
Patterns Combining Reliability and Security

Ingrid A. Buckley, Eduardo B. Fernandez, and Maria M. Larrondo-Petrie
Dept. of Computer & Electrical Engineering and Computer Science

Florida Atlantic University
Boca Raton, USA

ibuckley@fau.edu, ed@cse.fau.edu, petrie@fau.edu

Abstract—We are developing a methodology to combine security
and reliability. One aspect of this fusion implies developing
patterns that combine both objectives. The Secure Reliability
(SecRel) and Reliable Security (RelSec) are hybrid patterns that
combine security and reliability. The SecRel pattern applies
security to control the functions of a reliable system, while the
RelSec pattern applies reliability to the functions that provide
security. We show how these patterns relate to our methodology,
and in which architectural levels they could be used.

 Keywords-software lifecycle; software patterns; reliability;
reliability patterns; security; security patterns.

I. INTRODUCTION

 Reliability is a key system characteristic that is an
increasing concern for current systems. Greater reliability is
necessary due to the new ways in which services are delivered
to the public. Services are used by many industries, including
health care, government, telecommunications, tools, and
products. The lack of reliability in many systems has
encouraged research efforts to find ways to improve this
situation. Applications have become very complex and their
reliability is a current concern.

 Typically, reliability is provided through redundancy,
checking and monitoring, aspects which are usually added
after a system is built. A good amount of work, e.g. [11, 12,
14], has been done to include reliability in systems. There is
also a large amount of work on security patterns [17].
Similarly as we did for security [8], we propose here adding
reliability throughout the software development life cycle. In
our approach, we start by identifying the possible failures in a
system. By analyzing UML activity diagrams for all use cases
and considering possible failures in each activity, we can
enumerate possible service failures in applications [5]. Once
failures are identified, we apply appropriate policies, realized
as patterns, which will stop or mitigate these failures. In some
critical parts of a system we also want to be able to provide
security and reliability at the same time.

 We can combine security and reliability using patterns. A
pattern is an encapsulated solution to a recurrent problem in a
given context. Design patterns [10] embody the experience
and knowledge of many designers and when properly
catalogued, they provide a repository of solutions for useful
problems. Initially used for improving code, patterns are
becoming more and more used to build secure and reliable

systems [3, 6]. We present here two of these patterns. The
Secure Reliability (SecRel) pattern applies security to a
reliable system, while the Reliable Security (RelSec) pattern
applies reliability to the functions that provide security in a
secure system.

 Section 2 discusses an approach for a secure and reliable
lifecycle considering space and time aspects, including a
metamodel for reliability requirements, Sections 3 and 4
present the RelSec and SecRel patterns, respectively. Section 5
provides some conclusions.

II. RELIABILITY IN SPACE AND TIME

 A good way to define precise relationships between
concepts in software development is to express them in
metamodels. Our approach involves enumeration of failures
and their origins and finds policies and patterns to handle
them, so we can express their relationship as shown in Figure
1. A Fault manifests itself as an Error. If the error is not
contained, it can manifest itself into a Failure, which indicates
that the system is not following its specifications [1]. A Policy
can avoid or handle a failure. A Pattern realizes the policy
that can handle the fault; some examples of reliability patterns
are given in [3, 4]. If we can enumerate all faults and have
appropriate patterns to handle them, we can build reliable
systems. We can define also patterns needed to comply with
regulations.

Figure 1. A metamodel for reliability concepts

Failure Policy

Error

Fault

Reliability
Pattern

isHandledBy

manifestsAs

manifestsAs

* *

*

*

*

*

*

*

realizedBy

144

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

 The development of software applications starts from the
requirements expressed normally as use cases. The use cases
can be converted into a conceptual or analysis model. Analysis
is a fundamental stage since the conceptual model can be
shown to satisfy the requirements and becomes the skeleton on
which the entire system can be built.

 Reliability aspects in a computer system are expressed
differently at different architectural layers (levels) and stages
of the software development process. Figure 2 shows where
we need to apply reliability along the stages of the system
lifecycle and the architectural levels. An appropriate degree of
reliability is required in each tier of the computer system
layers and in each stage; also the expression of reliability
varies. An important point illustrated in this diagram is the fact
that the requirements must be carried over along time and
along space:

1. User Interface – This is the highest level and is the
user’s point of contact for with the system. Usability
is an important aspect for reliability and should be
reflected in the interfaces.

2. Applications – The application tier of the system
consists of services and programs that carry out
useful operations. This tier invokes functions that are
requested by the user, and should always be available
when needed.

3. Middleware – Manages the interactions between the
applications, DBMS, OS, and users of a system.

4. Database Management System (DBMS) – this tier is
where data is stored. Failures may affect most of the
applications.

5. Operating System (OS) – This level manages and
synchronizes all the functions and resources within
the system. Its reliability is fundamental because
failures here affect all the applications

6. Data Communication – This is part of the OS and
manages how information is passed throughout the
system.

7. Hardware - This is the lowest level of the
architecture, where instructions are executed. Its
failures affect the whole system.

 The requirements define the degree of reliability that the
application needs. In the analysis stage, given the reliability
requirements, we match the identified failures to the set of
reliability mechanisms needed to stop these failures identified.
If the failure is hardware based then redundancy and diversity
are appropriate. If the failure is based on software, we need
diversity or other approaches.

 The design stage is governed by the reliability mechanisms
identified in the analysis stage, which are selected to prevent
failures. This may have two or more levels to describe
implementation-oriented features. Web services and clouds are
typical distributed architectures used in practice.

 The implementation stage follows directly after the design
stage; here reliability is realized in the form of code and COTS
components. The whole process is iterative where some stages
or parts may need to be redone. Our idea is to combine
security and reliability aspects in each stage and each level.
We realize reliability mechanisms by applying patterns and a
catalog of them is needed to assist the architects and designers
when building the system. We have produced some reliability
patterns [3, 4]; here we add two patterns that combine
reliability and security.

Cloud

 --
--
-

 Web
Services

Figure 2. Reliability in Space and Time

III. THE SECURE RELIABILITY PATTERN

Intent
This pattern intends to control the use of reliable services or
services that have a direct impact on system reliability. We
can have services implemented using different reliability
mechanisms but users may have access to only some of them.
The misuse of some services may have a strong effect on
system reliability.

Example
Consider a SCADA system which consists of field units, a
central controller and communications networks. The field
units are controlled by the central controller which is usually
connected to corporate networks and or the Internet. Attackers
may be able to input commands to the field units resulting in
damage or disruption.

145

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Context
Critical systems or applications that need a high degree of
security and reliability to operate successfully and where we
have services implemented with different degrees of reliability
according to their criticality.

Problem
We can have services implemented using different reliability
mechanisms but users may have access to only some of them.
The misuse of some services may have a strong effect on
system reliability. How do we restrict the use of the system
services that affect reliability? The solution to this problem is
affected by the following forces:

Reliability:

� We need to control the level of reliability of the
system.

� We can have different implementations of some
services according to their criticality.

� Some services affect the system reliability if
improperly used; that is, security attacks can affect
the reliability of the system.

� The total overhead should be reasonable.

Security:
� The system requires a given level of security. Errors

can affect the security of the system.

Solution
Separate those services which could affect the reliability of the
system and apply to them Role-Based Access Control [16] so
that only authorized roles can use them; apply also a least-
privilege policy [6]. This protects the confidentiality and
integrity of the service. The structure of this pattern is
illustrated in Figure 1.

Figure 3. Class Diagram for the Secure Reliability Pattern

Structure
In Figure 3, every user is a member of a Role, and each Role
has specific Rights associated with it. The Service entity
implements a Strategy pattern [10], which chooses a
Software or Hardware Service, depending on the needs of
the application. The Reference Monitor enforces the
authorized use of the service.

Dynamics
One of the dynamic aspects of the SecRel pattern is described
using a sequence diagram for the use case “User sends a
request for a service”, shown in Figure 4.

UC: User sends a request for a service.
Summary: A user requests a reliability-sensitive service. The
request is validated by a Reference Monitor.
Actors: User
Description:

1. A user requests a service with a given level of
reliability or reliability-sensitive.

2. The service invokes a Reference Monitor to check if
the user is authorized.

3. If the user is authorized, the request is passed to the
service. If not authorized, the request is rejected with
a violation message to the user.

4. The requested service processes the request.
Post condition:

 The request has been processed or rejected.

Figure 4. Sequence Diagram for the UC “User requests a service”

 Implementation

To implement the Secure Reliability pattern the following is
required:

1. We must have a set of reliable mechanisms or a set of
reliability-sensitive services.

2. A reference monitor system is required to check the
rights associated with each role before a service is
used.

3. The reference monitor or an authorization service
must perform authentication before a user is
authorized

146

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

4. If the user is remote, a secure channel can be
employed to ensure that the request of a user is
passed securely so as to protect the request in transit.

 Consequences

The SecRel pattern presents the following advantages:
� We can control the confidentiality and integrity of

reliability-sensitive services.
� We can control the use of different degrees of service

reliability by selecting different reliability
mechanisms.

� The overhead of access control is small.

The pattern also has some possible liabilities:

� The authentication and authorization of users take
time.

� Services may be replicated to increase their
reliability; however this can increase the system
overhead in maintaining them.

 Known Uses
� Motorola’s Canopy Platform is a wireless broadband

system which enables extending broadband networks
to deploy data, voice, and video applications [13].
This product uses part of the components used in the
SecRelc pattern.

� Boeing’s P-8 is a military derivative of the Boeing
Next-Generation 737-800. It is an advanced anti-
submarine and anti-surface warfare aircraft [2]. P-8
uses part of the SecRel pattern.

 Related patterns
� Various reliability and fault tolerance patterns which

include the Active Replication [2], TMR (Triple
Modular Redundancy), and NVP (N-Version
programming patterns.

� This pattern can be seen as a variation of the Role-
Based Access Control pattern of [17].

� We need Authentication before we can apply
Authorization [17].

IV. THE RELIABLE SECURITY PATTERN

Intent
This pattern intends to perform reliable authorization
enforcement by applying reliability mechanisms to the
Reference Monitor and to the Authorization rules.

Example
Consider a SCADA system which consists of field units, a
central controller and communications networks. The field
units are controlled by the central controller which is usually
connected to corporate networks and or the Internet. Because
operations can be carried out over a network, this raises a

security concern. Also, the field units are usually in separate
geographical locations from the central controller, therefore
extreme weather or tampering can affect them. Usually it is
also difficult to access them physically to repair damages,
which raises a general reliability concern. If an error occurs in
the security system, attackers can perform malicious actions
that can disrupt the operation of the system.

Context
Critical systems or applications that need a high degree of
security and reliability to operate successfully and where we
have services implemented with different degrees of reliability
according to their criticality.

Problem
How can we ensure that authorization is always performed
correctly in the presence of errors? The solution to this
problem is affected by the following forces:

Security:

� The system should always perform authorization
correctly in the presence of errors. Otherwise, we will
have security violations.

� The total overhead of the reliability mechanisms
should be reasonable.

Reliability:

• Security services should define and enforce security
constraints in a reliable way.

Solution
Apply reliability mechanisms to the Reference Monitor and to
the Authorization rules.

Figure 5. Class Diagram for the Reliable Security Pattern

Structure
The structure of this pattern is illustrated in Figure 5. All user
Requests are evaluated by the Reference Monitor, which has

147

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

access to the Authorization Rule Set. When the user sends a
request, the Reference Monitor intercepts it and checks the
rights (rules) associated with the request.

The Reliable Reference Monitor incorporates standard
reliability mechanisms [3], The Authorization Rule Set also
includes a reliability mechanism. The Response defines the
decision from the Reference Monitor and must match the
Request.

Dynamics
Figure 6 shows a sequence diagram for the use case “User
requests a service”.

UC: User requests a service.
Summary: A user sends a request, and the request is validated
by a Reference Monitor.
Actors: User
Description:

1. The user requests some service.
2. If the user is authorized his request is processed.
3. A response is sent in response to the user’s request.

Post condition:
 The request has been approved or rejected.

Figure 6. Sequence diagram for the UC “User requests a service”

Implementation
To implement the Reliable Security pattern the following is
required:

1. We need a variety of reliability mechanisms that can
be applied to the security services, e.g., those
described in [3, 4].

2. The reference monitor must perform authentication
before a user can send a request.

3. If the user is remote, a secure channel can be
employed to ensure that the request of a user is
passed securely so as to protect the request in transit.

Consequences
The RelSec pattern presents the following advantages:

� We can implement different degrees of reliability for
the security services by selecting different
mechanisms.

� Security checks will be reliable because all security
components are reliable.

� The overhead of access control can be small because
we can use reliability mechanisms that are not very
complex and can be controlled to have small
overhead.

The pattern also has some possible liabilities:

� The reliability mechanisms add some overhead.
� The system is more complex compared to a system

without reliability mechanisms.

Known Uses
� Trumba Connect is web-hosted active event

publishing solution that provides organizations with a
two-way communication vehicle between events
published on their websites and the personal
calendaring systems used by their site visitors [19]. It
uses part of the RelSec pattern.

Related patterns
� The Authentication pattern provides facilities for

authenticating a user in a system [17].
� The Authorization pattern provides a way to define

authorization for the users to the resources of a
system [17].

� The Reference Monitor pattern checks if the process
has the rights to access the object [6, 17].

� The Strategy pattern can be used to select the most
suitable options to apply reliability [10].

V. DISCUSSION

 The use of patterns is still not widespread in industrial
institutions. Design patterns are used in large companies but
many smaller companies only do coding, they don’t even use
models. Our work tries to encourage the use of models to build
complex systems; building these systems without models will
result in systems which are faulty and insecure. Models allow
catching errors early in the lifecycle, which results in
development savings [15]. Security patterns have reached a
mature level and are starting to be used in industry for secure
software development. Reliability patterns are less developed
and no catalogs exist yet. Both types of patterns can help
developers who are not security or reliability experts to build
better systems by providing them with packaged proven
solutions. Combining security and reliability in the form of
patterns makes their work even easier for some applications
where we need services with these two aspects. However,
isolated patterns are not useful, we need pattern classification
approaches and complete software development
methodologies. The use of patterns fits well with Model-
Driven approaches [14]; we can define reliable and secure
services in domain models that can be used as starting points
for critical applications [9].

148

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

VI. RELATED WORK

 There is a significant amount of work on security patterns,
including catalogs of patterns [17], surveys [21], and analysis
of their uses and possibilities, e.g., [20]. The same is not true
for reliability patterns; only a few patterns have appeared, e.g.,
[3, 16]. Security patterns have shown to be quite useful for
designing secure systems [8] and the same can be expected for
reliability patterns. Before that happens, we need a good and
complete catalog of reliability patterns. As far as we know,
nobody has tried to combine security and reliability patterns,
although methodologies trying to combine these two aspects
already exist, e.g., [14]. Some work tries to build directly
reliable architectures by applying the patterns through tactics
[11]. Another approach tries to insert the patterns in specific
points in the architecture [18]. We believe that a systematic
methodology, considering all the stages of the lifecycle is
necessary. Reliability, similarly to security, must be
incorporated in all the stages of the software lifecycle, adding
these features in the code has shown to be ineffective.
Patterns like the ones presented here combine aspects of
security and reliability and can be used in systems that require
a high level of security or reliability at least in some services.

VII. CONCLUSIONS

 There are situations, mostly in critical systems, where the
need to apply security to reliable systems and where the
authorization systems should not fail. The two patterns
presented here attempt to combine aspects of reliability and
security to allow the implementation of systems that require
very high levels of both features. The patterns are a part of our
methodology to build critical systems but also have
independent value.

 Patterns provide a clear way for inexperienced designers to
add reliability or security into their designs, but they require a
good catalog of patterns that can fit all the system needs; these
two patterns can be part of such a catalog. We already have a
fairly complete catalog of security patterns [7, 16], so we need
to find more reliability patterns as well as combined patterns
as those shown here. The patterns presented here can be used
in the analysis stage but they need to be extended to reflect the
environment where they will be used; e.g., reliability in web
services [4]. These patterns also are relevant to any level of the
architecture, implemented in the appropriate technology; for
example, if we determine in the use cases if a particular
service is highly critical, we can add one of these patterns to
the conceptual model of the application; the reliable model can
then be reflected to the database or operating system levels. If
web services are used for distribution, the patterns can define
reliable or secure architectures for some web services.

ACKNOWLEDGMENTS

 The referees provided valuable suggestions that helped
improve this paper.

REFERENCES
[1] A. Avizienis, J. C. Laprie, and B. Randell, “Fundamental

concepts of dependability”, UCLA CSD Report No. 010028.
[2] Boeing, “P8”, http://www.boeing.com/defense-space/military/p8

/index.html, 2010. (Last accessed: August 29, 2011)
[3] I. A. Buckley and E.B. Fernandez, "Three patterns for fault

tolerance" , Procs. of the OOPSLA MiniPLoP, October 26,
2009. http://www.refactory.com/miniploppapers/FTPatts.pdf.
(Last accessed: August 29, 2011)

[4] I. A. Buckley, E.B. Fernandez, G. Rossi, and M. Sadjadi, "Web
services reliability patterns", short paper in the 21st International
Conference on Software Engineering and Knowledge
Engineering (SEKE'2009), Boston, July 1-3, 2009, pp. 4-9.

[5] I. A. Buckley and E.B. Fernandez, “Enumerating failures to
build reliable systems”, submitted for publication.

[6] E. B. Fernandez, S. Mujica, and F. Valenzuela, "Two security
patterns: Least Privilege and Secure Logger/Auditor.", Procs. of
Asian PLoP 2011. http://patterns-wg.fuka.info.waseda.ac.jp/
asianplop/program.html#papers. (last accessed August 30, 2011)

[7] E. B. Fernandez, “Patterns for operating systems access
control”, Procs. of PLoP 2002, http://www.hillside.net/plop/
plop2002/. (Last accessed: August 29, 2011)

[8] E. B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M.
VanHilst, "A methodology to develop secure systems using
patterns ", Chapter 5 in "Integrating security and software
engineering: Advances and future vision", H. Mouratidis and P.
Giorgini (Eds.), IDEA Press, 2006, pp. 107-126.

[9] E. B. Fernandez and S. Mujica, “Model-based development of
security requirements”, accepted for the CLEI (Latin-American
Center for Informatics Studies) Journal.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software, Boston,
Mass:Addison-Wesley, 1994.

[11] N. Harrison, P. Avgeriou, and U. Zdun, “On the impact of fault
tolerance tactics on architecture”, ACM SERENE 2010,
London, UK, April 13-16, 2010, pp. 9-18, doi:
10.1145/1479772.1479775.

[12] M. R. Lyu, “An integrated approach to achieving high software
reliability”, Procs. IEEE Aerospace Conference, Aspen,
Colorado, March 21-28, 1998, vol. 4, pp. 123-136, doi:
10.1109/AERO.1998.682162.

[13] Motorola Inc, “Motorola’s Canopytm platform”
http://www.ptsupply.com/pdf/motorola_canopy.pdf, 2004. (Last
accessed: August 29, 2011)

[14] S. Mustafiz, X. Sun, and J. Kienzle, “Model-driven assessment
of system dependability”, Software and Systems Modelling, vol.
7, 2008, pp. 487-502, doi: 10.1007/s10270-008-0084-1.

[15] OWASP, “OWASP Risk Rating Methodology”,
https://www.owasp.org/index.php/OWASP_Risk_Rating_Metho
dology, 2010. (Last accessed: August 31, 2011)

[16] T. Saridakis, “A System of Patterns for Fault Tolerance”, Procs.
of EuroPLoP, 2002, pp. 535–582.

[17] M. Schumacher, E. B. Fernandez, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns: Integrating
security and systems engineering, Wiley Series on Software
Design Patterns, Wiley, 2006.

[18] M. Tichy, “Pattern Based Synthesis of Fault Tolerant Embedded
Systems”, Procs. of the Doctoral Symposium of the Fourteenth
ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), Portland, Oregon, USA, pp. 13-18. ACM
Press, November 2006.

[19] Trumba Corporation, “What features does Trumba Connect
offer?”, http://www.trumba.com/connect/ knowledgecenter/pdf/
Features-list_SS-006.pdf, 2007.(Last accessed: August 29, 2011)

[20] R.Villarroel, E. Fernández-Medina, M. Piattini, “Secure
information systems development-A survey and comparison”,

149

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Computers & Security, vol. 24, No 4, pp. 308-321, doi:
10.1016/j.cose.2004.09.011.

[21] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on
security patterns”, Progress in Informatics, vol. 5, pp. 35-47,
doi:10.2201/NiiPi.2008.5.5.

150

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

