
Detection of Generic Micro-architectures on Models

Cédric Bouhours, Hervé Leblanc, Christian Percebois, Thierry Millan

IRIT – MACAO team – University of Paul Sabatier

118 Route de Narbonne

31062 TOULOUSE CEDEX 9 FRANCE

{bouhours, leblanc, percebois, millan}@irit.fr

Abstract— Existing pattern detection methods generally use

code information obtained during reengineering process.

However, none of these methods exclusively works with design

information. In this paper, we propose a novel pattern

detection method based on structural properties of UML

models. This technique allows the detection of any kind of

generic micro-architecture, like design patterns or spoiled

patterns. Since a generic architecture is context-free, the

structure of the searched fragments depends on the use

context. So, our technique uses a structural concordance

paradigm to identify all possible instantiations of a generic

micro-architecture. To increase the precision of the detection,

authorized, prohibited, and optional relations can be directly

precised into the micro-architecture model.

Keywords- Pattern detection. Graph isomorphism. UML Model.

I. INTRODUCTION

Various works aim at identifying fragments representing
correct, incorrect or incomplete instantiations of design
patterns, in order to help the comprehension of existing
designs and to provide a base for possible improvements [1].
To identify characteristic fragments, it is necessary to parse
models, to ensure that the execution time of the algorithm is
adapted to consequent models and to recognize a form that is
approximate or to supplement. This approximation is very
problematic, because it introduces uncertainties into the
research. In the case of design patterns, the designer adapts
the pattern to his problem, obliging the detection methods to
be able to detect every possible form [2]. To render possible
these detections, some tools use source code to identify
complete or distorted versions of design patterns [3]. The
information extracted from the source code augments the
precision of fragment intent and so the pattern detection.

However, during model-driven processes, the
identification of patterns concerns the designer in order to
target specific model fragments. For example, spoiled
patterns allow the detection of fragments substitutable with
design patterns before a coding stage [4]. Thus, we have
conceived a detection method based on UML structural
properties of UML models. Thanks to this method, we are
able to identify instantiations of generic micro-architectures,
like design patterns or spoiled patterns. The first intent of
our detection method concerns the detection of spoiled
pattern, which we present in Section 2. Section 3 presents
the model representation we use to formalize our detection
technique, and takes a stand on our work in relation to
existing graph matching problems. The remainder of the
paper is composed by the techniques used to compute the
detection (Section 4), and some validation tests in Section 5.

The paper ends with a discussion of related works and a
conclusion, in Sections 6 and 7. The main contributions of
this paper are the specification and the implementation of a
generic UML graph matching method able to detect pattern
instantiations whatever their form.

II. SPOILED PATTERN DETECTION

Choosing a good design pattern and ensuring the correct
integration of the chosen pattern are non trivial for a designer
who wants to use them. To help designers, we propose
design inspection in order to detect “bad smells in design”
and models reworking through use of design patterns. The
automatic detection and the explanation of the
misconceptions are performed thanks to spoiled patterns [4].

If we consider that a design pattern is the optimal
reusable micro-architecture for a type of problem, then for
each design problem that is solvable with a design pattern,
the optimal solution is the instantiation of the design pattern.
Moreover, if we consider an alternative solution as a valid
solution but with a different architecture compared to the
optimal solution, then, an alternative solution is an
inadequate solution for a given problem, and is substitutable
with the instantiation of the concerned pattern. A spoiled
Composite pattern is given in Fig. 1.

Figure 1. A spoiled pattern (development of the composition on Composite)

Each spoiled pattern has a name that describes the
misconception: here the development of the composition link
on the composite participant of the pattern. So, there is not a
maximal factorization of the composition which implies
addition or removal of a leaf or a composite need code
modification.

Structurally, a spoiled pattern is represented at the same
level of granularity as a design pattern allowing us to identify
them as design patterns. An alternative fragment is a model
fragment such as its structural properties match with the
structural properties of a spoiled pattern and whose intent
conforms to the corresponding pattern. Then, after the
detection, an alternative fragment can be considered as
potential. The validation of its intent is assumed by the

Component

Leaf Composite

*

*

34

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

designer of the user model. More details on these concepts,
especially the collect, the catalog, the use in a tooled design
review activity, and the refactorings can be found in [12].

The static UML model in Fig. 2 represents a basic
architecture for a file system management. Authors of this
model are interested in the presentation of some object
concepts: inheritance between classes (a uniform protocol
for every FileSystemElement is encapsulated by a
corresponding abstract class) and management of reference
and delegation (there are composition links between
container and components).

Nevertheless, this model contains a misconception.
Although there is a uniform protocol owned by the class
FileSystemElement, the composite links management along a
hierarchical structure is duplicated. Indeed, the Directory
class manages independently links on Files and Directories.
{Directory, File, FileSystemElement} is an exact
instantiation of the Composite spoiled pattern. It is easy for
the designer to see that this fragment has the same intent as
the Composite pattern and to consider it as a bad smell in
design. Furthermore, when the authors have implemented
this model, they realized that there were defects. They
adapted their code to correct them, without changing the
design model. Therefore, the fragment must be substituted
with the instantiation of the composite pattern on the user
model or context.

Figure 2. A File System Management Design

During a process development, it is more interesting to
detect bad smells in design before the coding stage. Indeed,
the model correction is easier and uses less time if the code is
not already written. So, we have conceived a detection
technique working with design information, and without
information issued from reverse engineering process. The
existing techniques use code information issued from their
own reversion methods.

As a spoiled pattern has the same abstraction level as a
design pattern, we consider that they are both “pattern” and
so “generic micro-architecture”. Our detection technique is
able to detect generic micro-architecture, and so, the
remainder of this paper uses “pattern” term to mean “design
pattern”, “spoiled pattern” or “generic micro-architecture”.
For the sake of clarity, we use the Composite design pattern
as an example.

III. GRAPH REPRESENTATION

We consider models described in UML 1.5 [5] according
to the XMI standard [6]. With this meta-model, models can
be represented by directed graphs. A graph consists of typed
nodes representing the classes and the relations between
them. Arrows are used to indicate the direction of the
relations between classes. In our case, we are interested by
classes, associations, and generalizations only. There is a
gap between the visualization and the internal representation
of a UML model.

Fig. 3 illustrates these two representations in UML 1.5
for a design pattern: in a class diagram and in a graph
conforms to XMI format. In this example, the design pattern
is a simple directed graph, with the vertices C, L and Co,
respectively Component, Leaf and Composite. There are
also sets of vertices {A}, {AE}, {G} and {S}, respectively
Association, AssociationEnd, Generalization and
Specialization of the UML meta-model.

We have separated the vertices in two different subsets:

Vc containing all the classes of the model, and Vm containing
all the meta-classes allowing the connections of the classes.
The vertices of the set {AE}, for AssociationEnd, come from
the meta-model and are used to connect Classifier to
Association. These vertices are tagged by AssociationEnd
meta-class attributes in order to characterize the extremity of
associations. For example, for the vertex Co, the adjacent
vertices are AE, G and S only, excluding A which is
accessible from AE only.

Figure 3. A UML model and its directed graph representation

As we consider UML models as graphs, we can
formulate our patterns identification problem as a problem of
sub-graphs or directed sub-graphs identification in a graph.
There are two main approaches in this domain. The first one
is known as exact graph matching, which consists in finding
exactly a given subgraph in a graph [7]. The second

C

Co L

S G G S A

AE
COMPOSITE-0..1

AE

NONE-0..*

Component

Leaf

*

Composite

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

35

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

approach consists in identifying all the sub-graphs looking
like more or less a given graph [1] and is called inexact
graph matching.

Exact graph matching algorithms require the examination
of all possible sub-graphs that have the same number of
nodes and arrows with the source graph, which means a NP-
complete problem [7]. For our problem, exact pattern
matching algorithms are inefficient. As a pattern is a
generative base of a family of specific designs, we do not
exactly search the generic micro-architecture, but one of its
instantiations, which are not known in advance.

Inexact graph matching algorithms are very useful when
an isomorphism between two graphs cannot be found or is
too strict for research. They find the best correspondence
between two graphs. For example, some algorithms
calculate the distance between two graphs, expressed for
instance in number of modifications to transform a graph to
the compared graph [1]. In the context of pattern detection,
such algorithms are more interesting, because they are able
to detect sub-graphs structurally close to the pattern.
However, it is not sufficient, because a given design pattern
may have several forms depending on the instantiation
context.

Since we cannot use exact or inexact pattern matching,
we have defined a detection method working by structural
concordances. Thanks to structural properties allowing the
structural detection of pattern, this technique is able to detect
pattern instantiations, whatever their form, and taking into
consideration authorized, prohibited or optional relations
between classes, as described in section 3.3.

IV. SPECIFICATION OF THE DETECTION

A pattern is described with a set of structural properties
allowing its structural description, and thus the detection of
its instantiation in a model. We have decomposed the
remarkable properties into two subsets: the local properties
that characterize individually each class and the global
properties which characterize the classes against each other
depending on their inter-relations. This separation allows us
to constitute different filters during the detection, through
use of structural similarity comparisons. The result of the
search is a set of fragments identified in the model analyzed.

A. Structural Concordance

The structural properties of a pattern enable us to detect
fragments in models. Compared to graphs, they enable us to
detect sub-graphs families, because they describe the patterns
as well as the fragments they can generate. Our detection
method uses the local and global structural properties to
check the structural concordance of the fragments with the
patterns.

Definition 1 presents in a formal way a model m. As
seen previously, it is a directed graph with two sets of

vertices Vc and Vm, respectively representing the model
classes and the instances of meta-classes describing the
relations between the classes.

 (1)

Like for a model, we formally define a pattern in
definition 2.

Each pattern has a unique reference participant which we

note reference_dp. It represents a particular vertex of Vcdp

that we detail in part B. This vertex is chosen by an oracle
according to its structural complexity and its responsibilities
on the problem to solve.

 (2)

Thus, we have two directed graphs where we search for
combinations of occurrences of the first in the second. In
order to avoid a combinatorial explosion of the research
possibilities, and thus to limit the problem complexity, we do
a first filtering of the sets of the vertices having the adequate
local properties.

The first step consists in searching for all the vertices of

graph m in accordance with the predicate 5 local_SPC. This
predicate, meaning “structural properties concordance”,

allows to check if a vertex c of the graph m has, at least, the

same adjacent vertices as a vertex p of dp. Thus, if c is

local_SPC with p, the class corresponding to c has, at least,
the same local structural properties as the participant of the

pattern corresponding to the vertex p. The comparison
between the adjacent vertices is done with an equivalence
relation comparing the type and the attributes of the adjacent
vertices, as definition 3 shows it, with a constraints
relaxation presented in part 3.3.

 (3)

By extension, we obtain the definition 4.

 (4)

36

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

As the adjacent vertices of a vertex of Vc belong to Vm

and as all the vertices Vm are strongly typed, the vertices of

Vc can be filtered thanks to their local properties, as
predicate 5 shows it.

 (5)

In order to illustrate the predicate local_SPC, we search
Composite design patterns in the model of Fig. 4, whose
local properties of each participant are illustrated in Fig. 5.

The result of the application of the predicate local_SPC is
illustrated in Table 1. For more legibility, the models are
represented in UML.

Figure 4. A model example

Figure 5. Local structural properties of the Composite design pattern

TABLE I. RESULT OF THE PREDICATE LOCAL_SPC ON THE MODEL

 Class

local_SPC R T U V W X Y Z

Composite OK OK

Component OK OK

Leaf OK OK OK OK OK

The classes marked in Table 1 validate predicate

local_SPC with the corresponding participant. It is possible
to notice that the classes have the same adjacent vertices as
their participants, except for classes Y, W and Z which have
more. For example, we can note that the class Y has three

daughters. It is partly thanks to the fact that a vertex of Vc
can have more adjacencies, that we can detect all the various
possible pattern instantiations. Moreover, we can notice that
class W and class Z validate the predicate on two different
participants from the pattern, Leaf and Composite. Indeed,
the local properties of Leaf are included in those of
Composite. Without the global properties, we cannot
differentiate the Composite classes from the Leaf classes yet.

After comparing all the vertices of Vcdp with all those of

Vcm, i.e. all the participants of the pattern with all the classes
of the model to analyze, we obtain a set of vertices having
their adjacent vertices at least identical to those of the
participants of the pattern. This first predicate is used as

filter on the sets of the vertices of m.

Predicate 6 global_SPC allows to check the concordance

of the global properties, i.e. if a subgraph sf of m is

isomorphic to dp.

 (6)

A sub-fragment global_SPC with dp has, by definition,
the same number of vertices as the pattern. Although the
instantiation of the pattern causes the multiplication of some
vertices, all the combinations, such as each class represents a
distinct participant, remain isomorphic with the pattern. Fig.
6 illustrates this isomorphism of the sub-fragments of the
model presented in Fig. 4.

Figure 6. Sub-fragments of Fig.4 isomorphic with the pattern of Fig. 3

In the model of Fig. 4, according to the vertices

identified as being local_SPC with the vertices of the
pattern, we can build only three sub-fragments in conformity

with global_SPC. For example, the combination class U,
class W and class Y, is not a sub-fragment, because even if
there is the same number of vertices as in the pattern and

each vertex is local_SPC with a vertex different from the
pattern, there is no isomorphism between this combination
and the pattern.

Thus, the predicate global_SPC enables us to eliminate
class W and class Z from the Leaf responsibilities, since it is
not possible to build a combination of classes in conformity

with the predicate global_SPC with one of these classes to
the responsibilities of Leaf.

Now, we have to build the complete fragments, i.e. to
couple the sub-fragments which share the same vertices. A

complete fragment cf is a subgraph of m including at least
an isomorphic sub-fragment with the pattern and such as any
graph induced by a combination of vertices referring once
each participant of the pattern remains isomorphic with the

pattern. Moreover, only one vertex of cf, that we name

reference_class, is local_SPC with reference_sp, the
reference vertex of the pattern. In the case of Fig. 6, if we

Class X

Class U Class Z

*Class Y

Class WClass T

*

Class Y

Class V

Class W

*

Component

Leaf

*

Composite

Component

Leaf

*

Composite

Component

Leaf

*

Composite

Class X

Class U Class Z Class Y

Class V Class WClass T

*

*

Class R

37

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

consider that Composite is the reference participant, we can
regroup the sub-fragments {ClassY, ClassT, ClassW} and
{ClassY, ClassV, ClassW} to form a complete fragment.

Thus, the predicate 7 complete_fragment allows to

check if a fragment cf is a set of sub-fragments, each one

isomorphic with dp.

 (7)

The application 8 participant associates to each vertex of

the fragment cf, a vertex of the pattern such as it is in local
concordance and which it is connected in the same way to
the reference participant.

In proceeding like that, we can build fragments
representing all the possible instantiations of the pattern.
Indeed, even if it is not possible to anticipate which form has
a complete fragment, it is sure, whatever its form, that it is
composed of isomorphic sub-fragments to the pattern, since
all the possible complete fragments will always have their
classes connected in the same way to the respective
participants of the pattern.

Fig. 7 presents two fragments with isomorphic sub-
fragments to a pattern.

Figure 7. Two fragments with isomorphism sub-fragments to the

Composite design pattern

The sub-fragments of the left fragment are {Composite,
Component1, Leaf} and {Composite, Component2, Leaf}.
Those of the right fragment are {Composite, Component1,
Leaf1}, {Composite, Component2, Leaf1}, {Composite,
Component1, Leaf2} and {Composite, Component2, Leaf2}.
Thus, it is possible to notice that the two fragments presented
are two different instantiations, but recognized as complete
fragments.

A particular case is presented in Fig. 8.

Figure 8. A particular case of a complete fragment

The two sub-fragments of this model are isomorphic to
the Composite pattern: {Composite1, Component, Leaf},
{Composite2, Component, Leaf}. However, if we analyze
this case, we can wonder whether, except its structure, it
constitutes a true complete fragment. Indeed, the composite
participant are not linked between them. Thus, we propose
that Fig. 8 presents two distinct fragments {Composite1,
Component, Leaf} and {Composite2, Component, Leaf}.
We do not authorize a fragment to have two classes having
the Composite responsibilities. We named this additional
characteristic the “reference participant”, necessary to the
representation of the results of detection and the limitation of
the matching complexity.

B. Reference Participant

Each participant of a pattern has not the same importance
in the intent aimed by the pattern. The fact that a design
pattern is the best solution resides in its structural
organization, obligatory support with any collaboration
between objects. For the Composite pattern, take into
consideration the UML models presented in Fig. 9 and try to
answer the question: can these models be still regarded as
instantiations of the Composite pattern?

Figure 9. The Composite pattern without Composite and without Leaf

If we remove all the occurrences of the Leaf participant
of the pattern, we do not loose the intent of the pattern, even
if we lose the possibility of adding terminal elements in the
hierarchical tree of composition. But, if we remove all the
occurrences of the Composite participant, no more
composition is possible. Indeed, it is Composite which
completely manages the responsibilities for the composition
of the objects, first intent of the pattern. Thus, this
participant plays a dominant role in the pattern.

The reference participant depends on the pattern
concerned. This participant is manually chosen with the
heuristic evaluating its essentiality with the number of
structural properties of each class.

Component *

Composite

Component

Leaf

Component

Leaf

*

Composite 1
<<reference>>

*

Composite 2
<<reference>>

Component 1

Composite
<<reference>>Leaf

**

Component 2 Component 1

Composite
<<reference>>Leaf 1

**

Component 2

Leaf 2

(8)

38

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

C. Authorized, Prohibited or Optional Relations

Any class not having the responsibilities of the reference
participant can be found multiplied in the fragment, whereas
those marked reference are separate in different fragments.
But what does occur if a class of the fragment is connected
of more than another way that envisaged? Fig. 10 illustrates
this case on a fragment.

Figure 10. A model fragment with one supplementary relationship

If we apply the method introduced previously, the
fragment is detected, because it respects strictly the structural
properties of the Composite pattern. However, the additional
inheritance modifies the responsibilities of the classes
concerned. A Leaf inheriting a Composite does not have a
meaning in the hierarchical composition of objects, since a
terminal object cannot be a specialized non-terminal object.
Thus, we discriminate any fragment having connections
invalidating the intent of a pattern.

To recognize which relations of the fragment are
discriminating, we documented the pattern with information
indicating which connections are optional, obligatory or
prohibited. This documentation is done thanks to a UML
profile allowing us to add specific information on
relationships. Fig. 11 illustrates the Composite profiled
pattern.

Figure 11. A graphical representation of the profiled pattern

Reported to the graph, we supplement the description of
the pattern with a graph of the prohibited relations,
comparable to the “Negative Conditions Application” (NAC)
of graphs grammars [8]. If a connection appears in the graph
of the pattern, it must obligatorily be present in the fragment;
if it appears in the graph of the relations prohibited, it must
absolutely miss in the fragment. If a connection is present in
the fragment, but absent from the two other graphs, it is
regarded as optional and neutral for detection. Thanks to this
complement, we can now, besides detecting all possible
forms of instantiation of the pattern, refuse certain forms
which we suppose bad for the intent of the fragment.

D. Genericity of the Detection

Our generic detection algorithm is decomposed into three

steps (local_SPC, closure form the reference participant,

global_SPC). At the end of each step, a set of characteristic
classes is selected from the set resulting from the preceding
step. The first step consists in classifying all classifiers of
the model to analyze according to local structural properties
of each participant of the pattern. The second step consists
in computing potential fragments according to the paths
between the reference participant and the others participants
of the pattern. The third step consists in verifying the global
conformance on the potential fragments and to pinpoint
complete fragments. Then the structure of the algorithm is
flexible and does not depends on the structure of the pattern
to retrieve. The genericity of our approach is provided by an
automatic queries generator using profiled patterns. So, to
detect a new pattern, it is sufficient to profile it and to
generate its query [12].

We chose OCL to encode our detection queries. OCL is
a language of constraints used to add semantics into UML
models [9]. The Neptune platform was developed by our
team within the European Neptune project [10]. The OCL
interpreter proposed by the platform implements the standard
OCL 2.0 [9] and two extensions of OCL [11]. The second
relates to the queries which can return a result of any type of
the meta-model, which introduces the concept of view. We
use this capacity to carry out our search for complete
fragments in a model. Moreover, thanks to the navigational
property of OCL, the generation of the queries consists in
navigating in the meta-model of the pattern to detect. In
following the three steps of the algorithm and in considering
the pattern as a graph, the generator analyzes all the possible
paths between each vertex and transforms them in an OCL
query.

V. VALIDATION

In order to validate the detection algorithm we have
sought models of real projects. We would like recall here
that we search model fragments at design level without any
information from the code. Unfortunately, we did not find
industrial projects with exploitable models for our needs; the
percentages of association links on inheritance links are too
low. So, we have used the code of free projects to obtain
reversed models. To do so, we used the Java reverse module
of ArgoUML.

The problem with code reversion relates to associations
between classes. It is very difficult for reverse softwares to
know which variable must be regarded as attribute,
association, composition, etc. However, the module of
ArgoUML makes it possible to impose that all the attributes
are transformed into associations. To take into consideration
the parameterized genericity of the latest versions of Java,
we have added in the ArgoUML module the capacity to
convert these types into (1..n) associations. Thanks to this
modification, we consider that the reversed models have a
good abstraction level.

In order to make sure of the validity of our detection
algorithm, we sought fragments corresponding to
characteristic architectures. Fig. 12 presents the fragments
that we have searched in nine models (ArgoUML, JUnit,
JFreeChart, JabRef, Jena, AWT, JHotDraw, JRefactory, and
Neptune). We can notice that these fragments are the Bridge

Component

Leaf

*

Composite
<<reference>>

Component

Leaf Composite

*

39

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

pattern and its alternatives. In order to precise the detection,
we have searched the same fragments twice: first, with
information about authorized and prohibited relations, and
second without any complementary information. For these
examples, all supplementary relations between classes are
prohibited.

Figure 12. The searched fragments

To validate the queries generated for these micro-
architectures, we have executed them directly on the models
allowing the generation of the queries. All queries are able
to detect the model which has permitted their generation. So,
we can say that we detect, at least, the minimal micro-
architecture with exact instantiation.

The results obtained at the end of the detection show that
all possible instantiations have been identified in the models,
and no more. You can see the OCL queries generated
corresponding to each pattern of Fig. 12 on [20]. It is
interesting to notice that all fragments are identified twice:
{SuperA, A, B, SuperB}, and {SuperB, B, A, SuperA}. The
result is correct; each structure pattern is symmetric.
Moreover, the researches with information about authorized
and prohibited relations have retrieved fewer fragments than
with the fragment without complementary information.

VI. RELATED WORKS

We present three generic detection techniques used in a
similar context. The first two concern approached
identifications of design patterns for re-documentation, and
the third concerns exact identification of design problems
solvable by design patterns.

Patterns identification by comparison of similarities. [1]
proposes an algorithm for approximate pattern matching
based on comparisons of similarities. This algorithm
generates, from two graphs encoded by a matrix, an
adjacency matrix representing the closeness of these two
graphs. Matrix representations of relationships between
artifact developments are used to compute effective
approximations. Another way to represent UML models is
to consider their visual forms as multi-graphs. Each type of
relationship is represented by a different graph. A designer
can choose on what information the similarity search is
based (associations, generalizations, method specializations,
method invocations, etc.). Thus, for a model and a pattern,
the average of weighted matrices results for each significant
input matrix (associations, generalizations, methods, etc.) is
computable. The weighting is determined by the designer

according to the importance it wishes to provide the various
relationships of a static UML model. This weighted average
is then the likeness of a fragment from a design pattern.

Patterns detection by fuzzy evaluation of UML models.
Fujaba (From UML to Java And Back Again) is a tool that
can generate Java code from a UML model and impact code
changes on this model [13] [14]. A component of automatic
detection of design patterns has been added. This
component uses Abstract Syntax Graphs (ASG) [15] to
describe a model by eliminating most syntactic variants and
formatting problems. Design patterns are decomposed into
sub-patterns implemented as rules of graph transformation.
However, if some sub-patterns are generic, eg. all possible
ways to assign a value to an attribute in a method, the
detection algorithm cannot detect patterns whose shape is not
really the sub-assembly patterns provided. To overcome this
limit, fuzzy evaluation mechanisms have been proposed by
S. Wenzel [2]. They can detect patterns used differently
than what is recommended, as well as incomplete patterns.
To detect patterns in UML, it is necessary to describe a
combination of roles in the UML sense. A role corresponds
to a meta-class, which can be attached to OCL constraints
[9]. Constraints can describe the complex arrangements of
certain patterns and clarify the internal organization of each
role. Using this mode of representation, it is possible to
detect design patterns in the same manner as a "cast of
theater" [2]. The detection assigns a role in the pattern to
some model elements. Each assignment is quantified by a
value (0 to 100%) representing how the element can play the
role. To get 100%, elements must have the same type as the
role and respect each of the constraints described in the
pattern. After the detection, the candidate fragments are
presented to the designer. Implemented in a component of
Fujaba, this technique detects target fragments "similar" to
contextualization’s design patterns.

Problems detection by constraint propagation. El-
Boussaidi and Mili [16] proposes to detect fragments
consistent with the meta-model of the problem of a pattern,
and replace fragments by instantiation of the corresponding
patterns. This detection technique reformulates the problem
of homomorphism of graphs proposed by M. Rudolf [17].
A CSP is defined by a finite set of variables in a domain, and
a finite set of constraints specifying how values can be
assigned to variables [18]. CSPs are generally used to solve
efficiently backtracking algorithms. When a value is
assigned to a variable, all the constraints of this variable are
propagated to other variables. To construct a CSP dedicated
to pattern matching, it is necessary to work with two graphs,
one to search (the source graph) and one in which research is
conducted (the target graph) [17]. Each vertex and each
arrow of the source graph are associated with distinct
variables. The domain of variable vertices and arrows
correspond respectively to the set of vertices and arrows of
the target graph. The constraints construction is done on the
parameters compared to validate the research. H. Mili and
G. El-Boussaidi [19] defines design patterns as a triple (MP,
MS, T) where MP is the problem solved by the pattern, MS
is the solution to the problem, and T is the transformation
that converts MP to MS. MP and MS are respectively the

SuperA

A
<<reference>>

SuperB

B

SuperA

A
<<reference>>

SuperB

B

SuperA
<<reference>>

A

SuperB

B

40

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

meta-models of the problem and solution. When a designer
discovers a fragment of his model conforms to the meta-
model of the problem, he has only to apply the
transformation rules for modifying the fragment.

TABLE II. SUMMARY OF APPROACHES

 [1] [14] [16] us

Do not perform preprocessing on the model

to analyse
 OK OK

Do not use information from the code OK

Perform detection by successive steps OK OK OK

Limit the execution time OK OK

Limit the number of fragments identified OK OK

Do not degrade the consensus of the pattern OK OK OK

Detect all possible instantiations OK OK OK

Table 2 summarizes the specifics of our problem with the

related works. The last column refers to our approach. We
guarantee a technique for early detection, even on large
models. It is not pertinent to test all the meta-classes of the
model to analyze, and it is better to make a quick filter to
restrict the number of comparisons. Then we work directly
and without pretreatment with the patterns encoded as
models. Moreover, a spoiled pattern constitute a base
generating a family of possible instantiations, and we
identify accurately all the fragments of the same family.

VII. CONCLUSION

We have presented a complete method to detect generic
micro-architectures on models. Then, a major issue of our
work is the fact that we have reasoned at design level
uniquely. That implies to use information present in models
only and to define a re-documentation technique for retrieve
patterns in a model. We have used standards dedicated to
model engineering: UML profile and OCL queries. From a
profiled model representing the structure of a pattern, we
deduce automatically the OCL query that permit to retrieve
all authorized instantiations of this pattern in a design model.

The detection is the core part of a tooling design review
activity [4]. We have implemented this activity into satellite
software of the Neptune platform and we named it Triton
[12]. As a code review permits to detect inconsistencies, no
respect of coding rules, and bad smells in code before a
production running, the design review permits to detect
model fragments bad conceived and to refactor thanks to
design patterns before a coding stage. The results of our
queries are not too strict and not fuzzy; each detected
fragment can be precisely built from a canonical form and by
successive addition of participants. Therefore, we think that
our detection method can be reused by the query part of any
transformation model language.

However, the detection is based on structural properties
only. For now, we have a catalog of spoiled structural
design patterns. Dynamic views would be taking into
consideration to detect behavioral design patterns and to
precise some structural patterns by the detection of message
exchange motifs.

REFERENCES

[1] N. Tsantalis and S. T. Halkidis, “Design Pattern Detection Using
Similarity Scoring”, in: IEEE Transactions on Software Engineering,
IEEE Press, volume 32, number 11, pages 896-909, 2006.

[2] S. Wenzel, “Automatic detection of incomplete instances of
structural patterns in UML class diagrams”, in: Nordic Journal of
Computing, Publishing Association Nordic Journal of Computing,
volume 12, number 4, pages 379-394, 2005.

[3] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and N. Jussien,
“Instantiating and Detecting Design Patterns: Putting Bits and Pieces
Together”, in: proceedings of the 16th conference on Automated
Software Engineering (ASE), IEEE Computer Society Press, pages
166-173, 2001.

[4] C. Bouhours, H. Leblanc, and C. Percebois, “Bad smells in design
and design patterns”, in: Journal of Object Technology, ETH Swiss
Federal Institute of Technology, volume 8, number 3, pages 43-63,
2009.

[5] Object Management Group., “Unified Modeling Language”,
http://www.omg.org/spec/UML/1.5/PDF/index.htm, 2010.

[6] Object Management Group., “XML Metadata Interchange”,
http://www.omg.org/technology/xml/index.htm, 2007.

[7] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism”, in:
journal of the ACM (JACM), ACM, volume 23, number 1, pages 31-
42, 1976.

[8] A. Habel, R. Heckel, and G. Taentzer, “Graph grammars with
negative application conditions”, in: Fundamenta Informaticae
Journal, IOS Press, volume 26, number 3-4, pages 287-313, 1996.

[9] Object Management Group., “Object Constraint Language”,
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2006.

[10] Neptune consortium, “Method, Checking and Document generation
for UML applications”, http://neptune.irit.fr/images/files/Neptune
Book/407719ps.pdf, 2003.

[11] T. Millan, L. Sabatier, T. T. Le Thi, P. Bazex, and C. Percebois,
“An OCL extension for checking and transforming UML Models”,
in: proceedings of the 8th International Conference on Software
Engineering, Parallel and Distributed Systems (SEPADS), WSEAS
Press, pages 144-150, 2009.

[12] C. Bouhours, “Detection, Explications et Restructuration de défauts
de conception : les patrons abîmés”, PhD, IRIT, 2010.

[13] FUJABA, From UML to Java and Back Again, http://wwwcs.uni-
paderborn.de/cs/fujaba/projects/ reengineering/index.html, 2005.

[14] S. Wenzel, “Detection of Incomplete Patterns Using FUJABA
Principles”, in: proceedings of the 3rd International Fujaba Days
2005 : MDD in Practice, pages 33-40, 2005.

[15] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals, and J. Welsh,
“Towards pattern-based design recovery”, in: proceedings of the 24th
International Conference on Software Engineering (ICSE), ACM
Press, pages 338-348, 2002.

[16] G. El-Boussaidi and H. Mili, “Detecting Patterns of Poor Design
Solutions Using Constraint Propagation”, in: proceedings of the 11th
international conference on Model Driven Engineering Languages
and Systems (MoDELS), Springer-Verlag, volume 5301, pages 189-
203, 2008.

[17] M. Rudolf, “Utilizing Constraint Satisfaction Techniques for
Efficient Graph Pattern Matching”, in: selected papers from the 6th
International Workshop on Theory and Application of Graph
Transformations (TAGT), Springer-Verlag, pages 238-251, 2000.

[18] F. Bacchus and P. Van Beek, “On the Conversion between Non-
Binary and Binary Constraint Satisfaction Problems”, in: proceedings
of the 15th National Conference on Artificial Intelligence (AAAI) and
of the 10th Conference on Innovative Applications of Artificial
Intelligence (IAAI), AAAI Press, pages 311-318, 1998.

[19] H. Mili and G. El-Boussaidi, “Representing and Applying Design
Patterns: What Is the Problem?”, in: proceedings of the 8th
international conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 186-200, 2005.

[20] http://www.irit.fr/~Cedric.Bouhours/Examples/

41

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

