PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Introducing new Pattern Language Concepts and an Extended Pattern Structure for
Ubiquitous Computing Application Design Support

René Reiners
Fraunhofer Institute for

Sankt Augustin, Germany
rene.reiners @fit.fraunhofer.de

Abstract—The method of collecting and communicating
design knowledge in the shape of design patterns is a proven
method, which is applied in different domains originating from
architecture over software engineering, organizational aspects
up to application design. This work introduces an extension of
the pattern language concept and the applied pattern format
introduced by Christopher Alexander, Jan Borchers and others.
Our intention is to formulate a generic pattern language
for ubiquitous computing application design. The language
should enable contributors to integrate ideas and approaches
from related domains into one pattern language construct. We
present new and extended features for the ’traditional” pattern
language concept and its pattern structures on a conceptual
basis. We also address needed features when opening the
pattern language concept for a community that is asked to
provide feedback to given patterns and contribute new findings.

Keywords-Design Patterns, Pattern Language, Extension,
Community, Collaboration

I. INTRODUCTION

Mark Weiser’s vision of ubiquitous computing (UbiComp)
has motivated and influenced the development and imple-
mentation of smart embedded devices [1]. In the recent
decades, their physical size has been significantly reduced
accompanied by novel interaction concepts for smart en-
vironments. Currently, different industrial and research ap-
proaches enter different distribution channels creating a huge
diversity of concepts concerning application design, service
provisioning, and interaction techniques. The knowledge and
experience from these approaches, however, is currently
inherent to the individual systems and concepts or focusing
on specific problems, respectively. Thus, general design
guidelines derived from proven realizations are hard to
reveal, capture, and transfer to other application designs.

As a consequence, proven concepts are currently hard to
compare or combine. If the latter was possible, recommenda-
tions and ratings for often used combinations of good design
practices could be realized. Well working concepts and
designs are usually elaborately documented. Bad practices
or failing concepts can also be valuable to avoid design
mistakes a priori. There is a manifold of possibilities about

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Irina Astrova
Institute of Cybernetics
Applied Information Technology FIT Talinn University of Technology
Talinn, Estonia
irina@cs.ioc.ee

Alfred Zimmermann
BIRC - Business Informatics RC
Reutlingen University
Reutlingen, Germany
alfred.zimmermann @ reutlingen-university.de

what to offer and how to offer smart services in UbiComp
environments [2]. Accessing these services and the way of
interacting with them can also be very different. Examples
for smart services offered in a UbiComp environment can
be found in [3], [4], [5], [6], [7], [8]. Currently, smart
services of different kinds have found their way to mobile
devices. Mostly, they are independently encapsulated into
small applications for current smart phones.

Looking at the potential for new ways of service provi-
sioning and interaction, there is a danger for the users in
this new world: Disorientation. In a new environment, how
should they know what kind of smart services is available
and how to access them? Maybe there is already experience
with another system. However, this knowledge does not help
in the current situation. Therefore, solutions need to be found
that are generally applicable to many different situations
and kinds of services and applications, respectively. This
work seeks for methods to structure application design
knowledge from current as well as future approaches and
applications in the domain of ubiquitous computing. The
structure is intended to serve as a repository containing
guidelines supporting application designers in the domain
of ubiquitous computing environments. Additionally, design
flaws are rarely published, leaving the danger that they can
potentially be repeated. This kind of design knowledge also
needs to be preserved and made available together with
working design guidelines. So, the central question of our
work is formulated as follows:

”How can we abstract, combine, and keep alive UbiComp
application design knowledge?”

II. PATTERN LANGUAGES AS APPROACH TO A SOLUTION

In [2], we described first steps towards an approach to
gather, generalize, structure and manage UbiComp applica-
tion design patterns. The first step was to find a common de-
nomination of concepts that are used in different approaches
and domains but still have common roots. Smart Services,
Smart Devices and Smart Environments were introduced as
well as an optional take-away attribute for smart services

61

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

allowing for remotely controlling smart services that are
normally bound to objects and locations in the real world.

After the generalization of terms and concepts in applica-
tion design, we need to find a structure for design practices.
Pattern Languages provide a very flexible and extensible
way to describe proven design solutions (cf. section III).
The presented conceptual basis allows for constructing a first
subset of patterns and the relations between them.

III. RELATED WORK

Recurring design problems are a well-known phenomenon
affecting many different domains. Not only in the technical
sector but also in design areas like architecture, construction
or user interface design, people see themselves faced with
problems for which they do not directly know a solution.

However, it may happen that someone else has also treated
the same or a similar problem and that a solution or guideline
was found. In a good case scenario, this best practice was
written down or kept in a way that it could be shared
and distributed. Thus, a pattern represents knowledge for
a specific domain, discusses the context in which it could
be applied and explains ways to solve a certain problem.

Current pattern collections originating in the field of
architecture [9], and being extending predominantly by
Borchers in interactive exhibit design [10], up to the design
of websites [11] or HCHI application design [12] mostly go
even further. On the one hand, they can be distinguished
by the vocabulary used for explaining a solution (e.g., very
technical vs. descriptive and better suited to non-domain
experts). On the other hand, many collections organize and
structure particular units of information in a way that they
can be organized hierarchically thus having different degrees
of information detail.

Hierarchies, for example, can make use of the spatial
dimension [9] or the pattern’s level of technical description
detail [12]. Others remain on a very technical level but then
structure the patterns by purpose like in Gamma et al. in
their collection of software design patterns [13].

Besides this informal way of describing design solutions,
semiformal and formal approaches were developed. The
three different concepts are briefly discussed in the follow-
ing.

A. Informal Representation of Design Patterns

HCT and application design patterns are traditionally rep-
resented in natural language and stored in loosely coupled
documents. Although there are different formats for such
documents (the most common is a canonical form), the
documents usually contain a set of fields describing the
context in which a problem occurs, the intent of the design
pattern, the relevant forces that justify why the design pattern
and its implementation should be used and how to generate
the solution for the problem. The term description seems
more suitable for this type of representation.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Although informal representation helps users to under-
stand the rationale behind a design pattern, there is a
limitation to precision due to the use of natural language
and the semantic ambiguity [14]. This disadvantage does not
allow for any level of automation to resolve widely recog-
nized problems such as finding and selecting the appropriate
design patterns or applying them [15].

B. Semiformal Representation of Design Patterns (UML)

Several attempts have been made to represent design pat-
terns in a semiformal way. Most of these attempts [15], [16],
[17], [18] are based on UML (Unified Modeling Language
[19]) descriptions. UML helps in specifying the structural
and behavioral aspects of design patterns using class/object
and sequence/collaboration diagrams, respectively. However,
UML does little to help users understand the intent, appli-
cability and consequences of design patterns [15].

C. Formal Representation of Design Patterns

As an attempt to resolve the problems above, different
approaches were proposed to formalizing representation of
design patterns. These approaches are based on either pure
mathematics (i.e., first order logic, temporal logic, high order
logic, object-calculus, sigma calculus, p-calculus, etc.) or
ontologies [20]. The main goals of formalization are:

« To provide better understanding of design patterns and
their composition; it helps to know when and how to
use patterns properly in order to take advantage of
them.

« To resolve issues regarding relationships between de-
sign patterns; it is not only important which design
patterns are used to solve a given problem, but also
it is important in which order they are applied.

« To allow for the development of tools that support activ-
ities regarding design patterns; these activities include
semantic search for design patterns, automatic code
generation and formal validation of design patterns.

1) Mathematics-based approaches: For example, Cornils
and Hedin [21] described design patterns using reference
attributed grammars with syntactic and context-sensitive
rules. Eden et al. [22] derived LePlus (LanguagE for Patterns
UniformSpecification) from Higher-Order logic to represent
design patterns as logic formulas, which consist of the
elements of object-oriented language (i.e. classes, methods
or hierarchies) and relationships between them. Smith and
Stotts [23] extended sigma calculus, which defines relation-
ships between the elements of object-oriented language to
describe design patterns.

Finally, Taibi and Ling Ngo [24] specified the structural
and behavioral aspects of design patterns using first order
and temporal logics, respectively. This approach described
patterns in terms of classes, attributes, methods, objects and
untyped values, and relationships between them.

62

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

The approaches adopted mathematics to describe design
patterns. However, this can turn into a big disadvantage
if users lack mathematical skills and thus, cannot easily
understand how patterns have been described. Another big
disadvantage with these approaches is that they describe the
pattern solution only.

2) Ontology-based approaches: In recent years, several
attempts have been made to formalize design patterns using
ontologies, thus making the design patterns understandable
for both humans and machines - this is the same idea as
used in the scope of the Semantic Web[25]. For example,
Rosengard and Ursu [15] introduced the idea of representing
patterns as ontologies with a view to the development of
tools for the automatic organization, retrieval and explana-
tion of reusable solutions to software development, codes of
good practice and company policies.

IV. ADDRESSING A LARGER APPLICATION DOMAIN

Existing pattern languages are specialized on a closed
problem domain allowing them to provide detailed knowl-
edge for a certain class of design problems. However, we
want to cover more than one aspect or problem domain and
therefore search for ways to increase the extensibility of a
pattern language. This also implies that not all formulated
pattern can be chosen during the whole design process since
readers have to decide for certain paths. Another point we
want to address is the vividness of a pattern language. These
new requirements were formulated in preliminary work on
which we built in this work (cf. [2], [26]).

Analyzing related work, it can often be found that a group
of authors defines a set of patterns from their experience and
interlink them within their pattern language construction.
However, in case that a pattern looses validity or is refuted
by other readers who applied it, there is no process to feed
back the experience into the pattern language. The approach
resembles more a’try out and see” approach. Additionally,
new ideas and found concept also cannot be included into the
existing structure since there is no way for adding new nodes
except for trying to include them together with the original
authors in a new edition of the mostly written publication or
by defining (yet) another custom pattern language. The new
concepts and our proposed modification in the traditional
pattern structure are described in the next chapter.

V. INTRODUCING NEW CONCEPTS

The pattern language approach described in this work
extends the present approaches to functions that enable the
construction of a collaborative community platform that we
refer to as Pattern Management System (PMS). With the help
of this system, working application design approaches can
be extended, modified and discussed.

In order to realize the PMS that also manages rules and
processes for contributions, we decide for presenting the
informal pattern language concepts (cf. III-A) to the reader.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

For the technical realization we need to consider at least
semi-formal mechanisms to handle the pattern collection. In
order to meet our requirements concerning a wide appli-
cation domain and the mentioned community mechanisms,
we extend the “traditional” pattern language concepts and
pattern structures as described in the following sections.

A. New Concepts for a Pattern Language

The pattern language structure described in this work will
follow the general concepts as described by [10] and [12]
(cf. section III), but will also introduce new features resulting
from the demand of covering a wider field of applications
in the UbiComp domain as well as the support for external
authors’ contributions (cf. Figure 1 for illustrations).

Branching: While browsing the patterns, we introduce
decision nodes at which the reader needs to decide for a
subset of design recommendations. The decision may be
based on interaction style, privacy demand or, e.g., device
footprint. After making a decision, other subsets of design
patterns are no longer available since the criteria for the
intended design are not met any longer. This leads to a
dynamic graph structure of causally related patterns.

Sequencing and Recommendation: Patterns that are lo-
cated on the same level within the hierarchy represent design
alternatives that can be chosen but also be implemented in
parallel.

For the reader, it may be interesting which patterns where
followed the most after deciding for certain predecessors and
therefore providing a safe route of patterns to apply for a
proven design pattern combination. Sequencing may be in-
ferred from most read patterns or proposed combinations by
others as well as on rankings. That way, different alternative
paths can also be weighed by recommendations given by the
community or by (semi-) automated proposals.

Community Involvement: The pattern language ap-
proaches discussed so far all relied on the knowledge of one

Environment

Discove Access

&

y 3

% Project
Information

Scans

Figure 1. An excerpt of an example pattern language showing ratings
as stars, relations as arrows, a necessary decision denoted by the question
mark box, pattern sequences (gray) and one anti pattern node (Scans).

63

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

smaller group of authors and their, sincerely founded, do-
main knowledge. Additionally, writers workshops that help
to formulate and refine patterns are organized during special
Pattern Language of Patterns (PLoP) conferences [27]. Our
approach addresses a larger amount of users especially
application designers using the patterns and researchers
familiar with the domain. The community will be given ways
to comment on existing patterns and give suggestions for
their refinement, provide additional references in literature
or name counter-examples that confute the message of a
design pattern.

Users can also propose new patterns to be linked within
the pattern language structure. This way, the vividness of the
pattern language is to be increased making it adoptable or ex-
tensible for more application domains within the UbiComp
scope. Of course, rules and processes need to be defined in
future work to guarantee controlled contributions.

Discussion and Refinement: Due to the fact that the
patterns should not only be provided by one small group
of authors and be ranked by them, rules and processes to
propose new patterns or to discuss existing ones are needed.

This may result in a change of ranking, references to
public work or parts of the description of the pattern.
In case that only a smaller set of authors recommends
and formulates patterns, the community feedback can also
be interesting in order to see what concepts where really
working and what needs to be changed in another iteration
so that a pattern refinement is achieved.

Notes on the pattern hierarchy

The pattern hierarchy takes the dimension of time and
implementation detail into account; the further the reader
follows the structure, the more she learns about underlying
concepts and design possibilities. At the lower levels of
patterns, suggestions for implementations will follow.

B. Proposed Pattern Structure

According to the already existing pattern structures we
describe the intended fields for an UbiComp application
design pattern in the following. Some properties that were
already defined by [9] and [10] were changed compared with
the existing ones, new fields are marked by an asterisk(*).

Name: A pattern’s name fulfills a vocabulary function by
summarizing the intention of the pattern and the core of
its solution. Finding a descriptive name which covers the
pattern’s intention and problem scope is not an easy task
(cf. [10], p.65).

Ranking*: In the approaches described so far, patterns
were ranked based on the experience of the author group
providing the patterns eventually influenced by first reader
groups. The ranking should be extended in such a way
that readers and implementers of the pattern are enabled to
provide feedback about the quality of the pattern. On the one
hand with regards to readability and understandability, on the
other hand regarding applicability, i.e., design success. That

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

way, patterns can be refined or changed in an iterative way
- also by third-party readers and consumers, respectively.

INlustration: Depending on the problem context, the
media used for providing a quick glance at the problem
should sensitize the reader and inform her quickly about
the general design problem that is addressed by the pattern.
The illustration may contribute to decision-making whether
the pattern is relevant to the current situation.

Context(*): normally, the context is clearly defined by the
pattern language structure. However, due to the restriction
of design space given by decision nodes, readers have to
keep track of taken decisions on the path to the particular
pattern. It is possible that the problem domain is narrowed
or changed to different problem cases by taking different
decisions. This is only the case if nodes may have multiple
parents.

Problem and Forces: In order to really capture the
problem the current pattern is intended to solve, Borchers
suggests to describe it as conflicting interests in a situation
(opposing forces) that may result from physical facts but
also may include social, economical and psychological con-
straints [9], [10]. These forces limit the design space or can
even be contradictory such that they need to be discussed and
eventually a compromise for a solution needs to be found.
An example for a physical constraint is given by Alexander;
Normally, a table in the center of a room pulls the visitors
to that place. An opposing force is that people also like to
stand close to large windows [9].

Example (Scenario): The inductive approach of pro-
viding examples helps novice readers to better understand
the problem and solution described in a pattern. Secondly,
experienced readers and professionals can already derive
verifiable evidence for a working design solution. The
example should be easy to understand and only cover the
basic idea behind the pattern in order to provide a quick
orientation to the readers.

Solution / Reason(*): This part provides a generally
applicable design solution based on the lessons learned from
the examples and literature references. It summarizes the
central message of the design pattern telling the reader how
to handle a specific design problem. In case that the pattern
provide an anti-solution, this part turns into a description of
the reasons for the failure of the concept. Both, the solution
or the reasons should be described succinctly and therefore
deliver the key message of the design pattern.

Diagram(optional): Depending on the current problem,
an appropriate medium is to be chosen to illustrate and
summarize the design solution. The diagram also servers as
reading and understanding help and thus provides keeping
an overview of the pattern during a quick scan of the pattern
language. Additionally, the diagram is intended to assist in
remembering the design solution.

Evidence in Literature*: Besides examples that already
provide some evidence for a working solution, we regard

64

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

references in literature as very important for supporting
the design recommendation inside a pattern. That way,
application designers and researchers have another way of
judging a design pattern besides the collaborative ranking
mechanism described above. They can strengthen or weaken
the design patterns statement by a custom literature research
or custom evaluations that were published. Welie presents a
similar concepts on his website where links to literature and
a section for discussions are available [28].

Currently, design knowledge can be taken from literature
and existing design pattern languages or best practices. In the
large scope of UbiComp application design, the gap between
knowledge in literature and (not yet) existing design patterns
could be bridged.

As time passes, it could even happen that a pattern
for design recommendation can be turned into an anti-
pattern and vice versa, depending on evaluations, ranking
and findings in application and research.

References*: These are pointers to other patterns of
interest. In the pattern language approaches so far, the reader
was encouraged to have a look at the referred patterns.
The successors were mostly more detailed descriptions of
a design concept based on size [9], time [10] or technical
implementation level [12]. We extend the concept in three
ways:

« By introducing decisions, only a subset of followers
can be chosen by the readers. After choosing a subset
of linked patterns, other successors may no longer be
of interest for the pattern sequence.

« Additionally, the reader is supported by most-read
successors based on the reading choice of others. This
way, well-proven pattern combinations and sequences
can be defined.

« It also has to be checked whether a certain reference
is still valid. Earlier decisions may have cancelled out
certain references. This is a big difference compared
to the other pattern language approaches. Here, the
hierarchy was mainly used for the grade of detail.

Decision-attribute®: If set, this new feature indicates a
choice that needs to be made by the reader for the references
leading to the current patterns successors. In order to capture
a wide application domain, the pattern language needs ways
to differentiate between alternatives. They concentrate on
certain aspects of application design contexts, e.g., private
vs. public information display or personal vs. shared devices.

Depending on the choice, a subset of following design
patterns is available; others are cancelled out for that design
property.

Anti-Pattern-attribute*: The intended pattern language
approach also incorporates the explicit formulation of anti-
patterns besides design patterns.

Marked as an anti-pattern the described design approach
should be read as a DON’T rule for design. It is important

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

that not every failed approach is documented by an anti-
pattern. Thus, only surprising, non-trivial results should
be documented supporting application designers that might
have a similar idea to avoid the same design flaw.

Additionally, anti-patterns can also provide ideas for alter-
native concepts; once the application designer has followed
a pattern sequence, she could also think of changing some
parameters. An already formulated anti-pattern could help to
avoid an already disproven idea and to try out yet another
concept.

Counter-attribute*: The counter attribute is intended to
keep track of pattern combinations indicating the strength
of relation between the current pattern and its predecessors
and its successors, respectively. The more frequent a pattern
combination is selected by readers, the stronger the relation
between them could be.

Accompanied by the ranking of each pattern, statements
about pattern combinations and pattern sequences could be
made.

VI. SUMMARY

In this work, we addressed the requirements for establish-
ing a pattern language structure for UbiComp application
design as proposed in [2]. Based on existing concept from
architectural, HCI and HCHI design patterns formulated by
[9], [10], [12], we formulated new features for the existing
pattern language structures.

The intention is to widen the application scope and to
involve the community reading and working with given pat-
terns and providing ways to express the feedback by rating
and refining existing patterns or contributing new findings
as patterns to be integrated into the pattern language.

In order to integrate patterns into the structure, the tra-
ditional pattern structure was extended by new features or
existing features were partially refined to fit into the scope
of the intended pattern language approach.

The extended pattern language concepts and pattern struc-
ture will result in a collaborative community platform, called
Pattern Management System (PMS), incorporating rules and
processes for changing and refining existing patterns as well
as ways to contribute new application design knowledge as
patterns.

VII. FUTURE WORK

Future work will cover the following steps that build on
top of each other:

Firstly, an initial set of UbiComp application patterns will
be formulated and arranged in the pattern language.

Secondly, a first version of an online community portal to
read and rate the existing patterns will be deployed.

Thirdly, rules and processes for rating, discussing, refining
and contributing to the pattern language will be formulated
and implemented. The intention is to support pattern authors
willing to extend or modify the existing structure. The

65

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

mechanisms for the pattern discussion and refinement will
be based on the concepts applied during writers workshop
at Pattern-Language of Patterns (PLoP) conferences [27].

Currently, we also explore ways to implement the pattern
and pattern language structure based on ontologies.

ACKNOWLEDGMENT

Irina Astrovas work was supported by the Estonian Centre
of Excellence in Computer Science (EXCS) funded mainly
by the European Regional Development Fund (ERDF). René
Reiners’ work was supported by the European Commission
within the FP7-SECURITY project BRIDGE (no. 261817).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific
American, vol. 265, no. 3, pp. 94-104, 1991.

[2] R. Reiners, “Towards a Common Pattern Language for Ubi-
comp Application Design - A Classification Scheme for
Ubiquitous Computing Environments -,” in Proceedings of
the International Conferences on Pervasive Patterns and
Applications (PATTERNS 2010), IARIA Conference. City,
Portugal: Think Mind(TM) Digital Library, Nov. 2010, pp.
28-33.

[3] R. Ballagas, S. Kratz, and E. Yu, “REXplorer: A Mobile,
Pervasive Spell- Casting Game for Tourists,” Architecture, pp.
1-6, 2007.

[4] N. Henze, R. Reiners, X. Righetti, E. Rukzio, and S. Boll,
“Services surround you,” The Visual Computer, vol. 24, no.
7-9, pp. 847-855, Jul. 2008.

[5] R. Wetzel and L. Lindt, “The Magic Lens Box: Simplifying the
Development of Mixed Reality Games,” pp. 479-486, 2008.

[6] J. Schoning, M. Rohs, and S. Kratz, “Map Torchlight: A Mo-
bile Augmented Reality Camera Projector Unit,” Information
Systems, 2009.

[7]1 R. Reiners, M. Jentsch, and C. Prause, “Interaction Metaphors
for the Exploration of Ubiquitous Environments,” in Scenario.
Brussels, Belgium: International Conference “"ICT that Makes
the Difference”, 2009.

[8] R. Reiners and V. N. Wibowo, “Prototyping an Extended
Magic Lens Interface for Discovering Smart Objects in a
Ubiquitous Environment,” in Proceedings of the IADIS Inter-
national Conference Applied Computing 2009, W. Hans and
P. T. Isaias, Eds., IADIS. Rome: IADIS Press, Nov. 2009.

[9] C. Alexander, A Pattern Language: Towns, Buildings, Con-
struction. New York, New York, USA: Oxford University
Press, 1977.

[10] J. Borchers, A Pattern Approach to Interaction Design, 1st ed.
John Wiley & Sons, 2001.

[11] J. Tidwell, Designing Interfaces, 1st ed.
2005.

O’Reilly Media,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

[12] T. Schiimmer and S. Lukosch, Patterns for Computer-
Mediated Interaction. Chistester, West Sussex, England:
John Wiley & Sons, 2007.

[13] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design

Patterns. Elements of Reusable Object-Oriented Software,

Ist ed. Amsterdam: Addison-Wesley Longman, 1995.

[14] S. Montero, P. Diaz, and 1. Aedo, A Semantic Representation

for Domain-Specific Patterns. Springer-Verlag, 2005, pp.

129-140.

[15] J.-M. Rosengard and M. F. Ursu, Ontological Representations

of Software Patterns. Springer Berlin / Heidelberg, 2004, vol.

3215, pp. 31-37.

[16] D.-K. Kim, R. France, S. Ghosh, and E. Song, “A UML-

Based Metamodeling Language to Specify Design Pat-

terns,” in Proceedings of the Workshop Software Model Eng.

(WiSME) with Unified Modeling Language Conf. 2003, 2003.

[17] G. Sunyé, A. L. Guennec, and J.-M. Jézéquel, “Design Pattern

Application in UML,” in Proceedings of the 14th European

Conference on Object-Oriented Programming (ECOOP ’00).

London, UK: Springer-Verlag}, 2000, pp. 44-62.

[18] M. Fontoura and C. Lucena, “Extending UML to Improve

the Representation of Design Patterns,” Journal of Object-

Oriented Programming, vol. 13, pp. 12-19, 2001.

[19] (2011, July). [Online]. Available: http://uml.org

[20] L. Pavli¢, M. Hericko, V. Podgorelec, and I. Rozman, “Im-
proving Design Pattern Adoption with an Ontology-Based
Repository,” Informatica, vol. 33, pp. 189-197, 2009.

[21] A. Cornils and G. Hedin, “Tool support for design patterns
based on reference attribute grammars,” in Proceedings of
WAGA’00, Ponte de Lima, Portugal, 2000.

[22] A. H. Eden, A. Yehudai, and J. Gil, “Precise Specification
and Automatic Application of Design Patterns,” in /12th IEEE
International Conference on Automated Software Engineering
(ASE’97) (formerly: KBSE), 1997.

[23] J. M. Smith, D. Stotts, and C. Hill, “Elemental Design
Patterns : A Link Between Architecture and Object Semantics
Elemental Design Patterns - A Link Between Architecture and
Object Semantics,” 2002.

[24] T. Taibi, “Formal Specification of Design Patterns - A Bal-
anced Approach,” Journal of Object Technology, vol. 2, no. 4,
pp. 127-140, 2003.

[25] (2011, July). [Online]. Available: http://semanticweb.org/
wiki/Main_Page

[26] R. Reiners, “An Extended Pattern Language Approach for
UbiComp Application Design,” in Bonner Informatiktage,
2011.

[27] (2011, July). [Online]. Available: http://www.hillside.net

[28] (2011, July).

patterns/

[Online]. Available: http://www.welie.com/

66

