PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

A Formalization of UML AD Refinement Patterns in Event B

Ahlem Ben Younes

Research Unit of Technologies of Information and
Communication (UTIC)- ESSTT
Tunisia
Ahlem.benyounes@fst.rnu.tn

Abstract— In this paper, we propose a specification and
verification technique using the combination UML Adivity
Diagrams (AD) and Event B to both improve graphical
representation of the workflow application structure and its
functions. Its required properties are also verifiel. The
workflow is initially expressed incrementally graphically with
UML AD, then translated into Event B and verified using the
B powerful support tools. The Event-B expression othe UML
AD model allows us to give it a precise semanticé/e propose
a workflow applications constructive approach in wich Event
B models are built incrementally from UML AD models
driven by UML AD refinement patterns. The use of tre B
formal method and its refinement mechanism allows he
verification of the correction of the UML AD refinement
patterns.

Keywor ds-Progressive Development; Workflow Applications;
Specification; Refinement UML AD; Patterns; Event-B; Formal
Verification.

l. INTRODUCTION

The Workflow Applications (WA) are characterized &y
high complexity. Increasingly, they became omnipngésn
the critical calculation domain (natural or indigdtr
disasters) and they have to obey to the realiabity safety

Leila Jemni Ben Ayed

Research Unit of Technologies of Information and
Communication (UTIC)- ESSTT
Tunisia
Leila.jemni@fsegt.rnu.tn

different levels of abstraction. The system under
development is first described by a specificatibra avery
high level of abstraction. A series of iterativdimements
may then be performed with the aim of producing a
specification, consistent with the initial one, which the
behavior is fully specified and all appropriate ides
decisions have been made. Stepwise software dewelup
can be fully exploited only if the language usedieate the
specifications is equipped with formal refinemerataminery,
making it possible to prove that a given specif@als: is a
refinement of another specification.S

The Unified Modeling Language Activity Diagrams
(UML AD) [3] are considered as an Object Management
Group (OMG) [15] standard notation in the area ofkflow
applications modelling. The idea of one standargylage
for modelling provides many advantages to software
development, such as simplified training and udifie
communication between development teams.

In our work, an UML activity diagrams approach lthse
on stepwise refinement technique for the workflow
specification is proposed. The refined workflowpiesented
in UML using the hierarchical capabilities of theMU
Activity Diagram notation [4][5]. Workflow’'s hierahy
comes from the hierarchy of processes goals (Ta§lgals
or activities of workflow applications are orgardzén a

requirements. Thus, the need of an adequate seftwapierarchy obtained from the Sequence/And/Or refieemof

specification technique and a suitable developmmthod is
increased. The used specification formalisms neede
comprehensive, expressive, and precise.

A workflow is a set of activities (tasks/ procesist are
ordered according to a set of procedural rulesctieze a
result or a goal. A workflow model (workflow spdcéition)
is the definition of a workflow. A workflow is eidr an
atomic task, known as elementary task/activity osud-
workflow (nesting), a composite activity/task.

Traditional workflow models have obvious shortcogsn
in describing complex workflows. Such complexitydse
not only to the hierarchical property of businesscpss, but

higher level activities (goals) into lower-level tiaities
(atomic task). To describe the decomposition ofatiivity,

we propose some patterns that allow to model some
refinement of activity: sequence, choice (OR), leara
(AND), loop. Thus, the description of the workfloat
different levels of abstraction becomes possiliieaddition,
our objective is to provide a specification andifieation
technigue for workflow applications using UML AD hich
give readable models and an appropriate formal edeth
allowing verification of required properties (sucho
deadlock) to prove the correctness of the workflow
specification.

also to the complicated dependencies among tasks. |ngeed, the main problem with UML activity diagraias

Composition is an important approach to model lasgyed
more complex workflow application. Task refinemenbne
kind of workflow composition approaches.

Indeed, specifying a complex system is a difficqalk,
which cannot be done in one step. The stepwisaemifent
technique facilitates the understanding of complgstems
by dealing with the major issues before gettingoined in
the details. It consists of developing the systémough

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

that they have no formal semantics and in consegueiML
AD does not allow the formal verification of funmtal
workflow applications properties (safety, deadlock-
inexistence, liveness, fairness, etc) and the ctore of the
patterns.

On the other hand, the Event B method [2] is aaveirof
the B formal method [1], proposed by Abrial to death

116

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

distributed, parallel and reactive systems [2]. Thecept of
refinement is the key notation for developing B misd The
refinement of a formal model allows one to enricd model
in step by step approach. The last refinement gthes
implementation machine, which map directly to
programming language such as C or ADA. B modelsigeo
an automatic proof, which convinces the user thatststem
is effectively correct and satisfies properties,iclthare
presented as invariants/assertions. The strong pbiB is
support tools like as AtelierB [6] or B4free [7} academic
version of AtelierB. Most theoretical aspects of thethod,
such as the formulation of Proof Obligations (P@je
carried out automatically. The automatic and irdtva
provers are also designed to help designer to aligehthe
generated proof obligations. All of these pointken® well
adapted to large scale industrial projects [8]. Eeev, B is
still difficult to learn and to use. In additiomgre is a lack of
methodological studies related to the

development of complex system using the refinement

mechanisms.
This is why a graphical representation of B modsls

UML AD refinement patterns by the use of the B supp
tools.

This paper continues our previous works [4][5] by
addressing the Event-B formalization of UML AD patts

a(sequence, parallel, choice) for workflow applioat with

additional studies, results and proofs. In [4][B& have only
proposed translations rules for UML AD notationoifiivent
B models. In these innovative works, we proposeraél
framework to define refinement patterns for UML Al¥e
define an Event-B semantic for each UML AD refineine
pattern for WA by constructing set-theoretic mathéoal
models (See Section 4 and 5). Based on the classtaf
inference rules from Event-B [13], we identify thygstematic
proof obligations for each UML AD activity refinemte
pattern. The use of the B formal method and itseefient
mechanism allows the verification of the correctiainthe
patterns. The Event-B formalization of the other UMD

incrementamodels is a work in progress.
The remainder of the paper is organized as follows:

Section 2 presents a brief overview of the semifdrUML
activity diagrams notation. Section 3 presents &fbr

required. For that purpose, we propose a constricti overview the formal Event B method. Section 4 detaur

approach in witch Event B models are built incretaty
from UML AD models, driven by UML refinement patbs.

proposed approach that consists in expressing a AL
model with Event-B. Section 5 illustrates the ato by

Our work presents a specification and verificationpresenting the Event-B formalization of the seqeenc

technique using the combination UML AD and EventoB
both improve graphical representation of the wankfl
application structure and its functions such asdbmplex
properties, and also verify required properties.

In our approach, the workflow is initially expredse
incrementally graphically with UML AD refinement
patterns, then translated into Event B and verifisithg the
B powerful support tools.

refinement pattern.
concludes the paper.

Finally, a summary of our work

II. UML AcTIiviTY DIAGRAMS

An activity diagram is a variation of a state maehin
which the states represent the execution of actions
subactivities and the transitions are triggered the

The Event-B expression of the UML AD model allows completion of the actions or subactivities. We asévity

us to give it a precise semantics. In this contiwdre have
been efforts for defining semantics for activityagliam in
the works of Eshuis [10][11]. However, these workat
consider the hierarchical decomposition of actgitin UML
AD. In addition, from the validation point of vievin our

diagrams to model computational, communication, and
and

synchronization operations/process of parallel

distributed applications. Moreover, we use the drigrical
decomposition (thanks to refinement) offered by UML
activity diagrams to model complexes applicatioredgally

approach, the verification of WA is based on a prooin incremental way on several levels (see Figure 2n

technique and therefore it does not suffer from stegte
space explosion occurring in classical model chregkis in
the cases of works in [9] [10] [11] and [12].

Our contribution, in this context, consists of gsiEvent
B method and its associate refinement processdodenthe
hierarchical decomposition of activities in UML AlEach
decomposition of a complex activity in UML AD is
translated into Event B by refining the event cgpanding
to this activity. This refinement introduces thea@position
defined in the original UML AD workflow specificati.
Thus, a step by step UML AD workflow descriptiondan
validation is performed in parallel.

Refinement allows the developer to express thevaake
properties at the refinement level where they amessible.
Then, further refinements will preserve these prige
avoiding reproving them again.

action state is used to model a step in the exatudf an
algorithm (atomic action), or a workflow process
(Subactivity represents a composed activity). Aastility
state invokes an activity diagram. When a subdytstiate is
entered, the activity diagram nested in it, whiohresponds
to the refined activity, is executed. A subactivittate is
shown in the same way as an action state withddiien of
an icon in the upper left corner depicting a nestetivity
diagram (see Figure 1.(b)). Transitions are usedpgcify
that the flow of control (the token) pass from @wtion to
the next. An activity diagram expresses a decisidren
guard conditions are used to indicate differentsjs
transitions (see Figure 1.(a)). A guard conditipecifies a
condition that must be satisfied in order to endbéfiring
of an associated transition. A merge has two oremor
incoming transitions and one outgoing transitidncdn be

The use of the B formal method and its refinemenysed to merge decision branches back together.afutfoin

mechanism allows the verification of the correctwithe

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

are used to model parallel flows of control (segufé 1.(b)).
The initial and final state are, respectively, akzed as a

117

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

solid ball and a solid ball inside a circle. Figutg(a)
illustrates how to model a loop by employing anivétgt

diagram, whereas Figure 1.(b) shows one option for

modeling the parallel execution of two activities.

Transmon

) - = = = Initial state
Ty Fork
o Merge \l/l\l/

'_'_|
ActionState CSubactwnyState ubactlwtyStat%
[Else] _¢ ¢_I

Decision

Guard -
- = = = [Condition]
- — — = Final state

(a) Loop

(b) Parallel natat

Figure 1. UML activity diagram notation

One of the main features of UML is the refinemeithw
hierarchical decomposition of activities in UML ARhich
permits to obtain a detailed specification from iaitial
specification. Figure 2 illustrates how to modelmpbex
application like distributed and parallel applicati on
several levels, by employing a refinement technigfugML
AD.

)

:
.
@
Level O Level 1 Level 2

Figure 2. Hierarchical decomposition of activities in UML &ty
diagrams

Our choice of UML AD is motivated by the fact that
workflow modelling is strongly supported by UML thrgh
activity diagrams [1]. Moreover, UML is easy to deand
understand by human beings.

In the Section 4, we show how the semantics ofiagti
diagrams can be formally described in Event B.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Ill. EVENT B METHOD

We use the B method [1] and its event-based digfimit
[2] to formalize UML AD models of workflow appliciin.

Event B model Development in the Event B method is
based on the concept of model [2]. A model showaovibés
composed of:

MODEL < name>
VARIABLES
<variables>
INVARIANT
< invariant>
ASSERTIONS
< assertion>
INITIALISATION
<initialization of variables>
EVENTS
< events>
END

» Descriptive specification, which describes what the
system does using a set of variables, constants,
properties over constants and invariants which
specify required properties to be verified in each
state. This constitutes the static definition oé th
model.

» Operational specification, which describes the way
how the system operates, it is composed of aralniti
state and various transitions (events) which show
how the set of variables of the descriptive
specification can move in time.

An Event B model is composed of set atomic events
described by particular generalized substitutichNY,
BEGIN andSELECT). Each event Ewt is fired if the guard
P associated to this event is true. For the purpdsthis
paper, we will only use th&ELECT substitution Evt=
SELECT PTHEN G END. Moreover, a B model contains a
set of properties i.e invariants, liveness, safetyd
reachability properties which can be prove duridg t
development thanks to the embedded proof system
associated to B and the tool supported by B4frke [6

Refinement of Event B models:Each Event B model can
be refined. A refined model is defined by addiny resents,
new variables and a gluing invariant. Each eventthef
abstract model is refined in the concrete modehlbging
new information describing how the new set of \aga and
the new events evolve. All the new events appeadrirnthe
refinement refine the skip event of the refined elod

118

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

The gluing invariant ensures that the propertigsessed
and proved at the abstract level (in th8 SERTIONS and

INVARIANTS clauses) are preserved in the concrete level.

Moreover, INVARIANT, ASSERTIONS and VARIANT
[14] clauses express deadlock and livelock.

1. They shall express that the new events of the etacr
model are not fired infinitely (no livelock). A
decreasing variant is introduced for this purpose.

events identified at step 4 and a compensation/faul
handler component.
Step 6: Apply step 2.

This step-based approach is applied until the &ssac
Event B model is free of unproved PO.

B. Formalization of UML AD

2. They shall express that at any time, an event en b 10 achieve our objective, we formalize with Eventtg

fired (no deadlock). This property is ensured by

asserting (in theASSERTIONS clause) that the
disjunction of all the abstract events guards iegli
the disjunction of all the concrete events guards.

At every step of the refinement, proof obligati@msure
that events and initialization preserve the systerariant. A
set of proof obligations that is sufficient for therrectness
must be discharged when a refinement is postulzéadeen
two B components [2] [14].

A strong point of the B method is that the B suppools
like B4free [7] provides utilities to discharge amatically
the generated proof obligations (of the invariamgsprvation
and the refinement correctness).
discharged proof obligations with the B supportlgds an
efficient and practical way to detect errors enderet
during the specification development.

Moreover, in the refinement, it is not needed toroge
these properties again while the model complexitygases.
Notice that this advantage is important if we cormapthis
approach to classical model checking where thesitian
system describing the model is refined and enriched

Finally, the choice of Event-B is due to its simitiaand
complementarity with UML AD: both Event-B and UML
AD have the notion of refinement (constructive apgh).

IV. THE PROPOSEAPPROACH

A. Presentation

Our approach relies on the following steps:
e Step 1. Initially, the workflow is modeled
graphically with UML AD refinement patterns.

UML AD refinement patterns that analysts use toegate a
UML AD workflow hierarchy.

The UML AD language [3] offers two categories of
activities:

1) Atomic activities (action) representing the primitive
operations performed by the process. They are ekbfivy
action node in UML AD.

2) Composed activitiesrepresenting the sub-workflows
(nesting), obtained by composing primitive actestiand/or
other composed activities using the sequence, lebral
(For/Join), choice (Decision/ Merge) control cousts in
UML AD.

Analyzing the non-

In the remaining of this paper, we refer to the
decomposition (refinement) of a composed activiyythe
activities it contains as a result of the refinetmeperation
using refinement patterns.

In this innovative work, the formal assertion défghnan
activity A is written in first-order logic. Thushé general
form of the assertions associated to the activities-Pre =>
A-post where A-Pre and A-Post are predicates aatsutito
an activity A (See Figure3). Symbol => denotesdiassical
logical implication. Such assertions state thainfra state in
which A-Pre holds, we must reach another statehithwA-
Post holds.

If we refer to the concepts of guard and postcaomlit
that exists in Event-B, a UML AD activity can benstdered
as a postcondition of the system, since it meams #h
property must be established. Following our perviawrks
[4], we have proposed to express each UML AD dgtas a
B event, where the action represents the achieveaig¢he
activity. Then, we will use the Event-B refinemeatation

+ Step 2: For current decomposition level, theand additional custombuilt proof obligations toiderall the
resulting graphical readable model is translatéd in subactivity of the system by mean of B events.
Event B applying the approach described in [4][5]. At the high level of abstraction, there is only aneent
« Step 3: This Event B model is enriched by releévanfor representing_the_ parent activity. In accor_damm the
properties (no deadlock, no livelock, etc) whick ar Event-B semantics, if the guard of the event is.tthen the
defined in the INVARIANTS and ASSERTIONS €vent necessarily occurs. For the new events Hoyilt

clauses. These properties will be proved using théefinemel_wt and associated to the subactivity, vezantee by

B4free tool [7]. construction that no events prevent the postcardittio b_e

. Step 4: We isolate the events of the Event B mod stablished. For that, we have proposed an Evesa!nﬁpntlc

whose.POs associated to the introduced invariant q_ each UML AD refinement pattern by constructisgf-

' %heoretic mathematical models. Based on the cassét of

step 3, are not provable. . . _inference rules from Event-B [13], we have ideetifithe

+ Step 5: The UML AD model of stepl is re-design gystematic proof obligations for each UML AD adijvi
by introducing a UML AD scope embedding the refinement pattern.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8 119

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

To better illustrate the approach, the next segtimsents A. Description

just the Event-B refinement semantics related t@ th Tpe first sub-activity AO is an activity with theguence
sequence refinement pattern. condition as target condition; it states that tlegjuence
condition (denoted by A0-Pos) must hold if.

The specific current condition AO01-Pre (which cam b
larger than the current condition AO-Pre of the epar
activity) holds in the current state. The seconb-activity
states that the specific target condition AO2-Rastich can

The sequence activity refinement pattern refines &e larger than the target condition AO-Post of paeent
composed activity by introducing intermediate sem@e goal) must hold if the specific sequence conditk@2-Pre
states AO1,..., AOn for reaching a state satisfyimg target (derived from AO1-Post) holds in the current state.
condition (denoted by AO-Post) from a state satigfithe
current condition (denoted by AO-Pre) as showniguie 3
(with just two sub-activity).

V. THE FORMALIZATION OF THEUML AD SEQUENCE
REFINEMENT PATTERN

B. Formal definition

As explained in the last section, each levell (D..n]) is

represented in the hierarchy of the UML AD modedsaa
/ \ Event-B model Mi that refines the model Mi-1 rethte the

level i = 1. Moreover, we represent each activity,iAj O
[0,..,n] activity index) as a B event EvtAi,j , ete the guard
is the transcription of A-Guard from the activitypeession,
and theTHEN patrt is the translation into Event-B of A-Post
(see Figure 4).

A01-Pre =>Al-Post

C. Proof obligations identification

We are going to give systematic rules definingctya
A02-Pre =>A02-Post what we have to prove for this pattern in ordeersure that
each concrete event (EvtAOl, EVtAO2) indeed refiites
abstraction EVtAO. In fact, we have to prove thdééerent
lemmas:

A02

- The ordering constraint (PO1l) expresses the

Level 0 Level 1 sequence characteristic between the Event-B events.
‘ N . PO1 ensures that the target condition of the agtivi
Figure 3. Sequence activity refinement pattern AO1 implies the current condition of the activity
A02.

IAO1-Post => A02-Pfe(PO1)

- The guard strengthening (PO2) ensures that the

REFINEMENT M-1 concrete guard is stronger than the abstract ane. |
REFINES M-0 other words, it is not possible to have the comcret
MODELM-O | [.. version enabled whereas the abstract one would not.
EVENTS ?\’/;’B‘I_S The term “stronger” means that the concrete guard
gl\EItIﬁEOC_T AOPre EEF'NES SELECT AOLPre implies the abstract guard.
[zt Lo it [AOT-Pre => AQ-Ple (PO2)
SELECT AO02-Pre
THEN A02-Post END - The correct refinement (PO3) ensures that the
sequence of concrete events transforms the concrete
Abstract Model Mo Refinement Model M1 variables in a way which does not contradict the

abstract event.

IA02-Post=> A0-Post (PO3)

Figure 4. Overview of the Event-B representation of the UMD model

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8 120

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

The Event-B refinement semantics of the sequencand to generalize our method. In addition, in fetwork, we

refinement pattern requires to prove three prodigations
((PO1) (PO2) (POJ)) that could easily be discharggdhe
current version of B4free or Rodin automatic theore
prover.

VI.]

We have proposed a specification and verification2]
technique for workflow applications using UML AD én

CONCLUSION

Event B. The workflow is at first modelled with UMAD [3]
refinement patterns, which is understandable afigwi
communications with costumers, then translateddhelting [41
model into Event B, which is enriched by relevardperties
(Safety, nodeadlock) to be verified using powesgupport

tool B4free[7]. This approach allows to rigorousigrify [5]
UML specifications by analysing derived B specifioas

and to prove that the modelled workflow using th® A
respects all safety and reliability constraintsthg formal
verification of its properties. Analyzing derived B [6]
specifications (thanks to B4free tool) is a praitiand [7]

rigorous way to improve initial UML AD specificatis.

Our contribution consists in the use of the Event BY
method and its associate refinement process todenttee
hierarchical decomposition of activities in UML A&nd its

9
tools for the formal verification of workflow apphtions. In o)
addition, the strong point in our approach is tllae
validation can be performed at any developmentestayl
particularly at early steps allowing saving at depment. (10}

Thus, a step by step UML AD workflow descriptiondan
validation is performed in parallel.

For an incremental development of AW using UML AD, 1

we have proposed some activity refinement patterns
(sequence, parallel, choice). In this paper, we poposed
a formal framework to define refinement patterns WL
AD. The use of the B formal method and its refiname
mechanism allows the verification of the correctminthe
patterns by the B support tools.

In contrast to the works of Eshuis [10] [11], Kaeamolis
[12] and Van der Aalst [9], in our works, the ¥Vigdtion is
based on a proof technique and therefore it doesudter
from the state number explosion occurring in ctzsinodel
checking as in the cases of their works.

Actually, we are actively working on the extensafrour
works to investigate new refinement patters preskeim [4]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

envisage the formal validation of our transformatiales.

REFERENCES

J.-R, Abrial, “The B Book. Assigning Programs to améngs”.
Cambridge University Press, 1996.

J.-R.Abrial. "Extending B without changing it" (fodeveloping
distributed systems)”. In H Habrias, editor, FBs€onference. 1996.

R. Johason, I. Jacobson, and G. Booch, “The Unifiatelling
Language reference Manual” .Addison- Wesley. 1998.

A. Ben Younes, and L.-Jemni,Ben Ayed “ Using UML tikity
Diagrams and Event B for Distributed and Parallpphcations”. In
31st Annual IEEE International Computer Softward &pplications
Conference .COMPSAC 2007: pp, 163-170.

A. Ben Younes, and L.-Jemni, Ben Ayed, “Specificatiand
verification of Workflow Applications using Combitian of UML
Activity Diagrams and Event B”. In The 5th Intetianal
Conference on Software Engineering and Data Teolied.
ICSOFT 2010: pp 312-316.

Clearsy, “ System Engineering Atelier B”. Versio$.32001
Clearsy“B4free,” Available atvww.b4free.com (June 30, 2011).
P. Behm, P. Desforges, and J.-M. Meynadier. “METECQ®R
Industrial Success in Formal Development”. ApriB89 An invited
talk at the 2nd Int. B conference, LNCS 1939.

W.M.P. van der Aalst. “Workflow Verification: Findg Control-
Flow Errors using Petri-net-based Techniques”. UrsiBess Process
Management: Models, Techniques, and Empirical 8&jdvolume
1806 of Lecture Notes in Computer Science, pp 1&.-Bpringer-
Verlag, Berlin, 2000.

R. Eshui and R. Wieringa. “Tool Support for veiriy UML Activity
Diagram”. |IEEE transaction on software Engineeringlume 30 ,
N°7; pp 437-447. 2004.

R. Eshuis and R. Wieringa. “ A formal semantics fviL activity
diagrams”. Technical Report TR-CTIT-01-04, Centwe Telematics
and Information Technology, University of Twent@02.

[12] C. Karamanolis, D.Giannakopoulou, J. Magee, and/lSVheater

“Formal verification of workflow schemas”. Univetgiof Newcastle,
Technical Report. 2000.

[13] J.-R. Abrial. Chapter 2 of the forthcoming book:ddling in Event-

B: System and Software Engineering Forthcoming Kook
http://www.event-b.org/A ch2.pdf

[14] C. Metayer, J,-R. Abrial, and L. Voisin. "Event Baniguage”,

Technical Report D7, RODIN Project Delivrable. 2005

[15] Object Management Group (OMGhttp://www.omg.org (June 30,

2011).

121

