi
Electronics Venture Requirement based Corpus) was
introduced (cf. , ,  in Fig. 1). At the moment the AEV-
Corpus consists of about 450 tokenized, POS-tagged and
chunked automotive software requirements. In the following
paragraphs the annotation of the requirement, which results
in an “NLP Annotated Requirement” (cf. Fig. 1), is
described in more detail.

The “RegEx-based search & replace” activity provides
the possibility to define search and replace pairs, which are
enforced at the start of the NLP-process in order to fix
syntactical problems like missing or multiple whitespace
characters and to standardize symbol usage.

During the “Tokenization” (cf.  in Fig. 1), the
OpenNLP Tokenizer splits the requirements according to a
Maximum Entropy Model trained on the AEV-Corpus. The
model achieves results similar to the default models provided
by OpenNLP when tokenizing the natural language parts of a
given requirement. The main advantage achieved by
introducing the AEV-Corpus trained model, is the
tokenization of very formal requirements: concepts like
formal equations of signals and constants, C-Structs or
Arrays are not part of the OpenNLP default models and thus,
tokenization tends to fail. To improve the tokenization
results, generated by the OpenNLP Tokenizer, the Named
Entities (contained in the underlying ontology) are used to
verify their correct tokenization of the currently processed
requirement. The tokens, which are generated for the sample
requirement (cf. Section I), are shown at  in Fig. 2.

The “Spell & Synonym Checking” activity uses the Java
version of the JLanguageTool [9] to detect misspelled tokens

and provides a list of suggestions for each of them.
Furthermore, a set of synonyms for each token is created
using GermaNet [10] and OpenThesaurus [11]. The resulting
set is used to query the underlying ontology to check if one
or more of them are already included. After this, the
synonyms provided and found at least once in the ontology,
are added to their corresponding token.

In the “POS Tagging” activity (cf.  in Fig. 1), each
token (word, punctuation character and mathematical
symbol) of the requirement is tagged with its corresponding
Part Of Speech (POS) Tag. Since formal definitions are very
common in automotive software requirements and common
Tagsets only provide Part Of Speech Tags for natural
language, we extended the STTS Tagset [12] by $S to tag
mathematical symbols (=,<,>,≥,≤,+,-,…) and $L to tag listing
symbols (:,->) to address this issue. The assignment of the
POS-Tags to each token is done using the OpenNLP POS-
Tagger based on a Maximum Entropy Model, which is
trained on the AEV-Corpus. To improve the POS-Tagging
results generated by the OpenNLP POS-Tagger, the Named
Entities and Concepts (contained in the underlying ontology)
are used to verify their correct tagging in the currently
processed requirement. The POS-Tags for all tokens,
generated during the “Tokenization” of the sample
requirement (cf. Section I), are shown at  in Fig. 2.

The “Text Chunking” activity (cf.  in Fig. 1) uses the
OpenNLP Chunker to chunk the requirement according to a
Maximum Entropy Model, which is trained on the AEV-
Corpus. Each chunk consists of one or more tokens, tagged
with the corresponding Chunk-Tag and can be considered as
a “part of interest” of the processed requirement. The
chunks, generated for the sample requirement (cf. Section I),
are shown at  in Fig. 2. The meaning of the used Chunk-

Figure 1. NLP based knowledge extraction process (part 1)

Figure 2. Sample requirement annotated by the NLP-process according to Fig. 1

RegEx-based

find&replace
Tokenization

Spell & Synonym

Checking
POS Tagging

Text

Chunking

Ontology

NLP Annotated

Requirement
Requirement

OpenNLP
Max. Ent.
Tokenizer

OpenNLP
Max. Ent.
Chunker

OpenNLP
Max. Ent.

POS Tagger

AEV-Corpus

 Syntax-Rules
 Symbol-

transformation

 LanguageTool
 GermaNet
 OpenThesaurus

 HLRs Taxonomy

 Predefined: Signals,
Constants, Parameters

  

Wenn | die | Klemme | 50 | eingeschalten | ist | und | s_MTrig | = | p_MAn | , | dann | ist | der | Motor | zu | starten | (| s_MStart | = | 1 |) | .

ED PD FO ED RD FO

|…| = Token, italic = POS-Tag, bold = Chunk

KOUS ART NN CARD ADJD VAFIN KON NE $S NE $, ADV VAFIN ART NN PKTZU VVINF $(NE $S CARD $($.







18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Tags is as follows: Entity Definition (ED), State/Property
Definition (PD), Action/Relation Definition (RD),
Formula (FO).

III. PATTERN DETECTION AND ONTOLOGY ADJUSTMENT

Based on the NLP Annotated Requirement (cf. Fig. 2)
and patterns in the form of a semantic annotated grammar
(cf. Fig. 4), which is inspired by [13], the “Pattern Detection”
and the “Ontology Adjustment” (which is split into “Identify
Ontology Adjustments” and “Ontology Adjustment” to allow
User Interaction), extracts the knowledge contained in the
processed requirement and stores it into the underlying
ontology (cf. Fig. 3). A more detailed view on the knowledge
extraction process is given in the following paragraphs.

 During the “Pattern Detection”, the semantic aspect of
the semantic annotated grammar is ignored since it does not
provide any additional information for this activity. The first
step in the Pattern Detection is the aggregation of tokens,
POS-Tags and chunks to a list, which is referred to as
“word”. The “word” only contains elements, which are
available in the NLP Annotated Requirement and also
terminals of the grammar. According to this rule and the
semantic annotated grammar, the following elements in the

annotated sample requirement (cf. Fig. 2.) would be ignored:
|ist|(VAFIN), |,|($,), |ist|(VAFIN), |zu|(PKTZU), |.|($.) and
the “word” would be: “Wenn ED PD KON FO dann ED RD
FO”. To verify if the "word" can be expressed in the formal
language defined by the semantic annotated grammar, a
finite state machine based recognizer is being used. For the
sample requirement the recognizer would tell us that our
“word” can be expressed using the If-Then-Pattern of the
semantic annotated grammar (cf. <If-Then-Pattern> in
Fig. 4).

At the end of the “Pattern Detection” activity, the user is
informed about the results of the “Spell & Synonym
Checking” activity (cf. Section II) and whether a valid
requirement pattern was found in the processed requirement
or not. This allows the user to rephrase the requirement or to
start the “Ontology Adjustment” for the processed
requirement.

The “Identify Ontology Adjustments” activity performs
two major tasks. At first, it creates a temporary knowledge
representation for the processed requirement, based on the
semantic annotated grammar (cf. Fig. 4, Fig. 5 and Fig. 6).
Secondly, it checks whether the insertion of the temporary
knowledge representation can be performed to the

Figure 3. NLP-based knowledge extraction process (part 2)

Figure 4. Simplified Semantic Annotated Grammar for Pattern Detection
and Ontology Adjustment in BNF-Style Figure 5. Ontology representation of ED and FO chunks

ConfirmPattern

Detection

User
Interaction

Identify Ontology

Adjustments

Ontology

Semantic
Annotated Grammar

NLP Annotated
Requirement

Rerun

Pipeline

Rephrase

Confirm User
Interaction

Ontology

Adjustment

Rephrase

<ED-Chunk> ::= <optional-Article> <Entity>

<optional-Article> ::= “ ” | ART

<Entity> ::=

NN => createIndividual(valueOf(NN),valueOf(NN)) |

NN CARD => createIndividual(valueOf(NN),

concat(valueOf(NN),“ ”,valueOf(CARD)))

<If-Then-Pattern> ::=

Wenn <Condition> dann <Action> => createIfThenReq(

individualOf(<Condition>),

individualOf(<Action>))

<Condition> ::=

FO => createCondition(individualOf(FO)) |

ED PD KON <Condition> => createCondition(individualOf(ED),

individualOf(PD),

addSubCondition(<Condition>))

<Action> ::=

ED RD => createAction(individualOf(ED),individualOf(RD)) |

ED RD FO => createAction(individualOf(ED),individualOf(RD),

individualOf(FO))

Klemme 50

Klemme

s_MStart = 1s_MTrig = p_MAn

Formula

ED

Motor

Motor

Part created by Semantic Annotated Chunk or Pattern Grammar

italic Classes provided by the Semantic Annotated Grammar

bold Classes introduced in Ontology

Individuals introduced in Ontology

Instance of

Legend for Ontology representation

FO

ObjectProperty in Ontology

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

underlying ontology without the violation of existent axioms
or not. To create the temporary knowledge representation for
the entire processed requirement, a knowledge representation
is created for each chunk according to the semantic
annotations of its Chunk-Grammar (cf. <ED-Chunk> in
Fig. 4). The temporary knowledge representation, created for
the ED and FO chunks of the sample requirement are
different, since FO is an instance of a generic Formula Class
and ED, as defined in the Semantic Annotated Grammar (cf.
Fig. 4), creates both, the Class itself and an Individual as an
instance of the Class (cf. Fig. 5). After the temporary
knowledge representation for the chunks has been build, the
contained individuals are connected and enhanced with new
knowledge according to the semantic annotations of the
Pattern-Grammar (cf. <If-Then-Pattern> in Fig. 4),
determined during the “Pattern Detection” activity. The
temporary knowledge representation, which is created for the
sample requirement, is given in Fig. 6. Otherwise, if there is
no matching pattern found during the “Pattern Detection”
activity and the user confirmed the formulated requirement
in the previous activity, the temporary knowledge
representation of each single chunk will be linked to a
temporary DefaultRequirementIndividual, which represents a
lean requirement structure within the ontology. Finally, the
“Identify Ontology Adjustments” activity checks whether it
would be possible or not to insert the temporary knowledge
representation into the underlying ontology without violating
existent axioms of previous inserted requirements, which
may lead to an inconsistent ontology. During this step, the
underlying ontology is not updated or modified but queried
to detect axiom violations.

 If the “Identify Ontology Adjustments” activity
determines, that it is not possible to insert the temporary
knowledge representation into the ontology without violating
existent axioms, the user is asked whether he/she wants to
rephrase or refine the requirement or continue with the next
process step according to Fig. 3 by confirming the detected
issue.

“Ontology Adjustment” is the final step in the knowledge
extraction process. It updates the underlying ontology
according to the temporary knowledge representation of the
sample requirement (cf. Fig. 6), which was created by the
“Identify Ontology Adjustments” activity. If the ontology
can’t be updated with the temporary knowledge acquired
during the previous activity without violating existent
axioms (as determined by the “Identify Ontology

Adjustments” activity) and the user confirmed the issue after
the “Identify Ontology Adjustments” activity, every element
of the temporary knowledge representation, that violates an
existing axiom is removed from the remaining temporary
knowledge representation and the therein remaining
elements are inserted into the ontology and marked to be
partial.

IV. CONCLUSION AND OUTLOOK

In this paper, we presented an approach to annotate
automotive software requirements formulated in German
natural language using NLP-techniques. The pattern
detection matched predefined patterns and transforms the
tagged and chunked parts of a requirement according to its
semantic into a requirements ontology in order to represent
the knowledge of the entire requirement.

In our next work, we will support a mapping of the
developed requirements ontology to block-elements of a
software model created with MATLAB Simulink. This will
provide the ability to trace the semantic of requirements
between the phases Requirements Elicitation and Modelling
within the embedded software development process. In
further stages, this approach will be evaluated by a
prototypical tool with a graphical user interface to let the
user write requirements and check the consistency to the
corresponding software model.

REFERENCES

[1] J. Schäuffele and T. Zurawka, Automotive Software

Engineering: Grundlagen, Prozesse, Methoden und

Werkzeuge effizient einsetzen, 5th ed. Wiesbaden: Springer

Fachmedien Wiesbaden, 2013.

[2] S. McConnell, Code complete: A practical handbook of

software construction, 2nd ed. Redmond, Washington:

Microsoft Press, 2004.

[3] E. Hull, K. Jackson, and J. Dick, Requirements Engineering,

3rd ed. London: Springer Verlag London Limited, 2011.

[4] C. Rupp and SOPHIST GROUP, Requirements-Engineering

und -Management: Professionelle, iterative

Anforderungsanalyse für die Praxis, 5th ed. München, Wien:

Hanser, 2009.

[5] K. Pohl, Requirements Engineering: Grundlagen, Prinzipien,

Techniken, 2nd ed. Heidelberg: dpunkt-Verlag, 2008.

[6] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, and R.

Gnaga, “RUBRIC: A Flexible Tool for Automated Checking

of Conformance to Requirement Boilerplates,” Proceedings of

Figure 6. Knowledge representation of the sample requirement

Condition 1

s_MTrig = p_MAn

hasSubCondition

starten

Motor

Requirement 1

hasCondition hasAction

s_MStart = 1

doesPerform

s

isFormal

Motor starten
Klemme 50

eingeschalten
eingeschalten

StatefulIndividual

Klemme 50

State

onObject

ActionActionIndividualCondition IfThenRequirement

statefulIndividualOf hasSubCondition

inState

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

the 2013 9th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2013), New York, NY: Association

for Computing Machinery, 2013, pp. 599–602,

doi:10.1145/2491411.2494591.

[7] M. Ringsquandl and M. Schraps, “Taxonomy Extraction from

Automotive Natural Language Requirements Using

Unsupervised Learning,” International Journal on Natural

Language Computing (IJNLC), vol. 3, no. 4, pp. 41–51, 2014.

[8] Apache Software Foundation, “Apache OpenNLP,” [Online].

Available: https://opennlp.apache.org/. Accessed: Nov. 11,

2015.

[9] D. Naber, “LanguageTool,” [Online]. Available:

https://languagetool.org/. Accessed: Nov. 11, 2015.

[10] University of Tübingen, Tübingen, Germany, “GermaNet - An

Introduction,” [Online]. Available: http://www.sfs.uni-

tuebingen.de/GermaNet/. Accessed: Nov. 11, 2015.

[11] D. Naber, “openthesaurus.de,” [Online]. Available:

https://www.openthesaurus.de/. Accessed: Nov. 11, 2015.

[12] Universität Stuttgart, Institute for Natural Language

Processing, Stuttgart, Germany, “STTS Tag Table

(1995/1999),” [Online]. Available: http://www.ims.uni-

stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-

table.html. Accessed: Nov. 16, 2015.

[13] M. Schraps and M. Peters, “Semantic Annotation of a Formal

Grammar by SemanticPatterns,” 2014 IEEE 4th International

Workshop on Requirements Patterns (RePa), 2014, pp. 9–16,

doi:10.1109/RePa.2014.6894838.

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

	I. Introduction
	II. Requirements Annotation using NLP
	III. Pattern Detection and Ontology Adjustment
	IV. Conclusion and Outlook
	References

