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Abstract—In Requirements Engineering, natural language is 

often used to specify the system under development with 

textual requirements. Especially in the automotive industry it 

is used to specify the processing of signals and parameters, as 

well as the behavior of sensors or actuators. During the 

creation of a specification first executable software models 

were developed, which have to be implemented according to 

the corresponding requirements. Due to the asynchronous 

development of specifications and software models, 

inconsistencies and defects may occur. To overcome this issue, 

we developed an approach using Natural Language Processing 

(NLP) techniques and a formal grammar to match semantic 

patterns in order to extract knowledge of requirements and 

represent it in an ontology. This approach will be introduced 

based on an example of an automotive software requirement. 

Keywords-Natural Language Processing; Requirements; 

Ontology; Knowledge Representation; Semantic Annotated 

Grammar; Knowledge Extraction; Pattern Detection. 

I.  INTRODUCTION 

The development of embedded software in the 
automotive domain is a challenging task. First, requirements 
regarding architecture, data communication and behavior of 
the system under development have to be elicited and 
documented. This involves several stakeholders like 
electronic engineers, software developers, architects and 
other domain engineers.  

During the phase of Requirements Elicitation, first 
executable software models are created, so-called Rapid 
Prototyping [1]. Therein, a partial amount of these 
requirements are implemented so far. During the progress of 
the project more and more requirements will be specified and 
have to be covered by the model and later by the 
implementation. This procedure implies a high linkage 
between two project phases: Requirements Elicitation and 
Modelling. If the artifacts of these both phases were not 
updated permanently by the involved developers and 
stakeholders, defects, errors or inconsistencies may occur 
and could be propagated across the entire development 
process. The later these issues are detected and solved, the 
more cost-intensive is their removal [2]. Therefore, the 
artifacts created in early phases of a software development 
project have to be consistent as much as possible.  

In the automotive industry, a software requirement 
specification consists of more than only one document. Even 

though these documents come from many authors with 
different background and interests, they share one thing in 
common to specify their requirements: a natural language. 
Unfortunately, these natural language requirements can be 
incomplete, ambiguous and error-prone [3]–[5], especially in 
early phases of development.  

This paper presents a method of extracting knowledge 
from textual requirements formulated in German natural 
language using Natural Language Processing (NLP) 
techniques. According to the detected patterns within a 
single requirement, this knowledge will be transferred into a 
requirements ontology in order to be able to check 
consistency between several requirements and for reuse 
purposes.  

The structure of this paper is as follows. Section II gives 
an overview about the annotation of textual requirements 
using NLP-techniques. This is illustrated on a sample 
requirement given at the end of this section. In Section III, 
the pattern detection and the mapping of the sample 
requirement into an ontology will be introduced. Section IV 
provides a conclusion and outlines possible future work. The 
sample requirement on which all illustrations in the 
following sections are based, is formulated as follows: 
“Wenn die Klemme 50 eingeschalten ist und 
s_MTrig=p_MAn, dann ist der Motor zu starten 
(s_MStart=1).“ An English translation of this requirement 
would be: “If clamp 50 is switched on and s_MTrig=p_Man, 
then the engine must be started (s_MStart=1).” 

II. REQUIREMENTS ANNOTATION USING NLP 

The NLP annotation process is the concatenation of 
different NLP-tools in a pipeline-style manner, where each 
tool provides additional information about the processed 
requirement (cf. Fig 1). This process was inspired by Arora 
et al [6] and adds a possibility to map the knowledge within 
the requirement about the system under development into an 
ontology.  

If needed, tools are able to query the underlying 
ontology, where the knowledge is stored. This knowledge is 
extracted from the requirements in later steps. At the 
beginning of the requirement acquisition, it is possible to 
initialize the underlying ontology with a priori knowledge 
about predefined signals, constants and parameters. 
Furthermore, it is possible to add an existing taxonomy, 
which in this case is extracted from an existing High Level 
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Requirements (HLRs) Specification [7]. To improve the 
results of the OpenNLP-tools [8], which are based on 
machine learning models the AEV-Corpus (internal Audi 
Electronics Venture Requirement based Corpus) was 
introduced (cf. , ,  in Fig. 1). At the moment the AEV-
Corpus consists of about 450 tokenized, POS-tagged and 
chunked automotive software requirements. In the following 
paragraphs the annotation of the requirement, which results 
in an “NLP Annotated Requirement” (cf. Fig. 1), is 
described in more detail.  

The “RegEx-based search & replace” activity provides 
the possibility to define search and replace pairs, which are 
enforced at the start of the NLP-process in order to fix 
syntactical problems like missing or multiple whitespace 
characters and to standardize symbol usage. 

During the “Tokenization” (cf.  in Fig. 1), the 
OpenNLP Tokenizer splits the requirements according to a 
Maximum Entropy Model trained on the AEV-Corpus. The 
model achieves results similar to the default models provided 
by OpenNLP when tokenizing the natural language parts of a 
given requirement. The main advantage achieved by 
introducing the AEV-Corpus trained model, is the 
tokenization of very formal requirements: concepts like 
formal equations of signals and constants, C-Structs or 
Arrays are not part of the OpenNLP default models and thus, 
tokenization tends to fail. To improve the tokenization 
results, generated by the OpenNLP Tokenizer, the Named 
Entities (contained in the underlying ontology) are used to 
verify their correct tokenization of the currently processed 
requirement. The tokens, which are generated for the sample 
requirement (cf. Section I), are shown at  in Fig. 2. 

The “Spell & Synonym Checking” activity uses the Java 
version of the JLanguageTool [9] to detect misspelled tokens 

and provides a list of suggestions for each of them. 
Furthermore, a set of synonyms for each token is created 
using GermaNet [10] and OpenThesaurus [11]. The resulting 
set is used to query the underlying ontology to check if one 
or more of them are already included. After this, the 
synonyms provided and found at least once in the ontology, 
are added to their corresponding token.  

In the “POS Tagging” activity (cf.  in Fig. 1), each 
token (word, punctuation character and mathematical 
symbol) of the requirement is tagged with its corresponding 
Part Of Speech (POS) Tag. Since formal definitions are very 
common in automotive software requirements and common 
Tagsets only provide Part Of Speech Tags for natural 
language, we extended the STTS Tagset [12] by $S to tag 
mathematical symbols (=,<,>,≥,≤,+,-,…) and $L to tag listing 
symbols (:,->) to address this issue. The assignment of the 
POS-Tags to each token is done using the OpenNLP POS-
Tagger based on a Maximum Entropy Model, which is 
trained on the AEV-Corpus. To improve the POS-Tagging 
results generated by the OpenNLP POS-Tagger, the Named 
Entities and Concepts (contained in the underlying ontology) 
are used to verify their correct tagging in the currently 
processed requirement. The POS-Tags for all tokens, 
generated during the “Tokenization” of the sample 
requirement (cf. Section I), are shown at  in Fig. 2. 

The “Text Chunking” activity (cf.  in Fig. 1) uses the 
OpenNLP Chunker to chunk the requirement according to a 
Maximum Entropy Model, which is trained on the AEV- 
Corpus. Each chunk consists of one or more tokens, tagged 
with the corresponding Chunk-Tag and can be considered as 
a “part of interest” of the processed requirement. The 
chunks, generated for the sample requirement (cf. Section I), 
are shown at  in Fig. 2. The meaning of the used Chunk-

 
Figure 1.  NLP based knowledge extraction process (part 1) 

Figure 2.  Sample requirement annotated by the NLP-process according to Fig. 1 
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  

Wenn | die | Klemme | 50 | eingeschalten | ist | und | s_MTrig | = | p_MAn | , | dann | ist | der | Motor | zu | starten | ( | s_MStart | = | 1 | ) | .

ED PD FO ED RD FO

|…| = Token, italic = POS-Tag, bold = Chunk

KOUS ART NN CARD ADJD VAFIN KON NE $S NE $, ADV VAFIN ART NN PKTZU VVINF $( NE $S CARD $( $.






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Tags is as follows: Entity Definition (ED), State/Property 
Definition (PD), Action/Relation Definition (RD), 
Formula (FO). 

III. PATTERN DETECTION AND ONTOLOGY ADJUSTMENT 

Based on the NLP Annotated Requirement (cf. Fig. 2) 
and patterns in the form of a semantic annotated grammar 
(cf. Fig. 4), which is inspired by [13], the “Pattern Detection” 
and the “Ontology Adjustment” (which is split into “Identify 
Ontology Adjustments” and “Ontology Adjustment” to allow 
User Interaction), extracts the knowledge contained in the 
processed requirement and stores it into the underlying 
ontology (cf. Fig. 3). A more detailed view on the knowledge 
extraction process is given in the following paragraphs. 

 During the “Pattern Detection”, the semantic aspect of 
the semantic annotated grammar is ignored since it does not 
provide any additional information for this activity. The first 
step in the Pattern Detection is the aggregation of tokens, 
POS-Tags and chunks to a list, which is referred to as 
“word”. The “word” only contains elements, which are 
available in the NLP Annotated Requirement and also 
terminals of the grammar. According to this rule and the 
semantic annotated grammar, the following elements in the 

annotated sample requirement (cf. Fig. 2.) would be ignored: 
|ist|(VAFIN), |,|($,), |ist|(VAFIN), |zu|(PKTZU), |.|($.) and 
the “word” would be: “Wenn ED PD KON FO dann ED RD 
FO”. To verify if the "word" can be expressed in the formal 
language defined by the semantic annotated grammar, a 
finite state machine based recognizer is being used. For the 
sample requirement the recognizer would tell us that our 
“word” can be expressed using the If-Then-Pattern of the 
semantic annotated grammar (cf. <If-Then-Pattern> in 
Fig. 4). 

At the end of the “Pattern Detection” activity, the user is 
informed about the results of the “Spell & Synonym 
Checking” activity (cf. Section II) and whether a valid 
requirement pattern was found in the processed requirement 
or not. This allows the user to rephrase the requirement or to 
start the “Ontology Adjustment” for the processed 
requirement. 

The “Identify Ontology Adjustments” activity performs 
two major tasks. At first, it creates a temporary knowledge 
representation for the processed requirement, based on the 
semantic annotated grammar (cf. Fig. 4, Fig. 5 and Fig. 6). 
Secondly, it checks whether the insertion of the temporary 
knowledge representation can be performed to the 

 

Figure 3. NLP-based knowledge extraction process (part 2) 

 

Figure 4.  Simplified Semantic Annotated Grammar for Pattern Detection 
and Ontology Adjustment in BNF-Style Figure 5.  Ontology representation of ED and FO chunks 
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underlying ontology without the violation of existent axioms 
or not. To create the temporary knowledge representation for 
the entire processed requirement, a knowledge representation 
is created for each chunk according to the semantic 
annotations of its Chunk-Grammar (cf. <ED-Chunk> in 
Fig. 4). The temporary knowledge representation, created for 
the ED and FO chunks of the sample requirement are 
different, since FO is an instance of a generic Formula Class 
and ED, as defined in the Semantic Annotated Grammar (cf. 
Fig. 4), creates both, the Class itself and an Individual as an 
instance of the Class (cf. Fig. 5). After the temporary 
knowledge representation for the chunks has been build, the 
contained  individuals  are connected and enhanced with new 
knowledge according to the semantic annotations of the 
Pattern-Grammar (cf. <If-Then-Pattern> in Fig. 4), 
determined during the “Pattern Detection” activity. The 
temporary knowledge representation, which is created for the 
sample requirement, is given in Fig. 6. Otherwise, if there is 
no matching pattern found during the “Pattern Detection” 
activity and the user confirmed the formulated requirement 
in the previous activity, the temporary knowledge 
representation of each single chunk will be linked to a 
temporary DefaultRequirementIndividual, which represents a 
lean requirement structure within the ontology. Finally, the 
“Identify Ontology Adjustments” activity checks whether it 
would be possible or not to insert the temporary knowledge 
representation into the underlying ontology without violating 
existent axioms of previous inserted requirements, which 
may lead to an inconsistent ontology. During this step, the 
underlying ontology is not updated or modified but queried 
to detect axiom violations. 

 If the “Identify Ontology Adjustments” activity 
determines, that it is not possible to insert the temporary 
knowledge representation into the ontology without violating 
existent axioms, the user is asked whether he/she wants to 
rephrase or refine the requirement or continue with the next 
process step according to Fig. 3 by confirming the detected 
issue. 

“Ontology Adjustment” is the final step in the knowledge 
extraction process. It updates the underlying ontology 
according to the temporary knowledge representation of the 
sample requirement (cf. Fig. 6), which was created by the 
“Identify Ontology Adjustments” activity. If the ontology 
can’t be updated with the temporary knowledge acquired 
during the previous activity without violating existent 
axioms (as determined by the “Identify Ontology 

Adjustments” activity) and the user confirmed the issue after 
the “Identify Ontology Adjustments” activity, every element 
of the temporary knowledge representation, that violates an 
existing axiom is removed from the remaining temporary 
knowledge representation and the therein remaining 
elements are inserted into the ontology and marked to be 
partial. 

IV. CONCLUSION AND OUTLOOK 

In this paper, we presented an approach to annotate 
automotive software requirements formulated in German 
natural language using NLP-techniques. The pattern 
detection matched predefined patterns and transforms the 
tagged and chunked parts of a requirement according to its 
semantic into a requirements ontology in order to represent 
the knowledge of the entire requirement.  

In our next work, we will support a mapping of the 
developed requirements ontology to block-elements of a 
software model created with MATLAB Simulink. This will 
provide the ability to trace the semantic of requirements 
between the phases Requirements Elicitation and Modelling 
within the embedded software development process. In 
further stages, this approach will be evaluated by a 
prototypical tool with a graphical user interface to let the 
user write requirements and check the consistency to the 
corresponding software model. 
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