
DAO Dispatcher Pattern:
A Robust Design of the Data Access Layer

Pavel Micka
Faculty of Electrical Engineering

Czech Technical University in Prague
Technicka 2, Prague, Czech Republic

mickapa1@fel.cvut.cz

Zdenek Kouba
Faculty of Electrical Engineering

Czech Technical University in Prague
Technicka 2, Prague, Czech Republic

kouba@fel.cvut.cz

Abstract—Designing modern software has to respect the nec-
essary requirement of easy maintainability of the software in
the future. The structure of the developed software must be
logical and easy to comprehend. This is why software designers
tend to reusing well-established software design patterns. This
paper deals with a novel design pattern aimed at accessing data
typically stored in a database. Data access is a cornerstone of
all modern enterprise computer systems. Hence, it is crucial to
design it with many aspects in mind – testability, reusability,
replaceability and many others. Not respecting these principles
may cause defective architecture of the upper layer of the product,
or even make it impossible to deliver the product in time and/or
in required quality. This paper compares several widely used
data access designs and presents a novel, robust, cheap to adopt
and evolutionary approach convenient for strongly typed object
oriented programming languages. The proposed approach makes
it possible to exchange different data access implementations or
enhance the existing ones even in runtime of the program.

Keywords—data-access; software design; pattern; object-
oriented; architecture; software evolution

I. INTRODUCTION

Software design pattern can be understood as a well-
established and reusable technique of designing certain soft-
ware artifacts that are frequently present in various particular
forms in a number of software projects. This paper introduces
a novel software pattern aimed at accessing database objects.
Its basic idea is motivated by the work of other authors that
is briefly surveyed in section III.

Modern computer systems have to deal with increasing
volume of data. According to the Moore’s law [1], the number
of transistors in integrated circuits doubles approximately
every 18 months and as the computational capacity grows,
grows also the volume of data processed. Hence, the systems
and their storage engines (databases), became also increasingly
complex in past decades.

To deal with the complexity of application (business) logic,
object oriented programming was introduced. Nevertheless, the
data itself is usually stored in conventional relational databases,
which creates impedance mismatch between the data storage
and the program itself. Object-relational technologies and
frameworks, such as Java persistence API [2], were developed
in order to minimize the differences and provide transparent
persistence to the programmer.

Such frameworks help to separate the principal concern of
business objects behavior (business logic) from the infrastruc-
tural concern of how business object’s data is retrieved/stored
from/to the database and make business objects free from this
infrastructural aspect by delegating it to specialized data access
objects (DAO). Thus, DAOs intermediate information ex-
change between business objects and the database. To facilitate
the replacement of the particular mapping technology and to
encapsulate database queries, data access objects layer pattern
was devised. There are many possible implementations that
differ mainly in their reusability, testability, architecture/design
purity and by the means they provide to support software
evolution.

II. BASIC PRINCIPLES

In order to compare various implementations/designs, we
use the following criteria, which describe their conformity with
the object oriented paradigm and applicability in non-trivial
and evolving software systems. Although these principles are
well known within the software engineering community, we
will describe them in next paragraphs in order to avoid possible
misunderstandings stemming from different definitions.

Encapsulation – the data access module should be well
encapsulated to hide implementations details (see the Protected
Variations GRASP pattern). Minor changes in implementations
should never affect interface of DAO module.

Do not repeat yourself (DRY principle) [3] – the code
of the module itself as well as code needed for the usage of
the module should not be duplicated (or even multiplicated).
This constraint reduces the number of scripts needed to test
the application and reduces the possibility of regression defects
caused by modifying only one of the copies of the respective
code.

You aint gonna need it (YAGNI principle) [4] – the
user (programmer) should never be forced to create classes
or structures, which he doesnt need at the moment. Also the
module itself should fit the actual needs of the programmer,
not needs of some feature, which may not be implemented
yet. The YAGNI principle reduces code bloat and hence saves
money, which would be otherwise spent to create, debug and
test superficial features.

Single responsibility principle – every class/structure of
the program should have only one responsibility. Hence, if

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

@Enti ty
@NamedQueries (

{@NamedQuery (
name =Book . Q FIND BY TITLE ,
que ry = ”SELECT b FROM Book b

WHERE b . t i t l e = : t i t l e ”) })
p u b l i c c l a s s Book {<CODE>}

Fig. 1. JPA Named Query code example

properly encapsulated, it can be easily replaced by another
implementation. As the code is focused and has only limited
set of dependencies, classes respecting this principle are easier
to test.

Reusability – the generic DAO functionality should
be reusable, project independent and possibly modularized.
Reusability reduces costs of the module, because the generic
core code is written and tested only once and developers shared
by several projects have to be familiar with only one DAO
implementation.

Testability – the testability criterion states that the DAO
functionality should be controllable by external testing scripts,
its behaviour should be observable and the number of scripts
needed for its testing should be minimized.

III. CONVENTIONAL APPROACHES

A. Generated queries (no DAO)

The most straightforward implementation of data access
is not to use the data access layer at all and hardcode the
functionality into business objects/service layer. As an example
may serve Java Persistence API Named queries[5].

The named queries are Strings written in JPA query lan-
guage, which are passed to the framework as class annotations
(metadata) as shown in Figure 1. The programmer invokes
these queries by their name. The named queries are usually
generated by integrated development environment and do not
posses any means for structural parameterization (i.e. name of
a columns passed as a query parameter).

Thanks to its support by development environments, named
queries are convenient for rapid development of a product
prototype.

Nevertheless, they are enormously inappropriate for usage
in production. The main disadvantage stems from the above-
mentioned fact that their structure cannot be parametrized.
This means that for every entity and its every property a new
named query has to be created, what results in massive code
duplication and additional testing expenses. In addition, all
queries are bound to entities, so they are not reusable at all
in other non-related projects. Such a design violates encap-
sulation and single responsibility principle, because the data-
access technology is invoked directly from business logic. This
makes business logic dependent on the data access technology,
although it should be technology agnostic, and when the data
access implementation is changed, the business logic will have
to be reprogrammed and retested as well.

B. Simple data access object

To encapsulate the technology used, data access objects
may be introduced. In their simplest form [6][7] there is one
DAO for every business object in the domain that provides
all the functionality needed. This design can be seen as
encapsulation of generated queries.

Although it solves the main architectural drawback of
generated queries, there exists one DAO class per each business
object class and it causes immense code duplication, which
makes the objects hard to test and maintain. This is why this
approach is not suitable for practical usage and the scientific
community gone on in investigating more sophisticated meth-
ods.

C. Generic data access object

The above mentioned code duplication can be resolved
using generic data access object (Figure 2) that contains
methods common for all entities, such as findById, remove,
getAll, in their generic form (i.e. property and names are passed
as parameters when necessary).

GenericDAO class is highly cohesive and radically reduces
code redundancy and thus improves testability as opposed to
the generated queries design. When combined with templating
features of the given programming language (e.g. templates,
generics), then the class also provides type safe access to the
underlying repository.

Generic DAO still possess some design drawbacks. First
of all, there is a question, where to place specific DAO
functionality. For example, let us have the query looking
for all books that are currently in the borrowed state. One
option might be to place all specific queries into GenericDAO
class, which will result in creating poorly cohesive class with
responsibilities over several entities. The second solution might
be to create a new specific DAO (e.g. BookDAO) for all
persistent business objects, when needed. Although this second
option is better, it still does not satisfy another requirement: the
data access should support software evolution. Let us suppose
that software, which has been developed for a long time, uses
GenericDAO in conjunction with specific DAOs. Then a new
requirement appears, which implies a specific functionality
of getById method for the Book entity. Again there are two
options, how to realize the new behaviour. The first one
requires sub-classing of the GenericDAO and overriding the
getById method so that it behaves differently for Book entity
(testing the type of the entity by instanceof operator). The

Fig. 2. UML Class diagram of GenericDAO class

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Fig. 3. UML Class diagram of Generic superclass DAO

second option is to put this modified method into specific
DAO. While the first approach will later or soon result in
spaghetti code — code with enormously tangled structure,
usually massively using branching and loop statements —
when more modifying functionality will be added, the second
approach requires rewriting all calls of the respective method
of GenericDAO to specific DAOs one. Thus, none of these two
options is satisfactory.

D. Generic superclass

To make possible the code evolution, GenericDAO (see
Figure 3) can be modelled as a common (abstract) superclass
of all DAO objects. Rosko [8] presents a very similar approach,
but he isusing factory to instantiate particular DAOs. Because
there will be a mandatory implementation of a specific DAO
for every entity, the situation described above will never
happen. Software evolution is well supported, because the pro-
grammer can consistently override the generic implementation
in the respective specific subclass, easily add new specific data
access methods and last but not least, the implementation can
be easily protected by interfaces and reused in other projects.

Although the generic superclass DAO solves most of the
design flaws of the previously discussed implementations, it
creates a new one. According to our experience with develop-
ment of enterprise systems, for the most of entities the generic
method implementation is sufficient and also many entities do
not require any additional specific methods. And as the specific
DAO classes are mandatory, the design results in many classes
with empty specification, which is prepared only for possible
future changes. This is premature generality, which strongly
violates the YAGNI principle.

IV. DAO DISPATCHER PATTERN

To overcome violation of YAGNI, we introduce a new DAO
Dispatcher pattern, which combines benefits of both simple
Generic DAO and Generic superclass DAO.

A. The overall structure

The pattern (see Figure 5) uses internally Generic DAO
class mentioned in the previous chapter to handle all generic
requests at one place. If necessary, additional data access
methods can be defined in specific DAO classes derived w.r.t.

inheritance from the more generic one. If present, the specific
data access object mandatorily implements all generic meth-
ods, forwarding the call to the respective method of the generic
DAO class by default. The signatures of the corresponding
methods of specific and generic DAOs are identical except
the following point. As the generic DAO class processes data
objects of various types, its methods have to have the class
parameter that determines the exact type of the processed
data. This class parameter is not necessary in case of specific
DAO classes. In this case, the type of processed data is
implicitly determined by the type of the specific DAO class
itself. As a common facade for all generic calls, a new class
GenericDAODispatcher was introduced.

B. Registry/DAO Dispatcher class

The registry object is the core of this pattern. It implements
the GenericDAO interface and all generic calls should be
always made though the registry object. When no specific data
access object is registered, it simply delegates the call to the
GenericDAO, otherwise the DAO specific to the given class is
called.

This mediator makes it possible to introduce the specific
functionality without any changes to the code (only the project
configuration) just in time, or even to hotswap DAO implemen-
tations at runtime.

C. Abstract specific DAO

The abstract specific DAO is a common ancessor of all
specific DAO implementations. As it was stated in the previous
chapter, usually, the generic functionality is sufficient for most
use cases. This is why the default functionality of the specific
DAO just routes the query to the generic DAO implementation.

When need for a new DAO functionality occurs, the
programmer subclasses the abstract specific DAO and creates
only the new method — writes only what he needs. The
modification of the generic behaviour is analogous and requires
only overriding of the respective method.

D. User interaction

From the user’s point of view, there are four major types
of interaction with the framework. The interactions are shown
as UML transactional diagram in Figure 4.

The first interaction type depicts a call of getAll method
on a specific DAO type – BookDAO. As it was already
stated, the programmer typically does not need to override the
existing generic functionality, but wants to extend it. Hence,
when the dispatcher is called and the call is delegated to the
BookDAO, it only propagates the call further to the generic
DAO implementation.

On the contrary, when the getAll functionality is overriden
in the specific DAO, than only the delegation from dispatcher
is made and the call is executed by the specific method itself
(second interaction type).

When the programmer does not specify any specific DAO
for the Book entity, than the dispatcher calls directly the Gener-
icDAO in order to provide the default common functionality.
This interaction type, third in the image, is predominant for

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Fig. 4. UML diagram of DAO Dispatcher pattern with Hibernate (JPA) data access implementation

new or not fully fledged applications, where data handling does
not have any exceptions from the general flow.

The fourth interaction shows direct invocation of a method
specific to the given entity. This method cannot be called
through the dispatcher, because the generic interface does
not contain its contract and there is naturally no generic
implementation in the GenericDAO class. For this reasons the
specific functionality calls are always made directly.

E. Advantages of the pattern

The above described structure of the pattern in conjunction
with the designed interaction flow provide significant benefits
for the end programmer (programmer which creates a system

with DAO Dispatcher pattern already implemented as a sub-
module).

Namely the programmer does not need to write and test
the generic DAO functionality, which is already embedded in
the submodule.

Also he does not need to prematurely determine, whether
the given entity will need any special handling when being
stored or retrieved from the database. The framework allows
the programmer to make this decision just in time – when it
is really needed.

Last but not least, the pattern structure is highly dy-
namic and flexible. The overriding functionality can be easily
plugged-in using configuration of the application, because this
change does not require any modifications of the source code

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

of the project itself. The behaviour of the application can be
modified/extended even at runtime.

V. RELATED PATTERNS

Our novel DAO Dispatcher design pattern uses and extends
several commonly known patterns and principles already de-
scribed by other works. To allow the reader to understand our
approach in detail, this section lists these patterns/principals
and depicts their usage, similarities and how they relate to
DAO Dispatcher classes.

Singleton [9] – all presented classes in the DAO Dispatcher
pattern are singletons by their nature. It means that there exists
at most one instance of each of them. The reason is that they
are either stateless or their state has the application global
scope. An example is the Dispatcher class fulfilling the role
of a registry in terms of the Registry pattern described bellow.

Ports and adapters (Hexagonal architecture) [10] – In
a nutshell, the hexagonal architecture dictates a design of a
component in such a way that it communicates with external
entities through an API consisting of technology specific ports
that are easily adaptable. This makes the core of the component
independent on the specific technologies used by the given
project and thus the component core is easily portable to other
environments.

In particular, DAO Dispatcher pattern as a whole can be
described as a single module with clearly defined boundary
(interface/ports), which can be accessed through technology
specific adapters, when needed. The Dispatcher pattern API
also provides means for setting the implementation of the data
source (eg. JPA EntityManagerFactory), which can be easily
exchanged by a mock implementation for testing purposes.

For example: while the core of the module is stable and
provides means for direct (binary) calls, in some cases it might
be useful to create a serializing adapter, which will transform
the input/output objects into JSON, XML or to any other
transport format and back. Because the adapting functionality
is located externally from the core, it is still possible to test it
directly using ordinary unit tests.

Registry – The dispatcher class is an exact realization of
the registry pattern as described by Martin Fowler in [11].
The fundamental principle of this pattern is an associative
container enabling service providers to register their services
in this container using an (typically unique) identifier. Later
on, the clients may look up and use the registered services
using these identifiers.

Such an architecture is very flexible. From the perspective
of the proposed DAO Dispatcher pattern, it is important that
the registry allows for on-the-fly inferencing of the appropriate
Specific DAO implementation.

For example: if the DAO object for the Novel entity is
requested but not available then the more generic Book DAO
object shall be used rather than falling back to the purely
generic DAO.

Inversion of Control [12] – In conventional programming,
the programmer defines the control flow from the beginning
to the end himself. However, if he applies a generic frame-
work to the specific problem domain, he usually designs

and implements a plugin to that framework. In such a case,
he cannot influence the control flow that is determined by
the framework itself. Programmer only fills in additional or
overriding functionality using pre-prepared join points. In other
words, the code of the programmer has the role of a library,
while the control flow (in our case of the query evaluation call)
is controlled by the framework (DAO Dispatcher pattern).

VI. APPLICATION

In typical software systems, the maintenance and enhance-
ment expenses outweigh the costs of development [13], hence
it is crucial to use sufficiently robust components during
its construction. The pattern is in particular convenient for
applications in enterprise systems, which usually evolve con-
tinuously and require means for specialization of generic use
cases (and respective data access procedures).

Since, as was already described, the DAO layer forms a
well encapsulated module, it can be easily interchanged with
another implementation. This might be very useful property,
when developing a generic system, which will be used by
many different customers, each of whom can use completely
different data source.

VII. FUTURE WORK

Although the pattern is intended to be used in strongly
typed languages, some dynamic properties might be also
employed in future. Mainly, the DAO Dispatcher (registry)
class code is in its static form highly duplicate, because each
call of the registry only has to delegate the functionality to the
appropriate implementation. However, this duplication is well
hidden from the user of the module, it would be convenient to
use reflection abilities of the host language in order to simplify
the registry implementation and reduce the number of lines of
code needed to extend the core module functionality.

The extensibility of the core of the module can be also
improved by application of the visitor pattern [9]. Each visitor,
accepted by the registry, will provide new generic functionality
of the core module and, when needed, also overriding func-
tionalities for specific DAO implementations.

VIII. CONCLUSION

This paper proposed a novel approach to robust data
access design, which overcomes imperfections of common
implementations. Mainly it is well testable, reusable, honoures
the single responsibility and YAGNI principles and last but not
least it supports software evolution.

Because the main logic of the module is well hidden behind
a facade, the programmer working with it can be familiar
only with the general principle, generic DAO interface and the
Abstract specific DAO class. This makes the implementation
easy to use and cheap to adopt.

However the reference implementation written in Java,
using Spring framework [14] for dependency injection, it
provides sufficient means for porting the code to other pro-
gramming languages and clearly proves that the pattern can be
easily implemented in strongly typed language, some language
specific improvements might be also employed. The reference
implementation can be found at https://kbss.felk.cvut.cz/web/
portal/dao-dispatcher.

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

https://kbss.felk.cvut.cz/web/portal/dao-dispatcher
https://kbss.felk.cvut.cz/web/portal/dao-dispatcher

Fig. 5. UML Class diagram of DAO Dispatcher pattern with Hibernate (JPA) data access implementation

ACKNOWLEDGMENT

This work has been supported by the grant by the
grant of the Czech Technical University in Prague No.
SGS13/204/OHK3/3T/13 — Effective solving of engineering
problems using semantic technologies.

REFERENCES

[1] G. Moore, Cramming More Components Onto Integrated Circuits.
McGraw-Hill, 1965.

[2] Oracle. (2013) Java persistence api. Retrieved: 12/03/2013.
[Online]. Available: http://www.oracle.com/technetwork/java/javaee/
tech/persistence-jsp-140049.html

[3] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman
to Master. Pearson Education, 1999.

[4] C. Zannier, H. Erdogmus, and L. Lindstrom, Extreme Programming
and Agile Methods - XP/Agile Universe 2004, ser. 4th Conference on
Extreme Programming and Agile Methods, Calgary, Canada, August
15-18, 2004. Proceedings. Springer, 2004.

[5] Oracle. (2013) Oracle fusion middleware kodo developers guide
for jpa/jdo, chapter 10. jpa query. Retrieved: 12/03/2013.
[Online]. Available: http://docs.oracle.com/html/E24396 01/ejb3
overview query.html#ejb3 overview query named

[6] M. Berger. (2005) Data access object pattern. Retrieved: 11/03/2013.
[Online]. Available: http://max.berger.name/research/silenus/print/dao.
pdf

[7] D. Matic, D. Burotac, and H. Kegalj, “Data access architecture
in object oriented applications using design patterns,” Proceedings
of the 12th IEEE Mediterranean Electrotechnical Conference, 2004.
MELECON 2004., vol. 2, pp. 595–598, 2004. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1347000

[8] Z. Rosko and M. Konecki, “Dynamic data access object design
pattern,” Information and intelligent systems CECIIS 2008 : 19th
International conference, 2008. [Online]. Available: http://www.ceciis.
foi.hr/app/index.php/ceciis/2008/paper/view/41

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software, ser. Addison-Wesley
Professional Computing Series. Pearson Education, 2004.

[10] A. Cockburn. (2005) The pattern: Ports and adapters (”object
structural”). Retrieved: 11/03/2013. [Online]. Available: http://alistair.
cockburn.us/Hexagonal+architecture

[11] M. Fowler, Patterns of Enterprise Application Architecture, ser. The
Addison-Wesley Signature Series. Addison-Wesley, 2003.

[12] ——. (2005) Inversionofcontrol. Retrieved: 11/03/2013. [Online].
Available: http://martinfowler.com/bliki/InversionOfControl.html

[13] R. L. Glass, Ed., Frequently Forgotten Fundamental Facts about Soft-
ware Engineering, ser. IEEE Software, IEEE, May/June 2001.

[14] SpringSource. (2013) Spring framework. Retrieved: 12/03/2013.
[Online]. Available: http://www.springsource.org/spring-framework

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://docs.oracle.com/html/E24396_01/ejb3_overview_query.html#ejb3_overview_query_named
http://docs.oracle.com/html/E24396_01/ejb3_overview_query.html#ejb3_overview_query_named
http://max.berger.name/research/silenus/print/dao.pdf
http://max.berger.name/research/silenus/print/dao.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1347000
http://www.ceciis.foi.hr/app/index.php/ceciis/2008/paper/view/41
http://www.ceciis.foi.hr/app/index.php/ceciis/2008/paper/view/41
http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture
http://martinfowler.com/bliki/InversionOfControl.html
http://www.springsource.org/spring-framework

	Introduction
	Basic principles
	Conventional approaches
	Generated queries (no DAO)
	Simple data access object
	Generic data access object
	Generic superclass

	DAO Dispatcher pattern
	The overall structure
	Registry/DAO Dispatcher class
	Abstract specific DAO
	User interaction
	Advantages of the pattern

	Related patterns
	Application
	Future work
	Conclusion
	References

