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Abstract—This paper applied a novel method to live 3D object
reconstruction. Provided that static 3D reconstruction has been
completed with basic frames, the proposed linear method
calculates free 3D motion of a rigid-body in a video sequence, so
as to display the moving object. The succinct method does not
involve the fundamental matrix, and the point correspondence
procedure in 3D reconstruction is reused. Least Mean Square
decomposition is adopted to solve linear equation set and thus
obtain motion vector. Furthermore, an iterative process enables
the method to eliminate outliers. Sufficient experiments proved
the validity and efficiency of the method.
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. INTRODUCTION

Estimating rigid-body 3-D motion parameters from two
or more images of an image sequence has been extensively
studied for a long time in the field of computer vision. It can
be tracked down to the 1970s, when early researches proved
that three views are necessary to recover motion from an
orthographic camera projection model, and that two views are
enough to estimate motion from full perspective projection [1].

In 1989, Weng, Huang and Ahuja [2] gave a detailed
discussion on motion estimation from two views of full
perspective projection, and proposed the classic 8-point
algorithm, namely to utilize the epipolar geometric constraint,
estimate the basic matrix from feature points (matrix E in [2]),
and then obtain 3D motion parameters from the basic matrix.
From then on, to overcome its sensitivity to noise, a large
number of improved methods were proposed, including
American researcher Hartley’s Improved 8-point Algorithm
which standardizes 2D data. Except from methods based on
point feature, researchers also proposed various methods based
on line feature [4] [5], point feature and line feature combined,
optic flow [6] [7] and methods using multiple frames and
iterative algorithm [8] [9] [10].

Nevertheless, the methods mentioned above are integrated
methods of 3-D motion estimation from two (or more) images
without any prior knowledge of the object. In general, how to
apply the epipolar geometric constraint is a key problem. As
for methods based on point feature, recent works focus on
error analysis and control (e.g., [1] [11] [12]), or on better
estimation of the fundamental matrix [13] [14] [15], all of
which inevitably engage the fundamental matrix. The most
recent and relevant work in [16] described 2-frame recovery of
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structure and motion using uncalibrated cameras. This is
somewhat similar to Han-Kanade’s method in [17].

To perform live 3D object reconstruction, we intend to
display moving 3D object in accordance with real pictures
from live videos. However, adopting Han-Kanade
reconstruction to video sequences over time would be too
time-consuming. In our scheme, static 3D reconstruction is
performed only at intervals, while motion vector is calculated
and added to the static model at any time during the intervals.
This paper proposed a linear method to calculate motion alone
instead of both motion and structure, added the motion to the
original 3D object, and then displayed it from whatever view
the spectator prefer.

Once static 3D reconstruction has been completed, we
know the 3D coordinates corresponding to 2D feature points
in image t0, and we also know new 2D coordinates of those
points in image t1 through image matching. It is convenient
for us to match images, since it is a step in 3D reconstruction.
With these data we know, 3D motion parameters can be
calculated already, and there is no need to use the integrated
methods in the above articles. In other words, we have
obtained enough information of 2D mapping 3D object so
there is no need for the epipolar constraint. In theory, with 3D
reconstruction completed, 3 point pairs from 2 views can
recover 3D motion when motion is small. This paper gives
Approximate Algorithm applicable to small motion, and also
Universal Algorithm applicable to any motion. Frame rate of a
video is greater than 25 fps, and motion between two close
frames are quite small; therefore, if the two images under
estimation t0, t1 are two successive (or close) frames in the
video sequence, the Approximate Algorithm is adequate
enough for motion estimation. Part III of this paper
demonstrates experiments on both algorithms, and compares
them with work in [17] (similar to [16]).

Il. THEORY AND ALGORITHM

A. Camera model: affine camera

2D coordinates and 3D coordinates obey:
Xl
Yl

-p) (2)
1

-
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way of linear mapping from 3D space to 2D plane.

It should be noted that affine camera is the approximation
of real cameras. It is applicable only when the depth changes
of the interested object can be neglected compared to its
depths.

B. Motion model of rigid-body
In 3D space, motion of rigid-body between two positions
can be decomposed to rotation and translation. Rotation of
rigid-body in 3D space can be described by a 3 x 3 matrix R,
and translation can be described by a 3 x 1 matrix T.
4 hy T g
T=|t| R=|r; b, Iy

t I I

3 r.31 32 33
’

Let 3D coordinates of any feature point in image t0 be
(X,Y,z,) ,» and coordinates of this point in image t1 be

(x.v,,z. - The motion between t0 and t1 can be represented
by:

Xll Xl
vl &)
Zl’ Zl
1 1
where the motion matrix is
e s
M — |:R T:| _ r21 I’.22 r.23 t2 (3)
O 1 r31 r32 r33 t3

Note that an important property of rigid-body is, under a
certain coordinate system, any point of the body has the same
motion, i.e., the motion matrix. That is, every point pair obeys
equation (2).

Although rotation matrix has 9 elements, it is an orthogonal
matrix and subjects to 6 independent constraints:

3 3
SrP=11=12,3) D hr, =03 j=123)
j=1 k=1

Therefore, there are only 3 independent parameters. Among
various ways of expressing R by 3 independent parameters, the
following 2 ways are commonly used:

(@) AXxis-angle representation
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r,=cosd+(1-cosd)n’

r, =(-cosé@)nn, —(sind)n,
r,=(-cos@)nn, +(sind)n,
r,=(@-cos@)nn, +(sind)n,
r, = coséd + (L-coséd)n,?

r, =(1-cos@)n,n, - (sind)n,
r,, = (1-cos@)n,n, —(sind)n,
r, = (1—-cos@)n,n, + (sind)n,

r; = €0s @ + (1—cosd)n,’

®)

The 3D vector from the origin (0,0,0) to (n,n,,n,)
represents the axis the rigid-body rotates around. The angle it
rotates is 9 .

(i) Roll, Pitch and Yaw representation
cos6), cos, —00sd),sing, sing,
R=| sing,sing, cosg, +cosg,sing,  —sing,sing,sing, +cos6) cose,  —sing, cosd,
—00s6)sing), cosd, +sing,sing,  cosg,sing,sing, +sing, cos6,  cos6, cos6),

(6)
X
{ ) [ Roll
M, Nz, N
] z o
2 Yaw
> G >
Y o Y
Pitch

(a) left: Angle-axis way of expressing 3D motion
(b) right: Roll-Pitch-Yaw way of expressing 3D motion
Figure 1. Two common way of expressing 3D motion

C. Solve the motion problem

Moation estimation can be completed in 2 steps.
First step: convert the problem of estimating motion to solving
equation set.

x, >\<(1 X >$1 )\((1. >\<(1
From|y, [=P|_'|, |v,'|=P|_" |and | _* |=Mm]|_*
Zl Zl’ Zl’ Zl
1 1
1 1 1] 1
.
X, Yl
we have: y,"|=PM zl (7)
1 1
1 .

Every point pair gives 2 equations:

Xll = plA + plltl + p12t2 + p13t3 + Xl( pllrll + p12r21 + p13r31)
+Y1( p11r12 + p12r22 + p13r32) + Zl( p11|’13 + p12r23 + p13r33)
yll = p24 + letl + p22t2 + p23t3 + Xl( p21r11 + p22r21 + p23|%1)
+Y1( p21r12 + p22 r22 + p23r32) + Zl( p21r13 + p22 r23 + p23r33) (8)
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If motion is small enough for small-angle approximation, and Pu' Pp' P Py
if the Roll-Pitch-Yaw representation is adopted, the rotation P=|Py' Pn' Po' Pu'
matrix is simplified to: 0o 0 o0 1
We have:

1 -nd nd 1 -4 4 X P XPu VP —ZPs | [YiPa=ZP: ZPu-XPs  XPYiP P P R |4

R=n# 1 -nél=|¢ 1 -4 NP X NP 2Py | (MPs—ZPr ZPaXPs  XPYiPy Pa P Ps |4

_ _ : _ : )

no no 1 6 4 1 ) ) = ) .

=P =X YoPe 2’ | | YaPs=ZRs ZBa X Xl YR P P Ps'| b

1

where (n,6)? + (n,0)* + (n,0)? = 67 16 §2+ g2 + 42 =67 (10)  Dh=PaXpaVopZps'| [NPZpo' 2R X' X' YoPs' P’ Po' P

Rewrite the equation set (8): (13)

The matrix on the left is denoted as b . The matrix on the
F._pl —Xll%l—YPJz—ZlBﬂ {Yl%—zlgz ZP-XP XP-Yis Py Py lﬂ 4 right is denoted as A, X successively. The rank of A can be

VP XBy YD -ZBs | VP2 ZPa-XiPy XP-YDs PBx By Palt quiltart?gztsr;ct)w. Thus, estimating motion is converted to solving

b= Ax (14

Multiple point pairs can give equation set:

X=X NP —4Rs | [WRZR, ZRXP XPYR B P P[4

VP XP P 4R | [YPs—4P 4PaXPr XPoYPx Py P Ps (4
L

X=X Y20 | (YR ZR—XBs XP—YR B R Bsft

WP X Pa WPy ~ZPa] (NP5 2Py ZPuXPs XPoYPu Pa B Balt] (1)
The first matrix on the right side of the above equation is
written down as A, which has a rank of no greater than 5. This
is due to the limitation of single camera, because the camera
cannot give information of depth along its optical axis. Below
is the proof:

Observe matrix A. We can see the odd rows of the right
three columns are identical to each other, and so are the even
rows. Elementary row transformation operations are applied
to A. Eliminate the right three columns of Row 2i-1 with the
first row, and those of Row 2i with the second row (i=2,3---
n):

_Yl Pis — Zl P1. Zl Pu — X 1P13 X 1P — Y1 P11 P P Pis
Y1 P2s — Zl P2, Zl P21 — X1 P2s lezz _Y1 P2i P2 P2 P23
: 0 0 0

: 0 0
an13_znp12 Zn P — an13 Xn plZ_anll 0 0
_Yn Pos — Zn P2, Zn P2 — Xn Pa2s X 0 P2 7Yn P2y 0 0 0 (12)

Of the obtained matrix (12), the right three columns as a
sub-matrix has a rank of 2 at most, because there are only 2
nonzero rows; the right three columns as a sub-matrix has a
rank of 3 at most. So maxim rank of matrix (12) is 5.
Elementary row transformation operations do not change the
rank of matrix, so matrix A has a rank of 5 at most.

From the above we know motion estimation of rigid-body
need at least 2 cameras. Let the projection matrix of the
second camera be:

(b) Matched point pairs in image t0 (left) and t1 (right) from camera 2
Figure 2. Matched point pairs in image t0 and t1 from cameral and 2
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Use m point pairs from camera 1 (or view 1) and k point
pairs from camera 2 (or view 2), on the condition that

n=m+k,(mn=>1) (mn=>1). In theory, 3 point pairs
from two views are enough for solving the equation set. When

n=3, we need to solve an equation set to derive the results.
After 3D reconstruction with image t0 and image matching
between image t0&t1, we can obtain a large number of feature
point pairs. To exploit the information we have, we first use
all point pairs to estimate motion. To enhance the algorithm’s
robustness, use the initial motion matrix for reprojection,
compare the results with real 2D coordinates in image t1, and
eliminate outliers whose errors are larger than threshold 10
(experiment shows error is normally less than 5, if error >10
appears, it is probably an outlier). Appearance of outliers may
be the result of wrong matching.

Second step : solve the equation set by least mean square
error principle.

To solve the equation set by least mean square error
principle, QR decomposition method is adopted in this paper.

Because of the existence of error, Ax=b+¢& . The problem
equates solving x that minimizes norm |,”. We can find Q

R
that obeys QA = (Oj' where Q is an orthogonal matrix and R

[ol-=,
A

Notice that

is a nonsingular upper triangular matrix.
2

"AX - b"z2 = "Q(AX - b)"z2 = "QAX - Qb"z2 =

2
Write Qb = [ﬂ then we have|Ax-b]," = tis

2

a column vector, and thus =||Rx—b,[|,” +|[b,|," -
[Ib, |, is constant; therefore, the original problem of minimizing
|| A —b]|,” converts to minimizing [Rx —b,|,”, namely Rx — b, =0.

Thus, we have obtained x vector. For equation set (13), x=
CR AR

D. Universal Algorithm

If there is no small-angle approximation, we can write
equation set as follows:

[%=pe ] [XPy X XPs YiPu
VP | | XPx XiP XPs YiPa

YP: YiPs ZP: ZPr Z4Ps Pu P Ps
VP, YiPs ZPy ZPr ZPs Pu Pz Py

b

bt PR Y TR o PR e PR O PR S P 1 PRNAY RN PRAY s PO T P+ % 2
L =Pa'] (X" XiB' XiPs' YoPa' YiBn' YiPs' ZiPn' ZiBn' ZPs' Pa' Py Pz:z'_tg
(15)
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Use m point pairs from camera 1 (or view 1) and k point
pairs from camera 2 (or view 2), on the condition that

n=m+Kk,(m,n>1). The method of solving equation set is
the same as Approximate Algorithm. For equation set (15),

_ T
X= (rgl.l' r-21' r-31’ rZ‘I.2' r-22’ r‘32’ I?I.S’ r23' r33’t1’t2't3) .

For Universal Algorithm, to ensure A has full rank, at least
4+4=8 pairs of feature points are needed.

1. EXPERIMENTAL VALIDATION

Validity of the proposed algorithm was verified by
MATLAB experiments. We used images caught by 2 cameras.
Below are the steps of the algorithm.

1. {3D Reconstruction}
2. {Match image t0 and t1. Obtain 2D coordinates of feature points in t1.}
3. {Binocular Vision: 3D reconstruction and image matching for 2 cameras}
4. {Initialization: input m pairs of cameral and k pairs of camera2)}
5. {Turn motion estimation into solving equation set. Every point pair
gives 2 equations. }
6. {Solve equation set b= Ax under LSQ criterion (by QR decomposition).}
7. {Reproject with derived M, compare 2D results to real 2D coordinates.}
If (Errors of all points are under threshold) then
{Eliminate point pairs whose errors exceeds threshold.
Go to 5, repeat 5, 6, and 7}
Else {Give final results}
8. {Live Display of 3D Object}

A. 57 around axis x (both algorithms)

A box was known to have rotated an angle of 5° . For
simplicity, the motion in our experiment only had rotation
component. That is, t1, t2 and t3 in the translation matrix
should be all zeros in theory, and the emphasis of result should
be the rotation matrix. First, the Approximate Algorithm was
tested. Second, the Universal Algorithm, which is rigorous,
was tested. According to (6), 8, =arctan(-r,, /1) .

We adopted two images shown in Figure 2. Reconstruct
image t0 in 3D space, and match image t0 and t1, we obtained
318 point pairs from camera 1in all. Similarly, we obtained
246 point pairs from camera 2 in all.

Experiments with different input numbers of point pair n
were conducted. Input point pairs were results of equal-
interval sampling from all point pairs. The calculated t1, t2, t3
were all approximately zeros; calculated g is demonstrated in
Figure 3.

approximate algorithm and universal algorithm

T
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| | —°— approximate
- T I
| |
e T Lo a4
—~ | |
3 P
> it et el
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T Al -
8’ | |
© | |
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| |
[ [
| |
1 1
400 500 600
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Figure 3. Experiments with different number of input point pairs

As shown, when input point pairs are barely enough for
calculation, results are greatly influenced by the choice of input
data, and are unreliable; however, when there are enough input
data, both the Approximate Algorithm and the Universal
Algorithm can give stable results (5.4 and 5.3). When input
number of point pairs is greater than 200 (two cameras), for the
Approximate Algorithm, fluctuations of results do not exceed
0.05 / 5.4=0.9%, and for the Universal Algorithm, fluctuations
are within 0.06 / 5.2559= 1.2%.

It was also verified that reprojection errors were almost all
less than 2 pixels along any axis in the image for 318+246=564
point pairs. Figure 4 shows an example of reprojection errors
along x axis. In addition, the algorithm can eliminate outliers,
whose reprojection errors are greater than threshold 10, thus
guaranteeing stable and robust results.

Figure 4. reprojection errors distribution

B. 10 ° around axis x (Universal Algorithm only)

The box was known to have rotated about 10° around axis
X in Figure 1. Similar to experiment 1, there was merely
rotation component of the motion. Only the Universal
Algorithm can be applied. 210 point pairs from camera 1 and
168 pairs from camera 2 were used. The calculated angle was
10.6700.

C. Live display of 3D object

(a) camera 1
Above: original. Below: rotated.
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(b) camera 2
Above: original. Below: rotated.

Figure 5. comparison Of real object and displayed object

Our process of live display of 3D object is as follows: (i)
Add the calculated motion to the original 3D object which has
been reconstructed, i.e. apply equation (2) to all points on the
object. (ii) Connect all points in meshes to obtain the surface.
(iii) Attach the texture of the original object to the meshed
surface.

Figure 5 shows 10° rotation of real object and displayed
object from 2 views in experiment B. (a) presents the pictures
from camera 1 and, and (b) presents those from camera 2. The
left column shows real pictures shoot by corresponding
cameras. The middle column shows 3D object grids before
attaching texture. The right column shows displayed object
with texture attached.

As shown, from both views, the displayed object accords
with its prototype in real world.

3D object can be displayed in free-angle as long as the
original object is entirely reconstructed. We can reconstruct
the object using 3 frames of a video sequence, and display any
frame within certain range of the video sequence. The range is
decided by the maximum angle of image matching.

D. Comparison with recent work and merits discussion

To further study accuracy of the proposed method, control
experiments were conducted from many different viewpoints.
We adopted Han-Kanade method [17] to reconstruct a stereo-
object as well as recovering motion, and then adopted the
proposed method to calculate motion using same input points.
As shown in Figure 6, our method is comparable to Han-
Kanade method in terms of precision.

control experiment
| | I
| | —&— proposed
| | —— Han-Kanade
theoretical precise value |
T T T T

angle(degree)
o

number of times
Figure 6. comparison with Han-Kanade method (same input point pairs)

Thorough recovery of 3D structure and motion from
uncalibrated cameras is quite time-consuming. On a personal
computer of 2.4GHz master frequency, it cost 5~10 minutes
for one time of 3-frame reconstruction. Stereo reconstruction
from 5 views will take much more time. Moreover, we cannot
reduce the number of cameras, since fewer cameras will bring
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more difficulties on image matching because of wider baseline
between every two camera. This directly affects 3D
reconstruction. The proposed method, on the other hand, costs
less than one second with same number of input points. (Same
to Han-Kanade method, this does not include the time for
display, making it a fair comparison) Evidently, it would save
a great deal of time in case of long video sequence if we
recover motion using proposed method, rather than recover
structure and motion simultaneously over time.

E. Simple error analysis

Errors include: (1) Quantization error. Quantization error
exists throughout the whole process of computer vision
including motion calculation problem in this paper. (2) 3D
reconstruction errors, including multi-view correspondence
error, etc. As input of motion vector calculation, 3D
reconstruction with errors will lead to errors in the motion
vector. (3) Error in matching image t0 and tl. Finite pixel
resolution may introduce error, and matching algorithm could
also influence accuracy in 2D coordinate of image t1.

Additionally, camera calibration and computational
accuracy have little effects on results of our method. In our
method, 3D reconstruction is based on uncalibrated cameras,
and motion calculation does not involve calibration either.
Computational accuracy of MATLAB is more than 40 decimal
places; therefore, truncation error has no influence on our
results.

IVV. CONCLUSION AND FUTURE WORK

Several conclusions can be drawn from the experiment
results.

Firstly, the correctness and feasibility of the proposed
algorithm are verified. For the Approximate Algorithm,
exactly 3 point pairs are needed for motion estimation. Of
course, the result depends largely on the selected 3 point pairs,
and is too sensitive and unstable.

Secondly, the algorithm is stable and robust when there is
enough input data, as results are obtained on a unanimous
ground. The algorithm can eliminate outliers to a certain
extent.

Thirdly, since the algorithm merely calculates motion
vector but not simultaneously recover motion and structure, it
is quite succinct. Time cost depends on the number of point
pairs. For a typical experiment with about 200 point pairs each
camera, both the Universal Algorithm and the Approximate
Algorithm cost less than a few second. Thus, static 3D
reconstruction can be performed only at intervals, while
motion vector is calculated and added to the static model at
any time during the intervals. Compared to conducting 3D
reconstruction over time, this scheme will save much time.

Future work will concentrate on the following several
aspects:

Selecting a proper interval between every two times of
motion vector calculation: strike the balance between time
consumption and necessity;
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Improving the continuity of real-time display, perhaps by
interpolating;

Testing cases when motion calculation is limited by
wide-baseline image matching, in order to find out the
limitation of application.
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