
A Language for Modeling Patterns for
Extra-Functional Requirements

Brahim Hamid
IRIT, University of Toulouse, France

118 Route de Narbonne, 31062 Toulouse Cedex 9
France

hamid@irit.fr

Abstract—Model-driven engineering is well suited for the
development of safe and heterogeneous systems, as it enhances
the separation of concerns (i.e security, performance, analysis,
simulation, etc.) through a declarative specification of behavior,
e.g., by means of models that describe a system’s functioning
(where there are predefined configurations). In this paper, we
deal with the idea of using patterns to describe extra-functional
concerns as recurring design problems in specific design contexts,
and to present a well-proven generic scheme for their solutions.
To achieve this goal, we propose a Pattern Modeling Language
to get a common representation to specify patterns for several
domains. Our proposition is based on several levels of abstraction,
for instance generic design (domain independent) and specific
design (domain specific) levels. The aim of the generic design level
is to catch, at high level, a set of generic properties by determining
in advance if the artifact (e.g., pattern) has or uses a certain kind
of generic properties. Then, specific domain design level allows
to make more dedicated information. The approach enables us to
define an engineering approach based on a repository of models
and practices. It ensures separation of engineering concerns and
roles between (1) application experts, (2) concerns experts and
(3) MDE experts. The advantage of the language is illustrated
by the modeling of the authorization pattern.

Index Terms—Multi-Concerns engineering, Extra-Functional
Properties, Pattern, Meta-model, Model Driven Engineering.

I. INTRODUCTION

Extra-functional concerns become a strong requirement as
well as more difficult to achieve even in safety critical systems.
They can be found in many application sectors such as
automotive, aerospace, and home control. Such systems come
with a large number of common characteristics, including real-
time and temperature constraints, computational processing,
power constraints and/or limited energy and common extra-
functional: such as dependability, security as well as effi-
ciency [12]. Domains dealing with these concerns covers a
wide spectrum of applications ranging across embedded real
time systems, commercial transaction systems, transportation
systems and military space systems, to name a few. The
supporting research includes system architecture, design tech-
niques, validation, modeling, software reliability and real-time
processing.

The integration of such concerns, for instance security,
safety and dependability, requires the availability of both appli-
cation development and concerns expertises at the same time.
Many domains are not traditionally involved in this kind of

issue and have to adapt their current processes. Typically, such
requirements are developed ad-hoc for each system, preventing
further reuse beyond such domain-specific boundaries.

Safety critical systems require a high level of safety and
integrity. Therefore, the generation of such systems involves
specific software building processes. These processes are often
error-prone because they are not fully automated, even if
some level of automatic code generation or even model driven
engineering support is applied. Furthermore, many critical
systems also have assurance requirements, ranging from very
strong levels involving certification (e.g., DO178 and IEC-
61508 for safety relevant embedded systems development) to
lighter levels based on industry practices.

Over the last two decades, the need for a formally defined
safety lifecycle process has emerged. The integration of extra-
functional mechanisms is still new in many domains. Hence
capturing and providing this expertise by the way of specific
patterns can enhance safety critical systems development.
Model-Driven Engineering (MDE) provides a very useful
contribution for the design of these systems, since it bridges
the gap between design issues and implementation concerns.
It helps the designer to specify in a separate way extra-
functional requirements at an even greater level that are very
important to guide the implementation process. Of course, a
MDE approach is not sufficient but offers an ideal development
context. While using a MDE framework, it is possible to help
concerns specialists in their task.

The question remains at which step of the development
process to integrate these patterns. As a prerequisite work,
we investigate the design process of patterns. The goal of the
paper is to propose a new pattern development technique in
order to make easy their use in a building process of software
applications with multi-concerns support. Reaching this target
requires to get (i) a common representation of patterns for
several domains and (ii) a flexible structure for a pattern.

According to Buschmann [2], a pattern for software archi-
tecture describes a particular recurring design problem that
arises in specific design contexts, and presents a well-proven
generic scheme for its solution. Unfortunately, most of exiting
patterns are expressed in a textual form, as informal indications
on how to solve some security problems. Some of them use
more precise representations based on UML [1] diagrams, but

108

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

these patterns do not include sufficient semantic descriptions
in order to automate their processing and to extend their use.
Furthermore, there is no guarantee of the correctness use
of a pattern because the description does not consider the
effects of interactions, adaptation and combination. This makes
them not appropriate for automated processing within a tool-
supported development process. Finally, due to manual pattern
implementation use, the problem of incorrect implementation
(the most important source of security problems) remains
unsolved.

The solution envisaged here is based on meta-modeling
techniques to represent patterns at a greater level of abstrac-
tion. Therefore, patterns can be stored in a repository and can
be loaded in function of desired properties. As a result, patterns
will be used as brick to build a applications through a model
driven engineering approach.

The work is conducted in the context of a framework called
SEMCO for System and software Engineering for embedded
systems applications with Multi-COncerns support. We build
on a theory and novel methods based on a repository of models
which (1) promote engineering separation of concerns, (2)
supports multi-concerns, (3) use patterns to embed solutions of
engineering concerns and (3) supports multi-domain specific
process. This project is three-folded: providing repository
of modeling artifacts, tools to manage these artifacts, and
guidelines to build complete engineering systems.

The rest of this paper is organized as follows. An overview
of our approach is presented in Section II. Then, Section III
describes in detail the pattern modeling language we propose.
Section IV presents in depth the modeling part. In Section V,
we examine a test case that has several S&D requirements:
Secure Service Discovery. In Section VI, we review most
related works that address pattern development. Finally, Sec-
tion VII concludes this paper with a short discussion about
future works.

II. FOUNDATIONS AND CONCEPTUAL FRAMEWORK

The following subsection presents briefly the SEMCO
framework, describes an example in order to illustrates the
issues identified in the paper. Then, the structure of the pattern
modeling is presented.

A. SEMCO Approach

SEMCO is a a federated modeling framework and the goal
of Fig. 1 is to highlight the notion of integrated repository
of metamodels to deal with system engineering. The proposed
approach is to use an integrated repository of models to capture
several concerns of safety critical embedded systems namely
extra and non functional properties.

These artifacts will be used to capture in order to model all
the facets of the system and its parts: logical (software and
hardware components) and the infrastructure. They are pro-
vided as informal textual document, as semi-formal document
using UML, SysML and Eclipse modeling framework, and as
formal document using formal frameworks.

Currently, as shown in Fig. 1, SEMCO defines and provides
13 different artifacts types representing different engineering
concerns and architectural information.

SEMCO approach promotes the use of patterns as first-
class artifacts to embed solutions of extra-functional concerns
such as safety, security and performance requirements of
systems, specify the set of correct configurations, and capture
the execution infrastructure of the systems, supporting the
mechanisms to implement these concerns.

In this paper, we focus on the study of pattern artifact to deal
with extra-functional concerns as recurring design problems in
specific design contexts, and to present a well-proven generic
scheme for their solutions. For that, we propose a language
for modeling design patterns to get a common representation
of patterns for several domains in the context of safety critical
systems applications. Therefore, such a solution allows to
capture appropriate characteristics of design concerns and to
utilize several views. We begin describing our motivating
example.

B. Motivating Example: Authorization Pattern

The essence of Fig. 4 is to promote the separation of
general-purpose services from implementations. In our con-
text, this figure highlights the separation of general-purpose
of the pattern from its required mechanisms. This is an
important issue to understand the use of patterns to target
extra-functional concerns. In which layer related mechanisms
are placed depends on the assurance a client has in how the
services are in some particular layer. As example of a common
and a widely used patterns, we choose the Authorization
Pattern [13].

For instance, in a distributed environment in which users
or processes make requests for data or resources, this pattern
describes who is authorized to access specific resources in a
system, in an environment in which we have resources whose
access needs to be controlled. As depicted in Fig. 2, it indicates
how to describe allowable types of accesses (authorizations)
by active computational entities (subjects) to passive resources
(protection objects). Such a pattern provides support to define
possible ways of uses that applies to every level of the system.

Subject

id

ProtectionObject

id

* *Authorization_rule

Right

access_type

predicate

copy_flag

checkRights

Fig. 2. Authorization Pattern

However, those authorization patterns are slightly different
with regard to the application domain. For instance, a system
domain has its own mechanisms and means to serve the
implementation of this pattern using a set of protocols ranging

109

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Fig. 1. SEMCO Generic Structure

from RBAC (Role Based Acess Control), FireWall, ACL’S
(Acess Control List), Capabilities, and so on. For more breadth
and depth, the reader is referred to [15]. In summary, they are
similar in the goal, but different in the implementation issues
for instance to determine for each active entity that can access
resources, which resources it can access, and how it can access
them. So, the motivation is to handle the modeling of patterns
by following abstraction. In the followings, we propose to
use Capabilities [15] to specialize the implementation of the
authorization pattern. This solution is already used at the
hardware and operating system level to control resources.

More specifically, the access rights of subjects with respect
to objects are stored in an access control matrix M . each
subject is represented by a row and each object is represented
by a column. An entry in such a matrix M [s, o] contains
precisely the list of operations subject s are allowed to request
on object o. More efficient way to store the matrix is to
distribute the matrix row-wise by giving each subject a list of
capabilities it has for each object. Without such a capability for
a specific object means that the subject has no access rights
for that object. Then, requests for resources are intercepted
and validated with the information in the capabilities. The
interception and the validation are achieved by a special
program usually referred to as reference monitor. For instance,
whenever a subject s requests for the resource r of object o,
it sends such a request passing its capability. The reference
monitor will check whether it knows the subject s and if
that subject is allowed to have the requested operation r, as
depicted in Fig. 3. Otherwise the request fails. It remains the
problem of how to protect a capability against modification by
its holder. One way is to protect such a capability (or a list
of them) with a signature handed out by special certification
authorities named attribute certification authorities.

(o, r)

if (r appears in C)
grant access;

ServerClient

Create access request r
for object o. Pass
capability C

Object

(b)

C

Fig. 3. Protecting Resources using Capabilities

C. Pattern Metamodel Structure

One of the major considerations in designing multi-concerns
safety critical systems is to determine at which level of
abstraction concerns should be placed. The supporting research
includes specification, modeling, implementation mechanisms,
verification, etc. to name a few. For example, distributed
systems are organized into separate layers following some
reference models, e.g., applications, middleware and the op-
erating system services. Combining the layered organization
of target applications, domain specific systems and patterns
modeling leads roughly to what is shown in Fig. 4.

The framework must cope with multi-concerns and domain
specific properties. For this purpose, the proposition presented
in this paper is based on a MDE approach and on three levels
of abstraction: (i) Pattern Fundamental Structure (PFS), (ii)
Domain Independent Pattern Model (DIPM) and (iii) Domain
Specific Pattern Model (DSPM). Firstly this decomposition
aims at allowing the design of multi-concerns applications
in the context of safety (since combining extra-functional
concerns and domain specific artifacts introduces a great
complexity), and secondly to overcome the lack of formalism
of the classical pattern form (e.g., textual).

III. PATTERN MODELING LANGUAGE

This section is dedicated to present our pattern modeling
framework. As we shall see, the originality of this approach

110

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Pattern
Fundamental

Structure
(PFS)

Domain
Independant

Pattern Model
(DIPM)

Domain
Specific

Pattern Model (DSPM)

M2

M1

refines

conforms to

Application
Model

(Functional)

Technical Services and
Runtime

is a metamodel that defines all the artifacts we need to build
patterns in the context of safety critical systems

is a model that defines and specifies the mean of artifacts
while being independent from the domain

is a model that defines and specifies the mean of artifacts
with regard to a specific domain

Fig. 4. Pattern Modeling Framework Structure

is to consider patterns as building blocks that expose services
(via interfaces) to deal with concerns (properties). This pattern
definition provides a clear and flexible structure. Moreover,
the modularity it enables allows to tame the complexity of
large systems. As introduced into the last section, our pattern
modeling language is based on three levels of abstraction. We
start the description with a template inspiring our proposal
(the patterns modeling language). Then, the first level of
abstraction, namely PFS, will be described.

A. Patterns Documenting Model: Template

For our best knowledge, there is no consensus about the
required information to represent patterns in the domain of
software engineering, particularly when dealing with extra-
functional properties. For this reason, we propose the follow-
ing template. Note, however, that our proposition is based on
GoF, and we deeply refined it in order to fit with the non-
functional needs.

B. Pattern Fundamental Structure

The Pattern Fundamental Structure (PFS), as depicted in
Fig. 6, is a meta-model which defines a new formalism for
describing patterns and which constitutes the base of our
pattern modeling language. Such a formalism describes all the
artifacts (and their relations) required to capture all the facets
of patterns. Here we consider patterns as building blocks that
expose services (via interfaces) and manage properties (via
features) yielding a way to capture meta-information related
to patterns and their context of use. These pattern are specified
by means of a domain-independent generic representation and
a domain-specific representation. The next section details the
principal classes of our meta-model, as described with UML
notations in Fig. 6. Fig. 7 depicts in more details the meaning
of principal concepts used to edit a pattern.

IV. MODELING PATTERNS

As mentioned earlier, our modeling framework promotes
to use three levels of abstraction: (i) Pattern Fundamen-
tal Structure (PFS), (ii) Domain Independent Pattern Model
(DIPM) and (iii) Domain Specific Pattern Model (DSPM). In

• Name. Meaningful word or phrase for the pattern to
facilitate the documentation. This unique name gives a first
idea about the pattern purpose,

• Also known as. Describes known occurrences of the pat-
tern,

• Related Patterns. Here related patterns are mentioned
• Example. To show the use of the pattern,
• Context. To describe the conditions where the problem

occur,
• Problem. Informal description of a problem that needs an

appropriate solution,
• Solution. The solution describes how to solve the problem,
• Precondition. The set of conditions have to be met in order

to be able to use the pattern,
• Postcondition. The impact of the pattern integration,
• Attributes. The set of information to configure and cus-

tomize the pattern,
• Properties. The kind of properties the pattern provides to

resolve the requirements.
• Constraints. This part describes constraints for a reason-

able and correct use of the pattern.
• Structure. Indicates with class, sequence, and other UML

diagrams, the form of the solution.
• Interfaces. To encapsulate patterns interaction functions.

The way the pattern interact with its environment.

Fig. 5. Extra-Functional Pattern Template

this section, the required artifacts will be pointed out while
following the two abstraction levels (i.e., DIPM and DSPM).
These two levels with a authorization pattern presented in
Section II-B are illustrated. Note, however, that for lack of
space we only specify those principle elements.

A. Domain Independent Pattern Model (DIPM)

This level is intended to generically represent patterns
independently from the application domain. This is an instance
of the PFS. As we shall see, we introduce new concepts
through instantiation of existing concepts of the PFS meta-
model in order to cover most existing patterns in safety
critical applications. In our case study, the DIPM of the
authorization pattern consists of two communicating entities.
The authorization pattern is defined as followed:

• Properties. At this level, we identify one property: con-
fidentiality.

• External Interfaces. The authorization pattern exposes its
functionalities through function calls:
- request(S,AT, PR): the subject S sends request about
access type AT concerning the protected resource PR.

• Internal Structure. The behavioral of authorization pat-
tern can be modeled by a UML Sequence Diagram
following Fig. 2.

B. Domain Specific Pattern Model (DSPM)

The objective of the specific design level is to specify
the patterns for a specific application domain. This level
offers artifacts at down level of abstraction with more precise
information and constraints about the target domain. This
modeling level is a refinement of the DIPM, where the specific

111

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Fig. 6. Pattern Fundamental Structure

characteristics and dependencies of the application domain are
considered. Different DSPM would refine a same DIPM for
all needed domain. For instance, when using Capabilities as
a mechanism related to the application domain to refine the
authorization pattern at DSPM, we introduce the following
artifacts:

• Properties. In addition to the refinement of the property
identified in the DIPM, at this level, we consider: deny
unauthorized access, permit authorized access, and effi-
ciency properties.

• External Interfaces. This is a refinement of the DIPM
external interface:
request(S,AT, PR,C): the subject S sends request about
access type AT concerning the protected resource PR passing
its capability C.

• Internal Interfaces. Let the subset of functions related to the
use of capabilities to refine the authorization pattern:
- sign(C): the certification authority signs the capability C,
- verifyCert(): the attribute capability certificate is verified,
- extractCap(): the capability is extracted from the certificate,
- checkRight(S,AT, PR,C): the reference monitor verifies,
using the capability, whether PR appears in the C.

• Internal Structure. The behavioral of authorization based
on capability and reference monitor can be modeled by
a UML Sequence Diagram following the description in
Section II-B.

V. SECURE SERVICE DISCOVERY FOR HOME CONTROL

In the following, an example will illustrate the approach
point defined in the previous sections. The current trend aims
at integrating more intelligence into the homes to increase
services to the person. For this purpose, electronics equipments
are widely used while providing easy and powerful services.
However, to integrate all the services automatically requires

a plug and play like system. For this issue, this example
aims at providing a pattern for home control domains which
provides a secure service discovery. Compared to a usual
service discovery, this pattern will use a secure channel in
order to protect all data. Fig. 8 shows two use cases: (i) adding
a new equipment (ii) updating the current configuration. The
Fig. 8 is described in form of UML notations and highlights
the interfaces of the pattern in order to support the two main
use cases. In the next subsections, the interface and the static
internal structure will be pointed out while following the two
abstraction levels (i.e., DIPM and DSPM) proposed by the
paper.

A. Representation at DIPM: Person using a remote Internet-
Box.

Regarding to the interface, it is necessary to declare some
operations which allow the user to check if new implemen-
tations exist (i.e., update) and to detect the context (i.e.,
new equipment). Then, it is necessary to define all properties
addressed by the pattern.

Fig. 9 illustrates the representation of secure connection at
DIPM. At this level, we deal with a person using a remote
InternetBox. As mentioned in the previous section, we choose
Authorization pattern (or Access control) for security property.
Regarding the internal structure of the pattern, we consider
the following: a person uses a multi-media device which
communicates with an internetBox via a Wifi connection.

B. Specialize a pattern through the DSPM: Subscriber using
a remote OperatorBox

The interfaces must be adapted in order to match with
the specific communication used in the domain. Regarding
to the properties, at the DIPM, we only specify a very
generic security property. At this level, it is possible to refine
this property by defining the mechanisms, the length of the

112

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

• IPattern. this block represents a modular part of a system
that encapsulates a solution of a recurrent problem. An
IPattern defines its behavior in terms of provided and
required interfaces. As such, an IPattern serves as a type
whose conformance is defined by these provided and
required interfaces. Larger pieces of a system’s function-
ality may be assembled by reusing patterns as parts in
an encompassing pattern or assembly of patterns, and
wiring together their required and provided interfaces. An
IPattern may be manifest by one or more artifacts, and
in turn, that artifact may be deployed to its execution
environment. The IPattern has some fields to describe the
related particular recurring design problem that arises in
specific design contexts. These fields are based on the GoF
[5] information as described in Fig 5. This is the key entry
artifact to model pattern at domain independent level.

• Interface. IPattern interacts with its environment with
Interfaces which are composed of Operations. An IPat-
tern owns provided and required interfaces. A provided
interface is implemented by the IPattern and highlights the
services exposed to the environment. A required interface
corresponds to services needed by the pattern to work
properly. So, larger pieces of a system’s functionality may
be assembled by reusing patterns as parts in an encompass-
ing pattern or assembly of patterns, and wiring together
required and provided interfaces. Finally, we consider two
kinds of interface:

– External interfaces allow implementing interaction
with regard to the integration of a pattern into an
application model or to compose patterns.

– Internal interfaces allow implementing interaction
with the platform. For instance, at a low level, it is
possible to define links with software or hardware
module for the cryptographic key management. These
interfaces are realized by the SPattern. Please,note an
IPattern does not have InternalInterface.

• Property. is a particular characteristic of a pattern related
to the concern dealing with.

• Internal Structure. constitutes the implementation of the
solution proposed by the pattern. Thus the InternalStruc-
ture can be considered as a white box which exposes
the details of the IPatterns. In order to capture all the
key elements of the solution, the Internal Structure is
composed of two kinds of Structure: static and dynamic.
Please, note that a same pattern would be have several
possible implementationsa.

• SPattern. inherits from IPattern. It is used to build a pattern
at DSPM. Furthermore a SPattern has Internal Interfaces
in order to interact with the platform. This is the key entry
artifact to model pattern at domain specific level.

aUsually referred to as variants of design patterns.

Fig. 7. Pattern MetaModel Dependencies

Fig. 8. Secure Service Discovery Use Cases

STATIC

DYNAMIC

Properties
Integrity

Authenticity

Confidentiality

request(S,AT,PR)

Link

Entity

multiMedia device

Entity

InternetBox

Remote

Entity

PersonLink

Local

Fig. 9. Service Discovery example: Person using a remote InternetBox
(DIPM)

keys, etc. Moreover, it is possible to add new properties. For
instance, a RCES property can be added like the cryptographic
time.

Properties

Integrity

Authenticity

Confidentiality
STATIC

StakeHolder

Entity

Mobile, computer

StakeHolderEntity

LiveBox

W
IFI

StakeHolderEntity

Subscriber

OperatorX AC

OperatorX Int.

OperatorX Auth.

DYNAMIC

StakeHolderLink

Fig. 10. Person using a remote InternetBox (DSPM)

Fig. 10 illustrates the representation of secure connection
at DSPM. At this level, the pattern deals with an operator
subscriber using a ’Operato’Box. For instance, we choose
OperatorX AC for Access Control. The information expressed

113

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

by the internal structure of the pattern is the following: an
operator subscriber person uses a computer which is connected
to a ’Operator’Box.

VI. RELATED WORKS

Design patterns are a solution model to generic design
problems, applicable in specific contexts. Since their appear-
ance, and mainly through the work of Gamma et al [5], they
have attracted much interest. The supporting research includes
domain patterns, pattern languages and their application in
practice. Several tentatives exist in the literature to deal with
patterns for specific concern [17], [7], [18], [3], [16]. They
allow to solve very general problems that appear frequently
as sub-tasks in the design of systems with security and
dependability requirements. These elementary tasks include
secure communication, fault tolerance, etc. The pattern spec-
ification consists of a service-based architectural design and
deployment restrictions in form of UML deployment diagrams
for the different architectural services.

To give a flavor of the improvement achievable by using
specific languages, we look at the pattern formalization prob-
lem. UMLAUT [8] is an approach that aims to formally model
design patterns by proposing extensions to the UML meta
model 1.3. They used OCL language to describe constraints
(structural and behavioral) in the form of meta collaboration
diagrams. In the same way, RBML(Role-Based Meta modeling
Language) [10] is able to capture various design perspectives
of patterns such as static structure, interactions, and state-based
behavior. The framework LePUS [6] offers a formal and visual
language for specifying design patterns. It defines a pattern in
an accurate and complete form of formula with a graphical
representation. A diagram in LePUS is a graph whose nodes
correspond to variables and whose arcs are labeled with binary
relations.

With regard to the integration of patterns in software sys-
tems, the DPML (Design Pattern Modeling Language) [11]
allows the incorporation of patterns in UML class models. Re-
cently, [14] explains how pattern integration can be achieved
by using a library of precisely described and formally verified
security and dependability solutions. Other domain specific
solutions as [7], [18] exist.

While many patterns for specific concern have been de-
signed, still few works propose general techniques for patterns.
For the first kind of approaches [5], design patterns are usually
represented by diagrams with notations such as UML object,
annotated with textual descriptions and examples of code.
There are some well-proven approaches [4] based on Gamma
et al. However, this kind of techniques does not allow to reach
the high degree of pattern structure flexibility which is required
to reach our target. The framework promoted by LePUS [6] is
interesting but the degree of expressiveness proposed to design
a pattern is too restrictive.

To summarize, in software engineering, design patterns
are considered as effective tools for the reuse of specific
knowledge. However, a gap between the development of the
system and the pattern information still exists. This becomes

more exciting when dealing with specific concerns namely
security and dependability for several application sectors.

VII. CONCLUSION AND FUTURE WORK

Extra-functional and non-functional concerns are not build-
ing blocks added to an application at the end of the life cycle.
It is necessary to take into account this concern from the
requirement to the integration phase. In this paper, we promote
the use of patterns to provide practical solutions to meet these
requirements and follow a MDE-based approach to specify
such patterns. Indeed, MDE solutions allows to meet several
concerns around one model while ensuring coherence between
all businesses.

Here, we propose a common pattern modeling language to
design multi-concerns safety critical system applications. This
kind of application requires an adapted language to design it.
Indeed, a classical form of pattern is not sufficient to tame the
complexity of such application – complexity occurs because of
both the concerns and the domain management. To reach this
objective and to tame this complexity, our language is based
on an advanced form of pattern using a MDE approach. The
proposed approach is structured in 3-layer architecture. The
first one corresponds to a metamodel which defines a generic
structure of patterns. Then, two other layers are an instance
of the metamodel. The two last levels allows us to integrate
domain specific features at the end of the process.

The benefit of this structure is to offer a common language
for different domain application. So far, this common language
encompasses four industrial sectors, namely, home control,
industry control, automotive, and metering [9].

As a side remark, note that our goal is to obtain an even
high level abstraction to represent patterns to capture several
facets of extra-functional and non-functional concerns in the
different domain of safety critical systems applications, not an
implementation of a specific solution. The key is then to show
that the major sectors of such systems applications dealing
with such concerns become covered by our approach. This
result raises new and previously unanswered questions about
general techniques to model these kind of patterns. We believe
that this result is of particular interest to build a multi-concerns
systems discipline that is suited to a number of sectors in safety
critical systems.

The next step of this work consists in implementing other
patterns including those for security, safety, reconfiguration
and dependability to build a repository of multi-concerns
patterns. Another objective for the near future is to provide
guidelines concerning both the integration of all the presented
results in a more global process with the pattern life cycle (i.e.,
create, update, store patterns) and the integration of pattern in
an application. All patterns are stored in a repository. Thanks
to it, it is possible to find a pattern regarding to concern
criteria. At last, guidelines will be provided during the pattern
development and the application development (i.e., help to
choose the good pattern).

114

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Acknowledgments. This work is initiated in the context
of SEMCO framework. It is supported by the European FP7
TERESA project and by the French FUI 7 SIRSEC project.

REFERENCES

[1] OMG Unified Modeling LanguageTM (OMG UML), superstructure
version2.2, 2009. Version 2.2 is a minor revision to the UML 2.1.2
specification. It supersedes formal/2007-11-02.

[2] G. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture: a system of patterns, volume 1.
John Wiley and Sons, 1996.

[3] F. Daniels. The reliable hybrid pattern: A generalized software fault
tolerant design pattern. In PLOP 97, 1997.

[4] B. P. Douglass. Real-time UML: Developing Efficient Objects for
Embedded Systems. Addison-Wesley, 1998.

[5] E. Gamma, R. Helm, R. E. Johnson, and J.Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] E. Gasparis, J. Nicholson, and A. H. Eden. Lepus3: An object-
oriented design description language. In In: Gem Stapleton et al. (eds.)
DIAGRAMS, LNAI 5223, pages 364–367, 2008.

[7] V. Di Giacomo and al. Using security and dependability patterns for
reaction processes. pages 315–319. IEEE Computer Society, 2008.

[8] A. L. Guennec, G. Sunyé, and J-M. Jézéquel. Precise modeling of design
patterns. In In Proceedings of the third International Conference on
the Unified Modeling Language (UML’2000), pages 482–496. Springer-
Verlag, 2000.

[9] B. Hamid, N. Desnos, C. Grepet, and C. Jouvray. Model-based security
and dependability patterns in rces: the teresa approach. In Proceedings of
the International Workshop on Security and Dependability for Resource
Constrained Embedded Systems,SD4RCES ’10, pages 1–4.

[10] D k Kim, R. France, S. Ghosh, and E. Song. A uml-based metamodeling
language to specify design patterns. In Patterns, Proc. Workshop
Software Model Eng. (WiSME) with Unified Modeling Language Conf.
2004, pages 1–9, 2004.

[11] D. Mapelsden, J. Hosking, and J. Grundy. Design pattern modelling
and instantiation using dpml. In CRPIT ’02: Proceedings of the For-
tieth International Conference on Tools Pacific, pages 3–11. Australian
Computer Society, Inc., 2002.

[12] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in
embedded systems: Design challenges. ACM Trans. Embed. Comput.
Syst., 3(3):461–491, 2004.

[13] M. Schumacher, E. Fernandez, D. Hybertson, and F. Buschmann.
Security Patterns: Integrating Security and Systems Engineering. John
Wiley & Sons, 2005.

[14] D. Serrano, A. Mana, and A-D Sotirious. Towards precise and certified
security patterns. In Proceedings of 2nd International Workshop on
Secure systems methodologies using patterns (Spattern 2008), pages
287–291. IEEE Computer Society, September 2008.

[15] A. S. Tanenbaum and M. Steen. Distributed systems, principles and
paradigms, 2/E. Prentice-hall, Inc, 2007.

[16] M. Tichy and al. Design of self-managing dependable systems with uml
and fault tolerance patterns. In WOSS ’04: Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, pages 105–109. ACM,
2004.

[17] J. Yoder and J. Barcalow. Architectural patterns for enabling application
security. In Conference on Pattern Languages of Programs (PLoP 1997),
pages 1–31, 1998.

[18] N. Yoshioka, H. Washizaki, and K. Maruyama. A survey of security
patterns. Progress in Informatics, pages 35–47, 2008.

115

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

