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Abstract— Existing pattern detection methods generally use 

code information obtained during reengineering process.  

However, none of these methods exclusively works with design 

information.  In this paper, we propose a novel pattern 

detection method based on structural properties of UML 

models.  This technique allows the detection of any kind of 

generic micro-architecture, like design patterns or spoiled 

patterns.  Since a generic architecture is context-free, the 

structure of the searched fragments depends on the use 

context.  So, our technique uses a structural concordance 

paradigm to identify all possible instantiations of a generic 

micro-architecture.  To increase the precision of the detection, 

authorized, prohibited, and optional relations can be directly 

precised into the micro-architecture model. 

Keywords- Pattern detection. Graph isomorphism. UML Model. 

I. INTRODUCTION 

Various works aim at identifying fragments representing 
correct, incorrect or incomplete instantiations of design 
patterns, in order to help the comprehension of existing 
designs and to provide a base for possible improvements [1].  
To identify characteristic fragments, it is necessary to parse 
models, to ensure that the execution time of the algorithm is 
adapted to consequent models and to recognize a form that is 
approximate or to supplement.  This approximation is very 
problematic, because it introduces uncertainties into the 
research.  In the case of design patterns, the designer adapts 
the pattern to his problem, obliging the detection methods to 
be able to detect every possible form [2].  To render possible 
these detections, some tools use source code to identify 
complete or distorted versions of design patterns [3].  The 
information extracted from the source code augments the 
precision of fragment intent and so the pattern detection. 

However, during model-driven processes, the 
identification of patterns concerns the designer in order to 
target specific model fragments.  For example, spoiled 
patterns allow the detection of fragments substitutable with 
design patterns before a coding stage [4].  Thus, we have 
conceived a detection method based on UML structural 
properties of UML models.  Thanks to this method, we are 
able to identify instantiations of generic micro-architectures, 
like design patterns or spoiled patterns.  The first intent of 
our detection method concerns the detection of spoiled 
pattern, which we present in Section 2.  Section 3 presents 
the model representation we use to formalize our detection 
technique, and takes a stand on our work in relation to 
existing graph matching problems.  The remainder of the 
paper is composed by the techniques used to compute the 
detection (Section 4), and some validation tests in Section 5.  

The paper ends with a discussion of related works and a 
conclusion, in Sections 6 and 7.  The main contributions of 
this paper are the specification and the implementation of a 
generic UML graph matching method able to detect pattern 
instantiations whatever their form. 

II. SPOILED PATTERN DETECTION 

Choosing a good design pattern and ensuring the correct 
integration of the chosen pattern are non trivial for a designer 
who wants to use them.  To help designers, we propose 
design inspection in order to detect “bad smells in design” 
and models reworking through use of design patterns.  The 
automatic detection and the explanation of the 
misconceptions are performed thanks to spoiled patterns [4]. 

If we consider that a design pattern is the optimal 
reusable micro-architecture for a type of problem, then for 
each design problem that is solvable with a design pattern, 
the optimal solution is the instantiation of the design pattern.  
Moreover, if we consider an alternative solution as a valid 
solution but with a different architecture compared to the 
optimal solution, then, an alternative solution is an 
inadequate solution for a given problem, and is substitutable 
with the instantiation of the concerned pattern.  A spoiled 
Composite pattern is given in Fig.  1. 

 

Figure 1.  A spoiled pattern (development of the composition on Composite) 

Each spoiled pattern has a name that describes the 
misconception: here the development of the composition link 
on the composite participant of the pattern.  So, there is not a 
maximal factorization of the composition which implies 
addition or removal of a leaf or a composite need code 
modification.   

Structurally, a spoiled pattern is represented at the same 
level of granularity as a design pattern allowing us to identify 
them as design patterns.  An alternative fragment is a model 
fragment such as its structural properties match with the 
structural properties of a spoiled pattern and whose intent 
conforms to the corresponding pattern.  Then, after the 
detection, an alternative fragment can be considered as 
potential.  The validation of its intent is assumed by the 
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designer of the user model.  More details on these concepts, 
especially the collect, the catalog, the use in a tooled design 
review activity, and the refactorings can be found in [12]. 

The static UML model in Fig.  2 represents a basic 
architecture for a file system management.  Authors of this 
model are interested in the presentation of some object 
concepts: inheritance between classes (a uniform protocol 
for every FileSystemElement is encapsulated by a 
corresponding abstract class) and management of reference 
and delegation (there are composition links between 
container and components). 

Nevertheless, this model contains a misconception.  
Although there is a uniform protocol owned by the class 
FileSystemElement, the composite links management along a 
hierarchical structure is duplicated.  Indeed, the Directory 
class manages independently links on Files and Directories.  
{Directory, File, FileSystemElement} is an exact 
instantiation of the Composite spoiled pattern.  It is easy for 
the designer to see that this fragment has the same intent as 
the Composite pattern and to consider it as a bad smell in 
design.  Furthermore, when the authors have implemented 
this model, they realized that there were defects.  They 
adapted their code to correct them, without changing the 
design model.  Therefore, the fragment must be substituted 
with the instantiation of the composite pattern on the user 
model or context. 

 

Figure 2.  A File System Management Design 

During a process development, it is more interesting to 
detect bad smells in design before the coding stage.  Indeed, 
the model correction is easier and uses less time if the code is 
not already written.  So, we have conceived a detection 
technique working with design information, and without 
information issued from reverse engineering process.  The 
existing techniques use code information issued from their 
own reversion methods.   

As a spoiled pattern has the same abstraction level as a 
design pattern, we consider that they are both “pattern” and 
so “generic micro-architecture”.  Our detection technique is 
able to detect generic micro-architecture, and so, the 
remainder of this paper uses “pattern” term to mean “design 
pattern”, “spoiled pattern” or “generic micro-architecture”.  
For the sake of clarity, we use the Composite design pattern 
as an example. 

III. GRAPH REPRESENTATION 

We consider models described in UML 1.5 [5] according 
to the XMI standard [6].  With this meta-model, models can 
be represented by directed graphs.  A graph consists of typed 
nodes representing the classes and the relations between 
them.  Arrows are used to indicate the direction of the 
relations between classes.  In our case, we are interested by 
classes, associations, and generalizations only.  There is a 
gap between the visualization and the internal representation 
of a UML model. 

Fig.  3 illustrates these two representations in UML 1.5 
for a design pattern: in a class diagram and in a graph 
conforms to XMI format.  In this example, the design pattern 
is a simple directed graph, with the vertices C, L and Co, 
respectively Component, Leaf and Composite.  There are 
also sets of vertices {A}, {AE}, {G} and {S}, respectively 
Association, AssociationEnd, Generalization and 
Specialization of the UML meta-model. 

We have separated the vertices in two different subsets: 

Vc containing all the classes of the model, and Vm containing 
all the meta-classes allowing the connections of the classes.  
The vertices of the set {AE}, for AssociationEnd, come from 
the meta-model and are used to connect Classifier to 
Association.  These vertices are tagged by AssociationEnd 
meta-class attributes in order to characterize the extremity of 
associations.  For example, for the vertex Co, the adjacent 
vertices are AE, G and S only, excluding A which is 
accessible from AE only. 

 

Figure 3.  A UML model and its directed graph representation 

As we consider UML models as graphs, we can 
formulate our patterns identification problem as a problem of 
sub-graphs or directed sub-graphs identification in a graph.  
There are two main approaches in this domain.  The first one 
is known as exact graph matching, which consists in finding 
exactly a given subgraph in a graph [7].  The second 
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approach consists in identifying all the sub-graphs looking 
like more or less a given graph [1] and is called inexact 
graph matching. 

Exact graph matching algorithms require the examination 
of all possible sub-graphs that have the same number of 
nodes and arrows with the source graph, which means a NP-
complete problem [7].  For our problem, exact pattern 
matching algorithms are inefficient.  As a pattern is a 
generative base of a family of specific designs, we do not 
exactly search the generic micro-architecture, but one of its 
instantiations, which are not known in advance. 

Inexact graph matching algorithms are very useful when 
an isomorphism between two graphs cannot be found or is 
too strict for research.  They find the best correspondence 
between two graphs.  For example, some algorithms 
calculate the distance between two graphs, expressed for 
instance in number of modifications to transform a graph to 
the compared graph [1].  In the context of pattern detection, 
such algorithms are more interesting, because they are able 
to detect sub-graphs structurally close to the pattern.  
However, it is not sufficient, because a given design pattern 
may have several forms depending on the instantiation 
context.   

Since we cannot use exact or inexact pattern matching, 
we have defined a detection method working by structural 
concordances.  Thanks to structural properties allowing the 
structural detection of pattern, this technique is able to detect 
pattern instantiations, whatever their form, and taking into 
consideration authorized, prohibited or optional relations 
between classes, as described in section 3.3. 

IV. SPECIFICATION OF THE DETECTION 

A pattern is described with a set of structural properties 
allowing its structural description, and thus the detection of 
its instantiation in a model.  We have decomposed the 
remarkable properties into two subsets: the local properties 
that characterize individually each class and the global 
properties which characterize the classes against each other 
depending on their inter-relations.  This separation allows us 
to constitute different filters during the detection, through 
use of structural similarity comparisons.  The result of the 
search is a set of fragments identified in the model analyzed. 

A. Structural Concordance 

The structural properties of a pattern enable us to detect 
fragments in models.  Compared to graphs, they enable us to 
detect sub-graphs families, because they describe the patterns 
as well as the fragments they can generate.  Our detection 
method uses the local and global structural properties to 
check the structural concordance of the fragments with the 
patterns. 

Definition 1 presents in a formal way a model m.  As 
seen previously, it is a directed graph with two sets of 

vertices Vc and Vm, respectively representing the model 
classes and the instances of meta-classes describing the 
relations between the classes. 

                      

   

                              

                   

                                      

                                

                             

                                 
                                     

                    

                       

 (1) 

Like for a model, we formally define a pattern in 
definition 2. 

Each pattern has a unique reference participant which we 

note reference_dp.  It represents a particular vertex of Vcdp 

that we detail in part B.  This vertex is chosen by an oracle 
according to its structural complexity and its responsibilities 
on the problem to solve. 

              

                                   

                                 

                              

                                          

                                         

   

                              

                                 
                                     

                        

                            

                     

 (2) 

Thus, we have two directed graphs where we search for 
combinations of occurrences of the first in the second.  In 
order to avoid a combinatorial explosion of the research 
possibilities, and thus to limit the problem complexity, we do 
a first filtering of the sets of the vertices having the adequate 
local properties. 

The first step consists in searching for all the vertices of 

graph m in accordance with the predicate 5 local_SPC.  This 
predicate, meaning “structural properties concordance”, 

allows to check if a vertex c of the graph m has, at least, the 

same adjacent vertices as a vertex p of dp.  Thus, if c is 

local_SPC with p, the class corresponding to c has, at least, 
the same local structural properties as the participant of the 

pattern corresponding to the vertex p.  The comparison 
between the adjacent vertices is done with an equivalence 
relation comparing the type and the attributes of the adjacent 
vertices, as definition 3 shows it, with a constraints 
relaxation presented in part 3.3. 

                        

   

                  

                                   

                                                     

 (3) 

By extension, we obtain the definition 4. 
                         

                                                                    
 (4) 
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As the adjacent vertices of a vertex of Vc belong to Vm 

and as all the vertices Vm are strongly typed, the vertices of 

Vc can be filtered thanks to their local properties, as 
predicate 5 shows it. 
                             

                                                                    
 (5) 

In order to illustrate the predicate local_SPC, we search 
Composite design patterns in the model of Fig.  4, whose 
local properties of each participant are illustrated in Fig.  5.  

The result of the application of the predicate local_SPC is 
illustrated in Table 1.  For more legibility, the models are 
represented in UML. 

 

Figure 4.  A model example 

 

Figure 5.  Local structural properties of the Composite design pattern 

TABLE I.  RESULT OF THE PREDICATE LOCAL_SPC ON THE MODEL 

 Class 

local_SPC R T U V W X Y Z 

Composite     OK   OK 

Component      OK OK  

Leaf  OK OK OK OK   OK 

 
The classes marked in Table 1 validate predicate 

local_SPC with the corresponding participant.  It is possible 
to notice that the classes have the same adjacent vertices as 
their participants, except for classes Y, W and Z which have 
more.  For example, we can note that the class Y has three 

daughters.  It is partly thanks to the fact that a vertex of Vc 
can have more adjacencies, that we can detect all the various 
possible pattern instantiations.  Moreover, we can notice that 
class W and class Z validate the predicate on two different 
participants from the pattern, Leaf and Composite.  Indeed, 
the local properties of Leaf are included in those of 
Composite.  Without the global properties, we cannot 
differentiate the Composite classes from the Leaf classes yet. 

After comparing all the vertices of Vcdp with all those of 

Vcm, i.e.  all the participants of the pattern with all the classes 
of the model to analyze, we obtain a set of vertices having 
their adjacent vertices at least identical to those of the 
participants of the pattern.  This first predicate is used as 

filter on the sets of the vertices of m. 

Predicate 6 global_SPC allows to check the concordance 

of the global properties, i.e.  if a subgraph sf of m is 

isomorphic to dp. 

                         

                                                                    
 (6) 

A sub-fragment global_SPC with dp has, by definition, 
the same number of vertices as the pattern.  Although the 
instantiation of the pattern causes the multiplication of some 
vertices, all the combinations, such as each class represents a 
distinct participant, remain isomorphic with the pattern.  Fig.  
6 illustrates this isomorphism of the sub-fragments of the 
model presented in Fig.  4. 

 

Figure 6.  Sub-fragments of Fig.4 isomorphic with the pattern of Fig. 3 

In the model of Fig.  4, according to the vertices 

identified as being local_SPC with the vertices of the 
pattern, we can build only three sub-fragments in conformity 

with global_SPC.  For example, the combination class U, 
class W and class Y, is not a sub-fragment, because even if 
there is the same number of vertices as in the pattern and 

each vertex is local_SPC with a vertex different from the 
pattern, there is no isomorphism between this combination 
and the pattern. 

Thus, the predicate global_SPC enables us to eliminate 
class W and class Z from the Leaf responsibilities, since it is 
not possible to build a combination of classes in conformity 

with the predicate global_SPC with one of these classes to 
the responsibilities of Leaf. 

Now, we have to build the complete fragments, i.e.  to 
couple the sub-fragments which share the same vertices.  A 

complete fragment cf is a subgraph of m including at least 
an isomorphic sub-fragment with the pattern and such as any 
graph induced by a combination of vertices referring once 
each participant of the pattern remains isomorphic with the 

pattern.  Moreover, only one vertex of cf, that we name 

reference_class, is local_SPC with reference_sp, the 
reference vertex of the pattern.  In the case of Fig. 6, if we 

Class X

Class U Class Z

*Class Y

Class WClass T

*

Class Y

Class V

Class W

*

Component

Leaf

*

Composite

Component

Leaf

*

Composite

Component

Leaf

*

Composite

Class X

Class U Class Z Class Y

Class V Class WClass T

*

*

Class R

37

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-111-3



consider that Composite is the reference participant, we can 
regroup the sub-fragments {ClassY, ClassT, ClassW} and 
{ClassY, ClassV, ClassW} to form a complete fragment. 

Thus, the predicate 7 complete_fragment allows to 

check if a fragment cf is a set of sub-fragments, each one 

isomorphic with dp. 

                                  

                   

                    

                                                  

                                                                                 

 (7) 

The application 8 participant associates to each vertex of 

the fragment cf, a vertex of the pattern such as it is in local 
concordance and which it is connected in the same way to 
the reference participant. 

                          
              

    
 

                 

                                    

                                                      
    
                  

                                                         
                                                                     
                                      

 

In proceeding like that, we can build fragments 
representing all the possible instantiations of the pattern.  
Indeed, even if it is not possible to anticipate which form has 
a complete fragment, it is sure, whatever its form, that it is 
composed of isomorphic sub-fragments to the pattern, since 
all the possible complete fragments will always have their 
classes connected in the same way to the respective 
participants of the pattern. 

Fig.  7 presents two fragments with isomorphic sub-
fragments to a pattern. 

 

Figure 7.  Two fragments with isomorphism sub-fragments to the 

Composite design pattern 

The sub-fragments of the left fragment are {Composite, 
Component1, Leaf} and {Composite, Component2, Leaf}.  
Those of the right fragment are {Composite, Component1, 
Leaf1}, {Composite, Component2, Leaf1}, {Composite, 
Component1, Leaf2} and {Composite, Component2, Leaf2}.  
Thus, it is possible to notice that the two fragments presented 
are two different instantiations, but recognized as complete 
fragments. 

A particular case is presented in Fig.  8. 

 

Figure 8.  A particular case of a complete fragment 

The two sub-fragments of this model are isomorphic to 
the Composite pattern: {Composite1, Component, Leaf}, 
{Composite2, Component, Leaf}.  However, if we analyze 
this case, we can wonder whether, except its structure, it 
constitutes a true complete fragment.  Indeed, the composite 
participant are not linked between them.  Thus, we propose 
that Fig.  8 presents two distinct fragments {Composite1, 
Component, Leaf} and {Composite2, Component, Leaf}.  
We do not authorize a fragment to have two classes having 
the Composite responsibilities.  We named this additional 
characteristic the “reference participant”, necessary to the 
representation of the results of detection and the limitation of 
the matching complexity. 

B. Reference Participant 

Each participant of a pattern has not the same importance 
in the intent aimed by the pattern.  The fact that a design 
pattern is the best solution resides in its structural 
organization, obligatory support with any collaboration 
between objects.  For the Composite pattern, take into 
consideration the UML models presented in Fig.  9 and try to 
answer the question: can these models be still regarded as 
instantiations of the Composite pattern? 

 

Figure 9.  The Composite pattern without Composite and without Leaf 

If we remove all the occurrences of the Leaf participant 
of the pattern, we do not loose the intent of the pattern, even 
if we lose the possibility of adding terminal elements in the 
hierarchical tree of composition.  But, if we remove all the 
occurrences of the Composite participant, no more 
composition is possible.  Indeed, it is Composite which 
completely manages the responsibilities for the composition 
of the objects, first intent of the pattern.  Thus, this 
participant plays a dominant role in the pattern. 

The reference participant depends on the pattern 
concerned.  This participant is manually chosen with the 
heuristic evaluating its essentiality with the number of 
structural properties of each class.   
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C. Authorized, Prohibited or Optional Relations 

Any class not having the responsibilities of the reference 
participant can be found multiplied in the fragment, whereas 
those marked reference are separate in different fragments.  
But what does occur if a class of the fragment is connected 
of more than another way that envisaged?  Fig.  10 illustrates 
this case on a fragment. 

 

Figure 10.  A model fragment with one supplementary relationship 

If we apply the method introduced previously, the 
fragment is detected, because it respects strictly the structural 
properties of the Composite pattern.  However, the additional 
inheritance modifies the responsibilities of the classes 
concerned.  A Leaf inheriting a Composite does not have a 
meaning in the hierarchical composition of objects, since a 
terminal object cannot be a specialized non-terminal object.  
Thus, we discriminate any fragment having connections 
invalidating the intent of a pattern. 

To recognize which relations of the fragment are 
discriminating, we documented the pattern with information 
indicating which connections are optional, obligatory or 
prohibited.  This documentation is done thanks to a UML 
profile allowing us to add specific information on 
relationships.  Fig.  11 illustrates the Composite profiled 
pattern. 

 

Figure 11.  A graphical representation of the profiled pattern 

Reported to the graph, we supplement the description of 
the pattern with a graph of the prohibited relations, 
comparable to the “Negative Conditions Application” (NAC) 
of graphs grammars [8].  If a connection appears in the graph 
of the pattern, it must obligatorily be present in the fragment; 
if it appears in the graph of the relations prohibited, it must 
absolutely miss in the fragment.  If a connection is present in 
the fragment, but absent from the two other graphs, it is 
regarded as optional and neutral for detection.  Thanks to this 
complement, we can now, besides detecting all possible 
forms of instantiation of the pattern, refuse certain forms 
which we suppose bad for the intent of the fragment. 

D. Genericity of the Detection 

Our generic detection algorithm is decomposed into three 

steps (local_SPC, closure form the reference participant, 

global_SPC).  At the end of each step, a set of characteristic 
classes is selected from the set resulting from the preceding 
step.  The first step consists in classifying all classifiers of 
the model to analyze according to local structural properties 
of each participant of the pattern.  The second step consists 
in computing potential fragments according to the paths 
between the reference participant and the others participants 
of the pattern.  The third step consists in verifying the global 
conformance on the potential fragments and to pinpoint 
complete fragments.  Then the structure of the algorithm is 
flexible and does not depends on the structure of the pattern 
to retrieve.  The genericity of our approach is provided by an 
automatic queries generator using profiled patterns.  So, to 
detect a new pattern, it is sufficient to profile it and to 
generate its query [12]. 

We chose OCL to encode our detection queries.  OCL is 
a language of constraints used to add semantics into UML 
models [9].  The Neptune platform was developed by our 
team within the European Neptune project [10].  The OCL 
interpreter proposed by the platform implements the standard 
OCL 2.0 [9] and two extensions of OCL [11].  The second 
relates to the queries which can return a result of any type of 
the meta-model, which introduces the concept of view.  We 
use this capacity to carry out our search for complete 
fragments in a model.  Moreover, thanks to the navigational 
property of OCL, the generation of the queries consists in 
navigating in the meta-model of the pattern to detect.  In 
following the three steps of the algorithm and in considering 
the pattern as a graph, the generator analyzes all the possible 
paths between each vertex and transforms them in an OCL 
query. 

V. VALIDATION 

In order to validate the detection algorithm we have 
sought models of real projects.  We would like recall here 
that we search model fragments at design level without any 
information from the code.  Unfortunately, we did not find 
industrial projects with exploitable models for our needs;  the 
percentages of association links on inheritance links are too 
low.  So, we have used the code of free projects to obtain 
reversed models.  To do so, we used the Java reverse module 
of ArgoUML. 

The problem with code reversion relates to associations 
between classes.  It is very difficult for reverse softwares to 
know which variable must be regarded as attribute, 
association, composition, etc.  However, the module of 
ArgoUML makes it possible to impose that all the attributes 
are transformed into associations.  To take into consideration 
the parameterized genericity of the latest versions of Java, 
we have added in the ArgoUML module the capacity to 
convert these types into (1..n) associations.  Thanks to this 
modification, we consider that the reversed models have a 
good abstraction level. 

In order to make sure of the validity of our detection 
algorithm, we sought fragments corresponding to 
characteristic architectures.  Fig.  12 presents the fragments 
that we have searched in nine models (ArgoUML, JUnit, 
JFreeChart, JabRef, Jena, AWT, JHotDraw, JRefactory, and 
Neptune).  We can notice that these fragments are the Bridge 
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pattern and its alternatives.  In order to precise the detection, 
we have searched the same fragments twice: first, with 
information about authorized and prohibited relations, and 
second without any complementary information.  For these 
examples, all supplementary relations between classes are 
prohibited. 

 

Figure 12.  The searched fragments 

To validate the queries generated for these micro-
architectures, we have executed them directly on the models 
allowing the generation of the queries.  All queries are able 
to detect the model which has permitted their generation.  So, 
we can say that we detect, at least, the minimal micro-
architecture with exact instantiation. 

The results obtained at the end of the detection show that 
all possible instantiations have been identified in the models, 
and no more.  You can see the OCL queries generated 
corresponding to each pattern of Fig.  12 on [20].  It is 
interesting to notice that all fragments are identified twice: 
{SuperA, A, B, SuperB}, and {SuperB, B, A, SuperA}.  The 
result is correct; each structure pattern is symmetric.  
Moreover, the researches with information about authorized 
and prohibited relations have retrieved fewer fragments than 
with the fragment without complementary information. 

VI. RELATED WORKS 

We present three generic detection techniques used in a 
similar context.  The first two concern approached 
identifications of design patterns for re-documentation, and 
the third concerns exact identification of design problems 
solvable by design patterns. 

Patterns identification by comparison of similarities.  [1] 
proposes an algorithm for approximate pattern matching 
based on comparisons of similarities.  This algorithm 
generates, from two graphs encoded by a matrix, an 
adjacency matrix representing the closeness of these two 
graphs.  Matrix representations of relationships between 
artifact developments are used to compute effective 
approximations.  Another way to represent UML models is 
to consider their visual forms as multi-graphs.  Each type of 
relationship is represented by a different graph.  A designer 
can choose on what information the similarity search is 
based (associations, generalizations, method specializations, 
method invocations, etc.).  Thus, for a model and a pattern, 
the average of weighted matrices results for each significant 
input matrix (associations, generalizations, methods, etc.) is 
computable.  The weighting is determined by the designer 

according to the importance it wishes to provide the various 
relationships of a static UML model.  This weighted average 
is then the likeness of a fragment from a design pattern. 

Patterns detection by fuzzy evaluation of UML models.  
Fujaba (From UML to Java And Back Again) is a tool that 
can generate Java code from a UML model and impact code 
changes on this model [13] [14].  A component of automatic 
detection of design patterns has been added.  This 
component uses Abstract Syntax Graphs (ASG) [15] to 
describe a model by eliminating most syntactic variants and 
formatting problems.  Design patterns are decomposed into 
sub-patterns implemented as rules of graph transformation.  
However, if some sub-patterns are generic, eg.  all possible 
ways to assign a value to an attribute in a method, the 
detection algorithm cannot detect patterns whose shape is not 
really the sub-assembly patterns provided.  To overcome this 
limit, fuzzy evaluation mechanisms have been proposed by 
S.  Wenzel [2].  They can detect patterns used differently 
than what is recommended, as well as incomplete patterns.  
To detect patterns in UML, it is necessary to describe a 
combination of roles in the UML sense.  A role corresponds 
to a meta-class, which can be attached to OCL constraints 
[9].  Constraints can describe the complex arrangements of 
certain patterns and clarify the internal organization of each 
role.  Using this mode of representation, it is possible to 
detect design patterns in the same manner as a "cast of 
theater" [2].  The detection assigns a role in the pattern to 
some model elements.  Each assignment is quantified by a 
value (0 to 100%) representing how the element can play the 
role.  To get 100%, elements must have the same type as the 
role and respect each of the constraints described in the 
pattern.  After the detection, the candidate fragments are 
presented to the designer.  Implemented in a component of 
Fujaba, this technique detects target fragments "similar" to 
contextualization’s design patterns.   

Problems detection by constraint propagation.  El-
Boussaidi and Mili [16] proposes to detect fragments 
consistent with the meta-model of the problem of a pattern, 
and replace fragments by instantiation of the corresponding 
patterns.  This detection technique reformulates the problem 
of homomorphism of graphs proposed by M.  Rudolf [17].  
A CSP is defined by a finite set of variables in a domain, and 
a finite set of constraints specifying how values can be 
assigned to variables [18].  CSPs are generally used to solve 
efficiently backtracking algorithms.  When a value is 
assigned to a variable, all the constraints of this variable are 
propagated to other variables.  To construct a CSP dedicated 
to pattern matching, it is necessary to work with two graphs, 
one to search (the source graph) and one in which research is 
conducted (the target graph) [17].  Each vertex and each 
arrow of the source graph are associated with distinct 
variables.  The domain of variable vertices and arrows 
correspond respectively to the set of vertices and arrows of 
the target graph.  The constraints construction is done on the 
parameters compared to validate the research.  H.  Mili and 
G.  El-Boussaidi [19] defines design patterns as a triple (MP, 
MS, T) where MP is the problem solved by the pattern, MS 
is the solution to the problem, and T is the transformation 
that converts MP to MS.  MP and MS are respectively the 
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meta-models of the problem and solution.  When a designer 
discovers a fragment of his model conforms to the meta-
model of the problem, he has only to apply the 
transformation rules for modifying the fragment.   

TABLE II.  SUMMARY OF APPROACHES 

 [1] [14] [16] us 

Do not perform preprocessing on the model 

to analyse 
 OK  OK 

Do not use information from the code    OK 

Perform detection by successive steps  OK OK OK 

Limit the execution time   OK OK 

Limit the number of fragments identified   OK OK 

Do not degrade the consensus of the pattern OK OK  OK 

Detect all possible instantiations OK OK  OK 

 
Table 2 summarizes the specifics of our problem with the 

related works.  The last column refers to our approach.  We 
guarantee a technique for early detection, even on large 
models.  It is not pertinent to test all the meta-classes of the 
model to analyze, and it is better to make a quick filter to 
restrict the number of comparisons.  Then we work directly 
and without pretreatment with the patterns encoded as 
models.  Moreover, a spoiled pattern constitute a base 
generating a family of possible instantiations, and we 
identify accurately all the fragments of the same family. 

VII. CONCLUSION 

We have presented a complete method to detect generic 
micro-architectures on models.  Then, a major issue of our 
work is the fact that we have reasoned at design level 
uniquely.  That implies to use information present in models 
only and to define a re-documentation technique for retrieve 
patterns in a model.  We have used standards dedicated to 
model engineering: UML profile and OCL queries.  From a 
profiled model representing the structure of a pattern, we 
deduce automatically the OCL query that permit to retrieve 
all authorized instantiations of this pattern in a design model.   

The detection is the core part of a tooling design review 
activity [4].  We have implemented this activity into satellite 
software of the Neptune platform and we named it Triton 
[12].  As a code review permits to detect inconsistencies, no 
respect of coding rules, and bad smells in code before a 
production running, the design review permits to detect 
model fragments bad conceived and to refactor thanks to 
design patterns before a coding stage.  The results of our 
queries are not too strict and not fuzzy; each detected 
fragment can be precisely built from a canonical form and by 
successive addition of participants.  Therefore, we think that 
our detection method can be reused by the query part of any 
transformation model language. 

However, the detection is based on structural properties 
only.  For now, we have a catalog of spoiled structural 
design patterns.  Dynamic views would be taking into 
consideration to detect behavioral design patterns and to 
precise some structural patterns by the detection of message 
exchange motifs. 
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