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Abstract—

For the tracking of non-rigid objects, we have previously
proposed a shape-based predict-and-track algorithm. The method
was built upon the similarity between the predicted and actual
object shapes. The object shape was predicted from the movement
of feature points, which were approximated by a second-order
Taylor expansion. Approximate first-order movements, the so-
called optical flows, were simultaneously exploited by chamfer
matching of edgelets. In this paper, the effect of second-order
shape prediction is quantitatively analyzed by tracking a non-
rigid skier object. The method exhibits superior shape prediction
performance compared to a simple linear prediction method.

Keywords—Tracking non-rigid objects, Chamfer distance, Shape
prediction.

I. INTRODUCTION

Visual object tracking is one of the most popular techniques
in the field of computer vision. Recently, tracking algorithms
for non-rigid (deformable) objects have been used in many
application fields [1], [2]. In sports scenes, especially those of
team sports such as football, there are many similar objects,
which increase the difficulty of tracking. Therefore, we con-
sider both the movement and form (shape) of these objects to
be discriminative for tracking.

We have already proposed a shape-based predict-and-track
algorithm [3], which was evaluated by tracking a skier to
determine the effect of shape prediction performance. In this
paper, we quantitatively evaluate the shape prediction perfor-
mance of a second-order shape prediction algorithm against
linear (first-order) prediction. The performance is measured
by the similarity between the predicted and actual shapes of
the tracked object.

The remainder of this paper is organized as follows. In
Section II, we describe our shape prediction algorithm and
the tracking procedure that uses the chamfer distance as a
similarity measure. The experimental results are presented in
Section III. Finally, we present our conclusions and ideas for
future work in Section IV.

II. SHAPE-BASED PREDICT-AND-TRACK ALGORITHM

In this section, we describe an algorithm for tracking by
shape prediction [3]. The algorithm consists of two compo-
nents, shape prediction and tracking by shape similarity.
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A. Notation

The following notation is used throughout this paper.

e X denotes the center of the object,

e O(X) denotes the object image centered at position X,

e  E(X) denotes the binary edge image for the object at
position X,

e O and E denote the predicted image and edge image
of the object, respectively,

e  x denotes the positions of the feature points for object

X’
e X' denotes the differential of x, i.e., X' = %,
2
e X" denotes %,

e ¥ denotes the subset of feature points in the object that
constitute the outline edge, ¥ € E(X),

e X denotes the predicted position at the next frame for
X,

e [(x) denotes the edgelet for position x.

B. Shape Prediction

The object shape is represented by the collection of feature
points x, and the deformation of the object is predicted by ex-
ploiting the movement of the feature points. Sim and Sundaraj
proposed a motion tracking algorithm using optical flow [4],
and this can be considered as the first-order approximation of
the movement. For our tracking algorithm, we adopt a shape
prediction method based on the second-order approximation
of the feature points’ movement [3].

Let x; be the 2-D position of the feature points that
constitute the object image O at time ¢. The position of the
points at 7+ 1 can be estimated using a Taylor expansion. Up
to the second-order, this is

1
Xt+1 = Xt +xlt+§)‘”h ()
where x' is the so-called optical flow, which is practically
computed as the difference in the pixel position:
X=X —x_1. 2

Similarly, x” denotes the second-order differential of x, which
is calculated as

XMoo= X=X
= X —X-1— (x,,l *Xz—z)
= X —2x_1+X_2. 3
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Therefore, the appearance of the object at 7+ 1 can be
predicted based on the optical flows computed from three
consecutive video frames. Suppose that the shape of the
object is determined by the outline edge image E, predicted
from the feature point movements in previous video frames.
The algorithm for detecting the feature point movements is
described in Section II-D.

C. Estimation of Object Translation

The movement of the feature points comprises both the
object translation (global movement of the center of the object)
and the movement of the pixels relative to the center of the
object, which is described by

x/t :X/t‘H’/m 4)

where X denotes the position of the object’s center, and r
denotes the position of the pixels relative to X. Figure 1 shows
the movement of feature point x’, the movement of the object’s
center X', and the relative movement r’.

Green: Edge image for r — 1, Red: Edge image for ¢

Figure 1. Edge image and object movement.

The relative movement ' is derived from the object de-
formation, and thus makes a significant contribution to the
prediction of the object’s shape. Because relative movement
obeys the physical constraints of the body parts of the object,
its second-order prediction is effective. In contrast, the second-
order movement contributes less to the object translation X,
because such global movement contains the ego-motion of the
camera as well as the real movement of the object. Therefore,
the purpose of our tracking algorithm is to determine the
next object position X, based on the similarity between the
predicted and actual object shapes, which is computed globally.

The similarity between the predicted edge image £, and
actual edge image E;; is measured using the chamfer system
[5]. This system measures the similarity of two edge images
using a distance transform (DT) methodology [6].

Let us consider the problem of measuring the similarity
between template edge image E; (Figure 2(b)) and a successive
edge image E,.; (Figure 2(c)). We apply the DT to obtain
an image D;;1 (Figure 2(d)), in which each pixel value d;
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(a) Original image
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(c) Next Edge image E | (d) DT image D,,

Figure 2. Chamfer system.

denotes the distance to the nearest feature pixel in E;; 1. The
chamfer distance Depgmfer is defined as

_ L

Dchamfer(EtaEhL]) - |E |
t

Y diii(e), 5)

ecFE;

where |E;| denotes the number of feature points in E; and
e denotes a feature point of E;.

The translation of the object can be estimated by finding
the position of the predicted edge image E;;; that minimizes
D pamfer between E; | and the actual edge image E;1:

Xt+l = arg minDchamfer(Et+laEt+l)' (6)
Ert

Figure 3 illustrates the tracking procedure. First, the optical
flow x/ and its approximate derivative x] are computed from
preceding video frames at r —2, t — 1, and ¢. The object shape
at r+1, denoted by £, 1, is then predicted using x’ and x”. The
object position is determined by locating £, at the position
of minimum chamfer distance to the actual shape at 7+ 1,
E; 1. Finally, the optical flow for the next video frame x;_ | is
recomputed using actual edge images E, and E; .

t+1
rough prediction

find the nearest
Y Chamfer matching

t+1
clarified

Figure 3. Tracking procedure.
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D. Detection of Feature Point Movements

After the object translation X/, ; has been determined, the
movement of the feature points x;, 1 is detected from the actual
object images O(X,) and O(X,41).

The feature point movements x’; ;1 are directly computed
based on the actual edge image at r+ 1 by tracking small
parts of the edge (edgelets). We also employed the chamfer
system to detect the movement of the edgelets. A template
edgelet image /(%) extracted from E; is compared against the
candidate edgelet /(% +x;11) in the next edge image E;;. By
minimizing the chamfer distance between the two, we obtain
the feature point movement (Figure 4):

Ug

. . :
1 '_'u- X X1 +rher [

—

|~

|I| Edgelet image /(x) Z Candidate edgelet /(x +X"_ +7' )
Search for minimum Chamfer distance modifying r’

(a) E, (Edge image at 1) (b) DT image for E,,

1

Figure 4. Edgelet tracker.

)Elt—}—l = al‘% minDchamfer(l(ft)a l<)‘€t +)Elt+1))' (7)
X

As the detected movements x'; . | may contain noise, we ap-
ply a smoothing process by averaging the relative movements
in the neighboring region:

1
Xy = N Z

o
X1 €841

EARE ®)

where N denotes the number of detected movements £/, | in
the neighborhood & of .

III. EVALUATION OF SHAPE PREDICTION PERFORMANCE

The algorithm described above was applied to a video
sequence of a skier, captured by a hand-held camera, and the
effect of camera ego-motion on the shape prediction perfor-
mance was examined. The second-order shape prediction was
compared with linear shape prediction, which is formulated by

Xi+1 = Xt +x't. )

The prediction performance was evaluated by the chamfer
distance between the actual image E,; and the predicted
image E;4.

In the skiing sequence captured by a hand-held camera,
the skier was manually “tracked” so as to remain close to the
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center of the image frame. Thus, the object tends to exhibit
only a small translation in the image frame. However, the
object sometimes suffers from a large degree of translation
due to manual mis-tracking of the camera. Figure 5 shows the
tracking results. The blue pixels represents the predicted object
shape, the green ones represent the translated predicted shape
to determine the object position using (6), and the red ones
represents the reconstructed object shape, as calculated by (1).

Blue: Ground Truth; Green: Linear Prediction;

Red: Second-order Prediction.

Figure 5. Tracking result.

Figure 6 shows the chamfer distance to the ground truth,
calculated over frames 230-300. The results show that the
second-order prediction attained better precision than the linear
prediction in 40 out of 70 frames. The second-order prediction
is superior during frames 244-249, whereas the linear predic-
tion is preferable from frames 238-240.

Figure 7 shows the object translation from frames 244248,
indicating the direction change at around frame 246. Figure 8
shows the object translation from frames 238-240, when the
translation direction did not change.

These results indicate that the second-order shape predic-
tion method works well when the direction in which the object
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Figure 6. Shape precision according to chamfer distance.

Blue: 244; Green: 246; Red: 248.
Yellow arrow: Object translation.

Figure 7. Object translation from frames 244-248.

must be translated changes.

IV. CONCLUSIONS

We have evaluated the performance of a second-order shape
prediction algorithm. Though the performance is generally
similar to that of a linear model, our method outperformed
the linear approach when the direction of object movement
changed. This evaluation result indicates that the proposed
second-order model is robust to objects under high accelera-
tion. In future work, we will integrate the two models, allowing
us to switch which model is applied for prediction, and apply
the method to various types of objects besides skiers.
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Blue: 238; Green: 239; Red: 240.
Yellow arrow: Object translation.

Figure 8. Object translation from frames 238-240.
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