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Abstract— The use of dynamic invariants to describe software
behaviour has gained increasing popularity and various tools
and techniques for mining and using these invariants have
been published. Typically, these invariants are used to support
various software engineering tasks, such as testing and debug-
ging, which require one to understand and be able to reason
about the system behaviour in terms of these invariants. How-
ever, the existing works are generally focused on a specific set
of  invariants  for  a  specific  purpose.  In  many  cases  it  is  also
useful to view these in a wider context to enable a wider under-
standing of the invariants and to provide more extensive sup-
port across different domains. This paper presents work to-
wards a general taxonomy describing the properties of dynam-
ic invariants based on a review of existing work in their use,
providing a basis for a wider adoption of different invariant
features in different domains.
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I. INTRODUCTION

Dynamic invariants are used to describe invariant proper-
ties of software behavior in terms of dynamic analysis. Dy-
namic analysis uses as basis information captured as obser-
vations from a (finite) set of program executions, such as test
executions [1]. In line with these definitions, a dynamic
invariant is defined here as a property that holds at a certain
point or points in a program execution [2]. Recently the use
of such dynamic invariants has become an increasingly pop-
ular technique in supporting different software engineering
tasks (e.g., [3,4,5]).

Examples of dynamic invariants include data-flow con-
straints (e.g., x always greater than 0) [2], control-flow con-
straints (e.g., request always  followed  by  a reply) [6],
or their combinations (e.g., x is always greater than 0 when
request is  followed  by  a reply) [7]. Invariants defined
in terms of dynamic analysis can also be referred to as likely
invariants as they are based on observations made from a set
of program executions, which typically do not cover the
entire program behavior state-space [2].

Dynamic invariants can be mined with automated tools
or specified manually for further processing with automated
tools. The idea of documenting and using invariants to rea-
son about program behavior at run-time can be seen to be as
old as programming itself [8,9]. Using invariants expressed
in first-order logic to capture formal constrains on program
behavior was introduced as early as 1960's [8] by the pio-
neering work of Floyd [10] and Hoare [11].

Dynamic invariants can be used in a variety of software
engineering tasks and domains, such as helping in program

comprehension [2,12], behavior enforcement [13], test gen-
eration and oracle automation [5], or debugging [14]. Thus,
when explicitly defined, a set of invariants forms a basis for
building automated support for many different purposes.

There exist a number of tools to support the use of dy-
namic invariants in different tasks [2,5,12]. Many of these
tools use a specific set of invariants for a specific domain.
When applying dynamic invariants in different domains, it is
useful to also consider them in a wider context. Also, when a
set of invariants needs to be provided, either as manually
defined input for a tool to use as a basis for automated
processing, or as output by an automated specification min-
ing tool, being able to generally reason about them is needed
for their effective use.

This paper describes a taxonomy for dynamic invariants.
The taxonomy describes a set of common properties for
invariants describing the dynamic properties of software
behavior. As a basis, a set of invariants and their use have
been reviewed from existing works. The study is structured
to describe how the invariants are specified and used, what
kind of invariant patterns over software behavior they cap-
ture, in which scope of behavior they apply, and what infor-
mation about the system behavior is needed to be able to
express and evaluate them.

The goal of this paper is to provide a starting point for a
`road map' of the work accomplished so far on dynamic
invariants, to provide help software engineers identify open
research questions and new branches of discoveries, and to
facilitate the use of dynamic invariants by a systematic defi-
nition of their different properties.

This paper is structured as follows. Section II describes
the overall approach taken to create the taxonomy. Section
III presents the taxonomy, its axes, and the individual cate-
gories. Finally, section IV provides discussion followed by
concluding remarks.

II. TAXONOMY BUILDING APPROACH

Following guidelines from [15] for performing reviews,
the works selected in this paper have been chosen where they
describe or use some form of invariants over dynamic soft-
ware behavior. This includes how these invariants are (ma-
nually) defined, and how automated specification mining
approaches are used to produce them. For the sake of space
and focus, this selection is focused on the originality of the
work (in terms of adding to the taxonomy), its excellence
(study process), and observed impacts (citation). Papers that
take specific approaches to use and define invariants are also
considered to provide a wider view. This approach is in-
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spired and follows the taxonomy building approaches taken
by Ducasse et al. [16] and Kagdi et al. [17].

The information presented in the taxonomy is based on
information from publicly available works such as research
papers, PhD theses and technical reports. Different publica-
tion databases were used as a basis for the search of related
work. The focus of this paper is on properties related to inva-
riants over dynamic behavior of software and thus the selec-
tion is focused on invariants over software runtime behavior.
Work in the more static formal methods domain is reviewed
when referenced from the works on dynamic behavior analy-
sis but otherwise is not considered more deeply. An adapted
version of Binder's ``fishbone'' diagram [18] is used to de-
scribe the different aspects of the taxonomy.

In building the taxonomy, an initial version of the main
axes and their classes was defined based on the seminal work
of Ernst et al. [2] on defining dynamic invariants in terms of
the program data-flow. This was then refined based on re-
view of other works and how these contributed to evolving
the taxonomy and its different properties. This resulted in a
more advanced and more fully structured version of the
taxonomy. This was presented to experts in the field (identi-
fied in the acknowledgements section). After this, additional
refinement was done based on the comments received.

III. TAXONOMY

This section describes the taxonomy that is the core con-
tribution of this paper. The presentation starts with showing
the main axes of the taxonomy, and proceeds to describe
each axis in more detail in the following subsections.

A. Axes of the taxonomy
The main facets of the taxonomy of dynamic invariant

properties of software behavior as discussed in this paper are
presented in

Figure 1. This taxonomy is divided in six main facets,
which are further divided to three process related ones and
three facets describing information about the invariants
themselves. The process-based facets describe various as-
pects of working with the invariants and include invariant
specification, extraction, and usage. The invariant informa-
tion facets are defining the invariants and include measure-
ments, behavioral patterns, and scope. These six facets will
be briefly presented here and discussed in more detail in the
following subsections.

The generic flow of using invariants is presented in Fig-
ure 2. To make use of invariants, a set of invariants describ-
ing the aspects of interest in the software behaviour needs to
be defined. This can be done either manually or with the use
of an automated mining tool. In case a mining tool is used, a
set of invariant templates describing a potential set of useful
invariants is needed (e.g., [2]). An extensive basis for provid-
ing such templates this is provided by the invariant informa-
tion properties of the taxonomy. The same applies for ma-
nual specification, as the properties of invariant information
enable effectively reasoning about possible invariants. Ana-
lyzing software behaviour is typically based on large sets of
observations (trace data), automated tools to help project the
specified invariants over the captured observations is needed.

This is again based on a similar tools and invariant templates
as when using automated mining tools in the specification
phase. For this reason, the specification and extraction phas-
es are described in terms of shared properties in the follow-
ing subsections of the taxonomy. However, from the process
perspective, it should be noted that typically two phases of
the process follow where a step of invariant specification is
done and another step of extraction is done in order to form a
basis for the final step of invariant usage, where these two
are compared against each other.

Figure 1. The taxonomy: Main facets.

Figure 2. The taxonomy: Flow of elements.

Invariant information includes the measurements that de-
scribe the actual data that one needs to observe in order to
build or evaluate an invariant, the behavioral patterns that the
invariants describe over the measurements, and the scope of
program behaviour when the invariant is expected to hold.

B. Specification and Extraction
The different aspects of invariant specification and ex-

traction are illustrated in Figure 3. As mentioned before,
these two phases share many properties and are thus de-
scribed here in terms of common properties.

Figure 3. Invariant specification.

Different approaches to obtain the information for speci-
fying the invariants include fully (automatically) reverse
engineering these from observing program behaviour [2],
describing them manually based on specifications or design-
er knowledge [19,5], or taking a hybrid approach where the
reverse-engineered information is manually augmented with
information from specifications [20]. When extracting a set
of invariants based on dynamic analysis, the set of observed
program executions is defined by what is available (e.g.,
test suite) and what is the goal of the analysis (e.g., analysis
of a subset of the entire test suite) [1].
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The type of specification is  closely related to the source
of the information used for the specification. Natural lan-
guage documents such as requirements specifications can
be manually analysed to find a set of relevant invariants [20].
Additional designer knowledge gained when working on
the system provides insights into its invariant behaviour,
allowing them to design additional invariants to describe the
implementation [19]. Source code and program execution are
more suited for automated analysis. As source code is main-
ly useful in terms of static analysis, it can be used mainly as
an additional input for dynamic analysis such as providing
interface definitions [21,20]. From these sources, one needs
to capture a set of suitable invariants describing the relevant
properties of dynamic behaviour in the software. Experi-
ments have shown that combining both types of sources
gives the best results, where both provide useful invariants
not identified by the other approach [22].

When the invariants have been defined, they need to be
expressed in order to allow the user to process them effec-
tively. Domain specific languages (DSL) can be used to
describe the invariants specifically for a chosen domain, such
as  in  form  of  test  oracles  for  web-applications  [5]. Tem-
plates and patterns can be created to express a chosen set of
invariants generally over different programs and used for
automated invariant mining [2,14]. Programming languag-
es provide powerful constructs that can be used to describe
invariants as they allow for full specification of all properties
expressable in a full programming language [19].

C. Invariant Usage
The usage domain of an invariant refers to the context

and goal to which it is applied. This describes both the usage
domains describing what the invariants are used for and
usage types describing if they are applied in an operational
system or separately from it.  The invariant  usage aspects of
the taxonomy are illustrated in Figure 4.

In offline use, the invariants are used separately from the
execution of the analysed program. In online use the usage
of the invariants is linked to the executing program. Beha-
viour enforcing techniques guide the online operation of the
observed system. Static analysis is focused on automated
analysis of given static artifacts and thus mainly operate
offline. Besides these two, the other domains make equal use
of both online and offline approaches. Since this paper is
focusing on dynamic analysis, static analysis is not consi-
dered further here other than to note that dynamic invariants
can also be used as input for it [23].

Behaviour specification is the basic relevant concept for
any application of invariants described in this paper, as the
invariants need to be specified before they can be used. In
itself, this does not constitute as a usage domain but rather as
a basis for the other approaches. From the specification pers-
pective, these invariants can also be used as the basis for
application of many formal methods such as model checking
and other forms of static analysis [6,24]. For example, a
data-flow invariant can specify that a return value should
always be greater than zero [24], or that the value returned
by get() should always match the last given parameter of
set() [25]. Similarly, control-flow related invariants can be

used to define constraints such as always closing opened
database connections [26].

A specific area in the domain of behaviour specification
is the automated mining of specifications based on dynamic
invariants. Various tools that work with dynamic invariants
are in fact aimed at automatically mining specifications in
terms of invariants for the user to process
[2,4,7,12,14,26,27,28,29,30]. In this sense, dynamic inva-
riants are also used to assist in the process of specifying the
software itself. However, the taxonomy described in this
paper takes no stand on how the invariants are obtained. The
taxonomy is intended to support the process of using and
creating the invariants, whether through automated mining
techniques or by manual specification. In both case, a syste-
matic description provided by the taxonomy should help in
creating and using them.

Behaviour analysis supports either automated or manual
analysis of software runtime behaviour. A set of specified
invariants are given and used in each case to analyse how the
system behaves. This information is presented to the human
user for analysis. Failure cause location can be supported by
analyzing how the invariants change over time and reporting
any significant changes before a failure is observed [4,14]
and by comparing the invariants observed over both failing
and non-failing program executions [4]. Software evolution
tasks can be supported by presenting any changes over given
invariants when changes are made to a program to make the
impacts of changes more explicit [2,31], such as changed
interaction sequences and input-output transformation [31].
Another example in this domain is suggesting refactoring
based on invariants holding over values (e.g., parameter
always constant) that can be used to simplify the program
[32].

Figure 4. Invariant usage.

Further, in security assurance, observing a set of core in-
variants over specific variables, such as kernel data struc-
tures or session state variables can be used to identify poten-
tial security attacks when the expected invariants are violated
[28,33]. Additionally, the invariants can support tasks such
as program comprehension by providing a documentation
that  describes the software behaviour in terms of its  impor-
tant (invariant) behaviour [2].

Behaviour enforcing mechanisms analyse the behaviour
of the observed software based on a given set of invariants
similar to the domain of behaviour analysis. However, they
additionally take automated action to modify the behaviour
based on differences observed with regards to the given
(expected) invariants. For example, automatic adaptation
mechanisms can use invariants to choose a new state for the
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software based on which specified invariants hold at differ-
ent points in time [13]. Invariants can also be used to ensure
that failure states specified in terms of invariants are avoided
by modifying runtime behaviour that is observed to be out-
side the given set of invariants (the expected behaviour) to fit
inside the expected invariants [34,35].

Software test automation is basically a comparison of
the expected behaviour of the software to its actual beha-
viour. This comparison is done by a test oracle that needs a
representation of the expected behaviour of the software in
terms of input-output transitions. As this needs to be de-
scribed in terms of invariant behaviour, dynamic invariants
can be used to encode this information as a basis for the test
evaluation, where test results are expected to conform to
these invariants [5,14,36,37].

When the invariants describe meaningful (important)
properties of the software behaviour, they also make good
candidates for evaluating which parts of the software beha-
viour should be covered in testing. Invariants can then be
used to assess test coverage in terms of invariants covered by
the test suite [9,38]. This can further be improved by auto-
matically generating test inputs that aim to increase the set of
covered invariants [37,39].

Component upgrade checking is a special type of test au-
tomation. In this context it is important to verify that an
update of a component works with the rest of the system.
Invariants can be used to describe how the component be-
haves with the other components, and to assess the relations
of the invariants of the different components against each
other. These invariants can describe, for example, the inputs
and outputs of the different components in terms of control-
and data-flow [25,31]. The comparison is then an evaluation
of these invariants over the different versions.

D. Measurements
In order to apply dynamic invariants one needs to collect

the required information to either assess that they hold or to
infer (mine) them, depending on the intended usage domain.
In any case, one needs to be able to define and collect the
required information from the observed system. The process
of extracting this information is referred to here as informa-
tion extraction, similar to [40]. This aspect of the taxonomy
is shown in Figure 5.

The information type of the measurements can be clas-
sified to two different types of static and contextual informa-
tion [27]. Static information in a dynamic setting is infor-
mation that is always the same for a given point of observa-
tion. For example, during a specific point of execution, a
message passed can always be the same type of a message
(e.g., method call named publishData()) and is thus static
over different executions of this point. Contextual informa-
tion described dynamic information that changes over the
program executions over a single point depending on the
context (e.g., test case) of the observed information. For
example, the time of observation, parameter values, and the
thread of execution for a given message all can change over
different executions of the same program point [27,41]. The
set of observations can also be grouped ("sliced") according
to their contextual information, such as process (thread) id to

produce a set of invariants over the scope represented by that
slice [12,27,41]. In this case, the scope identifier becomes
the basic measure (e.g., thread id [29] or constant parameter
value [27]).

Figure 5. Measurements for invariants.

The term base measure is used here to refer to a type of
measurement information that describes some basic value of
program behaviour as it is observed. For dataflow variables
this includes the data values with basic data types such as
Boolean values, integers, and text strings (character se-
quences) stored in different variable and parameter values
[2]. In the scope of object oriented programs the runtime
type of an object can also be used as a base measure [14].

From the control-flow perspective the base measures are
the messages passed between different elements of the con-
trol-flow. For example, method invocations between compo-
nents (such as classes or services) [7,31] or invocations on
graphical user interface (GUI) operators [5,36].

A specific case of control-flow is error handling flows
identified by some error status. Error scenarios can be clas-
sified to generic errors and application specific errors [5].
Generic errors can be related to properties shared by differ-
ent applications such as database access errors and user-
interface (e.g., HTML or DOM tree for a web-application[5])
error  codes.  When  represented  in  a  uniform  way  (e.g.,  by
programming language exception mechanisms[37]), these
can be generally observed and described in the system beha-
viour (e.g., by an automated tool supporting a given domain).
For example, all Java exceptions can be taken to describe a
message that denotes erroneous behaviour being observed
[37]. Application specific errors need to be described sepa-
rately for each application in terms of application specific
invariants. For example, one may expect a given error re-
sponse to a message outside a given set of input [20].

A derived measure is something that is not directly ob-
served in the system behaviour, but the value of which is
rather derived from one or more base measures. To produce
derived measures for data-flow, the base measures for a
system can be grouped based on invariant scopes [2]. For
example, the values of variable x before and after a program
point can be considered separately as variables x1 and x2, to
describe a pattern saying x1>x2. These produce scoped
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base measures. The different scopes are discussed in sub-
section F.

A specific case of this is software control-flow proper-
ties that  can  be  described  in  terms  events  and  states.  From
the control-flow point of view, an event can be described as
an identifiable, instantaneous action in the observed software
behaviour, such as passing a message or committing a trans-
action [29]. Similarly, a state can be described as values of
properties that hold over time, such as over interactions be-
tween components. This information can be, for example,
held in interaction parameters or inside components internal
state variables [33]. A related property is branching, which
defines how several different paths of events and states can
be taken in the software behaviour. This can be described in
terms of invariants when observing which paths are taken
and which ones are not [4,42].

Two properties related to both data- and control-flow
measures are those describing their occurrence and statistical
properties. Derived measures related to occurrence describe
how data- or control-flow measures are expected to occur in
a given scope. Of these, absence defines an expectation that
the measure does not exist in the defined scope [6]. Exis-
tence denotes that the measure exists in a scope, and
bounded existence that the measure exists N time in a
scope, where N denotes either exact, minimum or maximum
number [6]. Universal defines an expectation that the meas-
ure applies to the whole scope [6]. Concurrent dependence
is related to observed fork and join points in execution [43].
A fork expects one measure to be followed by several meas-
ures of a given type and a join expects several measures of a
given type to be followed by a single specific measure [43].
Periodicity describes a measure repeating over a given cycle
(scope) [43].

Statistical properties describe additional information for
other base- or derived-measures. Support and confidence are
two values commonly used together. Support defines the
number of times a measure is observed in behaviour [26,44].
Confidence can be used with the same definition [2] but also
as a definition of how often another measure is observed in
relation to support, meaning how often a precondition is
followed by a post-condition [27,44].

Probability defines the threshold for a measure to be ob-
served in a given scope. This can be used in different ways.
A measure with low probability (support percentage) can be
excluded from analysis to address anomalies [2,12,29]. Dif-
ferent approaches are used for this depending on the target
invariants, from low level (1% or less) [2] to 20% [12]. The
probability can also refer to probabilities of a measurement
value inside a range of allowed values [13]. Deviations from
the expected values are typically given a probability, which
can then define the significance of the deviation [13,14,33].
This threshold can be used for different purposes such as
identifying probable failure causes [14], security attacks
[33], and to decide new states for automated adaptation [13].

Significance defines the importance of an invariant vi-
olation or of the measured variable. Different approaches to
significance can be taken where the latter observed violations
are given higher priority as they are seen to be closer to a
failure [14], or earlier violations as they are expected to have

more impact on latter behaviour [34]. When a variable is
observed as having no correlation with other variables it can
be considered irrelevant [32]. A generic derived measure
used for these is the number of measurements. Dominance is
a measure used to remove overlapping patterns where one
includes the other as a sub-pattern [30].

E. Behavioral Patterns
A dynamic invariant in software behaviour basically de-

scribes a pattern over the observed behaviour. This aspect of
the taxonomy is shown in Figure 6. Control-flow related pat-
terns describe ordering of events or states in the observed
system [6]. Data-flow related patterns describe the data-flow
of the observed software, such as what values a given varia-
ble takes during the software execution [2].

Figure 6. Behavioral patterns.

Together these can be combined to represent the com-
plete behaviour of the software in terms of the control-flow
combined with the data-flow. A basic way to describe these
combinations is in terms of conditional dependence; a con-
trol-flow event can only be followed by one of many
(branches) depending on a given condition [43]. A natural
way to express these conditions is then in terms of invariants
related to the data-flow in the context of that control-flow.
For ex-ample, event P1 can be followed by event P2 when
x<0 and by P3 when x>=0. Together these are referred to
here as behavioral invariants, where the constraints for a
given control-flow pattern are defined in terms of its data-
flow invariants. For example, a stack allowing three pop
operations after having three push operations performed on it
[30]. These can be further combined to form a more com-
plete model such as an extended finite state machine, where
states represent the control-flow and the transitions between
states are defined in terms of data-flow [20,34].

Each pattern can further be related to describing different
types of behaviour, which can be generally classified as
exceptional (error) or normal (correct) behaviour of the
observed system [5]. For example, a transaction may com-
plete or fail due to its parameters and environment state. As
described in subsection D, different base measures related to
errors can be used to identify them.

Control flow patterns basically describe the sequential
dependencies between a programs events and states [43]. In
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the following discussion the term ``event'' is used to refer to
both events and states.

Alteration describes two or more events being grouped
together and always appearing as an alternating sequence
such as ABABAB [30,41]. Specialized cases can also be de-
fined such as events in the alternating sequence repeating
multiple times, AB*C, where B is repeated 1-N times be-
tween A and C [30], or a cutoff in the end of the sequence
(ABABA) [12].

Precedence describes a specific event P always occur-
ring before another specific event Q [6].  This  can  also  be
referred to as a precondition [24] and is a specific case of
chain precedence, which defines that a sequence of events
(Q1,Q2,Q3,…) is always preceded by another sequence of
events (P1,P2,P3,…) [6].

The opposite of precedence is response, which defines
that event P is always followed by event Q.  This is  again a
specific case of chain response, which defines that a se-
quence of events (P1,P2,P3,…)  is  always  followed  by
another sequence of events (Q1,Q2,Q3,…) [6].

Specific cases of alteration are the patterns related to
concurrency. These can be classified to two main patterns
of mutual exclusion and synchronization [29]. Mutual ex-
clusion occurs  when  no  two  measures  are  observed  at  the
same time. Synchronization has two specific cases, where
two measures are always observed together (overlapping) or
where one starts as another ends.

Data flow patterns describe properties and relations
over variable values during program execution. The assigns
pattern defines that in a defined scope, values of specific
variables are assigned to (modified) [24]. This can also be
described in terms of values that are not modified [2]. Value
change is an evolutionary pattern that describes how a value
changes over time in a given context. This pattern defines a
reference value for the expected value distribution of the
observed variable in the given scope. For example, the ex-
pectation can be that change in value is always small (within
a given threshold such as change<5) [14]. A specific case
can be a variable that is never set [2].

A value range describes a variable always having a
range of values in a given scope [2,14]. Examples include
value always being constant, one of a set of possible values
(e.g., one of 1,2,4) and a value between given boundaries
(e.g., 1<x<4) [2]. Common constants such as zero or one
can also be considered a specific case in itself [2,14]. Addi-
tionally, the maximum and minimum can be considered [14].
Optimizing for performance a subset can also be selected
such as looking for positive (x>0) or negative values (x<0)
[14]. Another example is that the contents of a character
string are expected to be a human readable character with a
given probability distribution in how often each character is
expected to be observed [33].

These can be seen as a special subset of the value rela-
tion pattern. A value relation describes how one variable is
related to another [2,25]. These can be basic mathematical
operations (e.g., x<y or x=y+1), or more complex mathe-
matical functions [2]. Relations can also be described in
terms of the relation of one variable to several others [25].

One example of this is the relation of program output to all
of its (several) inputs [25]. In the case of larger sets of values
(e.g., arrays), the same relations can be described internally
between the elements of the set [2]. Additionally, a set of
specific relations can be considered such as one set reversing
another or matching a subset of a bigger set [2]. Additional-
ly, a single value (e.g., a given variable or a constant) can be
described to always be included in a given set [2].

F. Invariant Scope
The scope of an invariant defines where this invariant is

expected to hold. The scope element of the taxonomy is
shown in Figure 7. In the following descriptions, the term
event is used to refer to both control-flow events and states
and data-flow measures.

Figure 7. Invariant scope.

An invariant may define that it should hold after a given
event [6]. Additionally, another event may be defined as the
end condition in which case the invariant should hold after
the observed start event until the observed end event (after-
until)  [6].  This  is  similar  to  the  scope between, which de-
fines two events in between which the invariant pattern
should hold [6]. However, the difference is that this only
holds once both the start and end events have been observed,
and after-until holds from the first observation of the start
event.

As opposed to the after scope, an invariant pattern can al-
so be defined to only hold before a given event is observed
[6].  A global invariant pattern should hold for all observed
behaviour during the program execution [6]. Considering
only the first N (head) or the last N (tail) observations of a
set can also define a meaningful scope [2]. For example, the
relations  between  the  last  2  observations  can  define  how  a
value in a set increments [2].

The scope can also be defined in combination with a spe-
cific slice of the program behaviour, such as a thread [41,27]
or a specific web application session [33]. In this case the
scope becomes a combination of the context slice and one of
the other scope definitions discussed above.

IV. DISCUSSION

The taxonomy and its classes presented above are based
on the existing work in the literature. In this sense it limits
itself to discuss properties only relevant to those in the cho-
sen works. Additionally, it is possible to use and explore
other possible relations. For example, many of the described
control-flow patterns also apply to data flow patterns. For
example, a value may be defined to precede another value
(relating to the precedence control-flow pattern). Similarly,
the set of data-flow patterns can be considered to apply in the
context of control-flow. For example, the range of possible
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control-flow options following one control-flow event can be
in a given range of possible defined control-flow events or
states (related to value-range data-flow pattern).

The discussion in this paper is from the generic view-
point of using dynamic invariants. One important aspect to
consider is how representative the available invariants are in
describing the relevant properties of software behaviour.
When defined manually by an expert, the invariants can be
expected to describe relevant and important properties.
However, even in these cases important invariants can be
missing and in many cases no invariants are defined at all. In
these cases, automated inference techniques can be used to
assist in finding invariants. Both of these cases have been
shown to be valid as also discussed in section III.B. Improv-
ing the means to help manually define invariants and to au-
tomatically mine for relevant ones thus is an interesting
research question. Potential approaches to investigate include
using a set of chosen invariants known to be interesting in
the given domain, using combined information from static
analysis, relying on statistical values to report the more inter-
esting ones, and providing more advanced support for com-
bining both the manual and automated approaches as also
discussed in section III.B.

Discussion on the statistical properties of different pat-
terns and measures highlight differences in the applied ap-
proaches. For example, in many cases the invariant patterns
that have only low support level (i.e., there are few cases) are
only reported. In the extraction phase, this can be useful in
removing patterns observed merely due to chance that may
be incorrect in themselves due to interleaving of concurrent
behavior, or completely irrelevant in the general context [2].
On the other hand, sometimes all observed behavior is im-
portant regardless of their probability. This can be, for ex-
ample, behavior that is only rarely observed in the observed
executions but is still equally important for the overall sys-
tem behaviour (e.g., error handling or corner cases) [20].

Use of invariants in different domains as discussed here
is not limited to those aspects discussed. In fact, many sys-
tems use invariants for various purposes but these are not
always called invariants. For example, in test automation the
test oracle practically always needs to be described in terms
of an invariant, where the input is expected to produce a
given output (the relation of input to output should be inva-
riant). In this sense, defining invariants as discussed here can
be beneficial in a wider context of how people think about
the behaviour of programs. However, presenting a meaning-
ful language to describe the invariants and use them in dif-
ferent contexts is required for adopting them as a concept
more widely as many are not used to thinking in these terms.

Understanding and using invariants generally requires
specific considerations for specific usage purposes. For ex-
ample, one may refactor code based on suggestion from
invariant analysis [32] but this also needs to consider the part
where the human user needs to read the code and understand
it. If the refactoring reduces this understanding by hiding
information, this refactoring may be more harmful for the
overall software maintenance. Similar needs for understand-
ing the invariants in general need to be considered.

V. CONCLUSIONS AND FUTURE WORK

Today, dynamic invariants are used for many points in
software design and analysis. The invariants for different
system are as different as their behaviour, but this paper has
collected a set of common properties from existing works
and presented a taxonomy describing these common proper-
ties. This should help give a more common understanding of
dynamic invariants in software behaviour and help in using
them in different domains.

The presented taxonomy is based on six main facets,
three related to processes of using the invariants and three
related to the information describing the invariants them-
selves. The main focus was on describing the properties of
the invariants themselves, and thus on the parts describing
the invariant information in the context of the process.

The main contribution of this paper is presenting the un-
derpinning of a classification overview for understanding the
space of dynamic invariants. This provides a basis for more
thorough reasoning about invariants, building tool support
and identifying future research questions. Some specific
questions identified include possibilities of providing more
focused domain specific invariants on top of the taxonomy
and providing more extensive tool support for using the
invariants according to the taxonomy presented, as existing
tools only consider parts of it.

Topics for future work include further exploring the dif-
ferent aspects of dynamic invariants and their relations to
each other, such as scopes, patterns and measurements. Simi-
larly, a deeper investigation of their relation to other formali-
zations of software behavior, such as those used in the for-
mal methods community is seen as interesting. Applications
of the taxonomy along with the further investigations are
also needed for practical validation and evolution.
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