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Abstract—This paper applied a novel method to live 3D object 
reconstruction. Provided that static 3D reconstruction has been 
completed with basic frames, the proposed linear method 
calculates free 3D motion of a rigid-body in a video sequence, so 
as to display the moving object. The succinct method does not 
involve the fundamental matrix, and the point correspondence 
procedure in 3D reconstruction is reused. Least Mean Square 
decomposition is adopted to solve linear equation set and thus 
obtain motion vector. Furthermore, an iterative process enables 
the method to eliminate outliers. Sufficient experiments proved 
the validity and efficiency of the method. 

Keywords-3D motion; volumetric display; point correspondence; 
linear equation set; QR decomposition. 

I.  INTRODUCTION 

Estimating rigid-body 3-D motion parameters from two 
or more images of an image sequence has been extensively 
studied for a long time in the field of computer vision. It can 
be tracked down to the 1970s, when early researches proved 
that three views are necessary to recover motion from an 
orthographic camera projection model, and that  two views are 
enough to estimate motion from full perspective projection [1].  

In 1989, Weng, Huang and Ahuja [2] gave a detailed 
discussion on motion estimation from two views of full 
perspective projection, and proposed the classic 8-point 
algorithm, namely to utilize the epipolar geometric constraint, 
estimate the basic matrix from feature points (matrix E in [2]), 
and then obtain 3D motion parameters from the basic matrix. 
From then on, to overcome its sensitivity to noise, a large 
number of improved methods were proposed, including 
American researcher Hartley’s Improved 8-point Algorithm 
which standardizes 2D data. Except from methods based on 
point feature, researchers also proposed various methods based 
on line feature [4] [5], point feature and line feature combined, 
optic flow [6] [7] and methods using multiple frames and 
iterative algorithm [8] [9] [10]. 

Nevertheless, the methods mentioned above are integrated 
methods of 3-D motion estimation from two (or more) images 
without any prior knowledge of the object. In general, how to 
apply the epipolar geometric constraint is a key problem. As 
for methods based on point feature, recent works focus on 
error analysis and control (e.g., [1] [11] [12]), or on better 
estimation of the fundamental matrix [13] [14] [15], all of 
which inevitably engage the fundamental matrix. The most 
recent and relevant work in [16] described 2-frame recovery of 

structure and motion using uncalibrated cameras. This is 
somewhat similar to Han-Kanade’s method in [17].  

To perform live 3D object reconstruction, we intend to 
display moving 3D object in accordance with real pictures 
from live videos. However, adopting Han-Kanade 
reconstruction to video sequences over time would be too 
time-consuming. In our scheme, static 3D reconstruction is 
performed only at intervals, while motion vector is calculated 
and added to the static model at any time during the intervals. 
This paper proposed a linear method to calculate motion alone 
instead of both motion and structure, added the motion to the 
original 3D object, and then displayed it from whatever view 
the spectator prefer.  

Once static 3D reconstruction has been completed, we 
know the 3D coordinates corresponding to 2D feature points 
in image t0, and we also know new 2D coordinates of those 
points in image t1 through image matching. It is convenient 
for us to match images, since it is a step in 3D reconstruction. 
With these data we know, 3D motion parameters can be 
calculated already, and there is no need to use the integrated 
methods in the above articles. In other words, we have 
obtained enough information of 2D mapping 3D object so 
there is no need for the epipolar constraint. In theory, with 3D 
reconstruction completed, 3 point pairs from 2 views can 
recover 3D motion when motion is small. This paper gives 
Approximate Algorithm applicable to small motion, and also 
Universal Algorithm applicable to any motion. Frame rate of a 
video is greater than 25 fps, and motion between two close 
frames are quite small; therefore, if the two images under 
estimation t0, t1 are two successive (or close) frames in the 
video sequence, the Approximate Algorithm is adequate 
enough for motion estimation. Part Ⅲ  of this paper 
demonstrates experiments on both algorithms, and compares 
them with work in [17] (similar to [16]). 

 

II. THEORY AND ALGORITHM 

A. Camera model: affine camera  

2D coordinates and 3D coordinates obey: 
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Use m point pairs from camera 1 (or view 1) and k point 
pairs from camera 2 (or view 2), on the condition that 

, ( , 1)n m k m n    ( , 1m n  ). In theory, 3 point pairs 

from two views are enough for solving the equation set. When 

n 3, we need to solve an equation set to derive the results. 
After 3D reconstruction with image t0 and image matching 
between image t0&t1, we can obtain a large number of feature 
point pairs. To exploit the information we have, we first use 
all point pairs to estimate motion. To enhance the algorithm’s 
robustness, use the initial motion matrix for reprojection, 
compare the results with real 2D coordinates in image t1, and 
eliminate outliers whose errors are larger than threshold 10 
(experiment shows error is normally less than 5, if error >10 
appears, it is probably an outlier). Appearance of outliers may 
be the result of wrong matching. 

Second step : solve the equation set by least mean square 
error principle.   

To solve the equation set by least mean square error 
principle, QR decomposition method is adopted in this paper.  

Because of the existence of error, Ax b   . The problem 
equates solving x that minimizes norm 2

2
 . We can find Q

that obeys
R

QA
O


 
 
 

, where Q  is an orthogonal matrix and R

is a nonsingular upper triangular matrix. 
2

2 2 2
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. It is 

a column vector, and thus 2 2

1 22 2
Rx b b   . Notice that 

2

2 2
b is constant; therefore, the original problem of minimizing 

2

2
Ax b converts to minimizing 2

1 2
Rx b , namely 1Rx b =0. 

Thus, we have obtained x vector. For equation set (13), x=

1 2 3 1 2 3( , , , , , )Tt t t    

D. Universal Algorithm 

If there is no small-angle approximation, we can write 
equation set as follows: 
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(15) 

Use m point pairs from camera 1 (or view 1) and k point 
pairs from camera 2 (or view 2), on the condition that 

, ( , 1)n m k m n   . The method of solving equation set is 
the same as Approximate Algorithm. For equation set (15), 

11 21 31 12 22 32 13 23 33 1 2 3( , , , , , , , , , , , )Tx r r r r r r r r r t t t . 

For Universal Algorithm, to ensure A has full rank, at least 
4+4=8 pairs of feature points are needed. 

III. EXPERIMENTAL VALIDATION 

Validity of the proposed algorithm was verified by 
MATLAB experiments. We used images caught by 2 cameras. 

Below are the steps of the algorithm. 
-------------------------------------------------------------------- 
1. {3D Reconstruction} 
2. {Match image t0 and t1. Obtain 2D coordinates of feature points in t1.} 
3. {Binocular Vision: 3D reconstruction and image matching for 2 cameras} 
4. {Initialization: input m pairs of camera1 and k pairs of camera2)} 
5. {Turn motion estimation into solving equation set. Every point pair 
gives 2 equations. } 
6. {Solve equation set b Ax  under LSQ criterion (by QR decomposition).} 
7. {Reproject with derived M, compare 2D results to real 2D coordinates.}  

If (Errors of all points are under threshold) then 
{Eliminate point pairs whose errors exceeds threshold. 
 Go to 5, repeat 5, 6, and 7} 
Else {Give final results} 

8. {Live Display of 3D Object} 

-------------------------------------------------------------------- 

A. 5°around axis x (both algorithms) 

A box was known to have rotated an angle of 5°. For 
simplicity, the motion in our experiment only had rotation 
component. That is, t1, t2 and t3 in the translation matrix 
should be all zeros in theory, and the emphasis of result should 
be the rotation matrix. First, the Approximate Algorithm was 
tested. Second, the Universal Algorithm, which is rigorous, 
was tested. According to (6), 23 33arctan( / )x r r   . 

We adopted two images shown in Figure 2. Reconstruct 
image t0 in 3D space, and match image t0 and t1, we obtained 
318 point pairs from camera 1in all. Similarly, we obtained 
246 point pairs from camera 2 in all.  

Experiments with different input numbers of point pair n 
were conducted. Input point pairs were results of equal-
interval sampling from all point pairs. The calculated t1, t2, t3 
were all approximately zeros; calculated

x is demonstrated in 

Figure 3. 
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more difficulties on image matching because of wider baseline 
between every two camera. This directly affects 3D 
reconstruction. The proposed method, on the other hand, costs 
less than one second with same number of input points. (Same 
to Han-Kanade method, this does not include the time for 
display, making it a fair comparison) Evidently, it would save 
a great deal of time in case of long video sequence if we 
recover motion using proposed method, rather than recover 
structure and motion simultaneously over time. 

E. Simple error analysis 

Errors include: (1) Quantization error. Quantization error 
exists throughout the whole process of computer vision 
including motion calculation problem in this paper. (2) 3D 
reconstruction errors, including multi-view correspondence 
error, etc. As input of motion vector calculation, 3D 
reconstruction with errors will lead to errors in the motion 
vector. (3) Error in matching image t0 and t1. Finite pixel 
resolution may introduce error, and matching algorithm could 
also influence accuracy in 2D coordinate of image t1. 

Additionally, camera calibration and computational 
accuracy have little effects on results of our method. In our 
method, 3D reconstruction is based on uncalibrated cameras, 
and motion calculation does not involve calibration either. 
Computational accuracy of MATLAB is more than 40 decimal 
places; therefore, truncation error has no influence on our 
results. 

 

IV. CONCLUSION AND FUTURE WORK 

Several conclusions can be drawn from the experiment 
results.  

Firstly, the correctness and feasibility of the proposed 
algorithm are verified. For the Approximate Algorithm, 
exactly 3 point pairs are needed for motion estimation. Of 
course, the result depends largely on the selected 3 point pairs, 
and is too sensitive and unstable.  

Secondly, the algorithm is stable and robust when there is 
enough input data, as results are obtained on a unanimous 
ground. The algorithm can eliminate outliers to a certain 
extent.  

Thirdly, since the algorithm merely calculates motion 
vector but not simultaneously recover motion and structure, it 
is quite succinct. Time cost depends on the number of point 
pairs. For a typical experiment with about 200 point pairs each 
camera, both the Universal Algorithm and the Approximate 
Algorithm cost less than a few second. Thus, static 3D 
reconstruction can be performed only at intervals, while 
motion vector is calculated and added to the static model at 
any time during the intervals. Compared to conducting 3D 
reconstruction over time, this scheme will save much time. 

Future work will concentrate on the following several 
aspects: 

Selecting a proper interval between every two times of 
motion vector calculation: strike the balance between time 
consumption and necessity; 

Improving the continuity of real-time display, perhaps by 
interpolating;   

Testing cases when motion calculation is limited by  
wide-baseline image matching ， in order to find out the 
limitation of application. 
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