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Abstract—Some corona virus disease 2019 (COVID-19) symp-
toms can persist for months after infection, leading to what is
termed Post COVID-19 condition. Factors such as vaccination
timing, patient characteristics, and pre-existing conditions may
contribute to the prolonged effects and intensity of Post COVID-
19 condition. Each patient, based on their unique combination
of factors, develops a specific risk or intensity of Post COVID-19
condition. In this work, we aim to achieve two objectives: (1) con-
duct a statistical analysis to identify relationships between various
factors and Post COVID-19 condition, and (2) perform predictive
analysis of Post COVID-19 condition intensity using these factors.
We benchmark and interpret various data-driven approaches
using data from the Lifelines COVID-19 cohort. Our results
show that Neural Networks (NN) achieve the best performance
in terms of Mean Absolute Percentage Error (MAPE), with
predictions averaging 19% error. Additionally, interpretability
analysis reveals key factors such as loss of smell, headache, muscle
pain, and vaccination timing as significant predictors, while
chronic disease and sex are critical risk factors. These insights
provide valuable guidance for understanding Post COVID-19
condition (PCC) and developing targeted interventions.

Keywords-Post COVID-19 syndrome; PCC; predictive analysis;
Machine learning; Explainability.

I. INTRODUCTION

In May 2023, after 3 years of global pandemic, the WHO
declared the end of the global Public Health Emergency for
COVID-19. Although this indicates an improvement, espe-
cially with general access to vaccines, it does not mean the
end of the presence and effects of COVID-19 which can
now be considered endemic [1]. One lasting effects being
post-COVID-19 condition (PCC), which presents by the con-
tinuation of physical and cognitive symptoms after recovery
from acute COVID-19 [2][3]. PCC prevalence is not exactly
known with recent worlwide estimates varying from 6% to
10% lowered from initial WHO estimates of 10 to 20% [4][5].
Many countries are now developing dedicated health care paths
for PCC and as such means to identify at risk population would
be beneficial for improved early referrals.

Although the condition has been extensively studied, there
are still many uncertainties regarding the exact characterization
and risk factors associated. One major challenge in studying
this subject is the lack of comprehensive data. As an evolving
crisis, initial datasets had to be created and collected in real
time with limited understanding of the virus and lasting effect.
Thus, most data were collected retrospectively from incom-
plete patient medical files, clinical cohorts of hospitalized

patients or patients in dedicated PCC recovery care. However,
data suggest that most people affected by PCC were never
hospitalized and would not necessarily seek direct care for the
condition. Alternatively, there is often limited knowledge of
participants’ pre-existing conditions, making it hard to verify
that persistent symptoms are new and attributable to COVID-
19 [2][5].

This study uses a unique dataset collected and maintained
by Lifelines that addresses some of these concerns. Lifelines
is a multi-disciplinary, prospective cohort study examining
the health and health-related behaviors of 167,729 individuals
in Northern Netherlands over three generations. It assesses
biomedical, socio-demographic, behavioral, physical, and psy-
chological factors.

From April 2020 to November 2022, a COVID-19 specific
branch involving 31 questionnaires was sent to Lifelines adult
participants without inclusion criteria. Frequency varied from
weekly to bi-monthly. 76,503 participants answered at least
one questionnaire, with a mean of 13.5 questionnaires (stan-
dard deviation 10.5). The cohort’s duration and size provide
valuable data on pre-existing conditions, control groups, and
factors influencing PCC’s emergence, evolution, and severity.

A number of studies have explored the use of data-driven
approaches to predict and analyze the attributes developing
PCC [6][7]. The use of unsupervised clustering on time series
of early development of COVID-19 is investigated in [7] that
could be predictive of the need for high-level care in individu-
als more likely to seek medical help. A recent study employed
a gradient boosting classifier for diagnosis of PCC [6]. They
obtain similar results using a dataset retrieved from a panel of
primary care practices in Germany.

The aim of this study is to explore the following critical
research question: “Can specific pre-infection parameters be
identified to predict the severity of post-COVID-19 condi-
tion?”. To answer this question, an analysis was performed
using machine learning techniques. The ability to predict PCC
and identify relevant pre-infection symptoms and risk factors
holds significant societal implications, impacting physical and
mental health, daily functioning, and productivity. To facilitate
this, we introduced the concept of Post-COVID-19 Symptom
Intensity (PCSI) as a measure of the persistence and impact of
symptoms after COVID-19 infection. As such, a continuous
measure of PCC is proposed allowing for a more accurate
measure of the impact of the condition compared to the com-
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monly used binary definition. Using various machine learning
models, we focused on predicting PCSI using demographic
and clinical characteristics. This study constitutes the first
predictive analysis conducted on Post-COVID-19 Lifeline data
through the application of machine learning algorithms. The
principal contributions of this work are as follows:

o Conducting a comprehensive statistical analysis to iden-
tify influential factors associated with the study of PCC;

o Performing predictive analysis of Post COVID-19 Symp-
tom Intensity using data-driven approaches;

o Interpreting and analyzing the impact of diverse variables
on Post COVID-19 Symptom Intensity, offering valuable
information for medical decision-making;

o Developing a Python package [8] for evaluating ML al-
gorithms on health-related (Lifelines) datasets, facilitating
reproducibility and further research in the domain.

The remainder of this article is structured as follows. Section
2 describes the data preprocessing steps and provides statistical
insights into the dataset. Section 3 presents the methodology
for predicting PCSI, along with results and an analysis of key
influential factors identified by each model. Finally, Section 4
provides a discussion and concludes the paper.

II. PREPROCESSING AND DATA ANALYSIS

This section presents the data used for the analysis and
describes pre-processing steps undertaken to format the data
suitably. Additionally, it includes a preliminary statistical
analysis to reveal global tendencies.

A. Data description

The dataset comprises two main types of variables:

o Static Variables: These denote fixed attributes of individ-
uals, recorded as single entries in the database. Examples
include age, sex, SARS-CoV-2 variant, income, smoking
status, overall health status, presence of chronic diseases,
vaccination status, and time between vaccination and
infection.

o Dynamic Variables: These variables capture the presence
and intensity of symptoms at different time intervals
(before, during, and after SARS-CoV-2 infection). Symp-
toms include headache, dizziness, heart or chest pain,
lower back pain, nausea, muscle pain, difficulty breathing,
feeling warm or cold, numbness or tingling, sore throat,
dry or wet cough, fever, diarrhea, loss of smell or taste,
and sneezing, among others.

Several challenges emerged while working with the data.
Similar to many questionnaire-based datasets, there were con-
siderable amounts of missing or aberrant data. Additionally,
since the data was collected during an active epidemic, the
scope and phrasing of the questionnaires evolved over time,
resulting in inconsistencies. Extensive preprocessing was un-
dertaken to address these issues, standardizing the dataset and
ensuring a uniform structure suitable for analysis.

B. Definition of Post COVID-19 symptoms intensity (PCSI)

Post COVID-19 condition is a systemic condition in
which individuals experience persistent symptoms following
a SARS-CoV-2 infection. While the WHO provides a general
definition, it does not specify which symptoms or measurement
methods to use [9][10], leading to inconsistencies across
studies in terms of time frames, symptom types, and severity
criteria. In this study, we adopted the WHO time frame
definition: symptoms that cannot be explained by an alternative
diagnosis, appearing three months after infection and lasting
for at least two months. Symptom selection was based on 10
core PCC symptoms identified in prior research using the same
dataset [2].

Symptom intensity was rated on a 5-point Likert scale (1 =
not at all, 5 = extremely) based on the participant’s experience
during the previous seven days (see Figure 1). Symptoms
were considered present if rated at least 3 (moderate). Each
participant’s baseline was defined as the mean intensity of
symptoms from all questionnaires completed at least seven
days before infection; individuals without such data were
excluded.

PCSI = mean(Symp,,0100)
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Figure 1. The overall process for defining Post COVID-19 symptom
intensity (PCSI) using symptoms (symp) scores. All analyses were centered
around the time of the first reported SARS-CoV-2 infection.

PCC was defined as the presence of at least one persistent
symptom (mean score > 3) between 90 and 150 days post-
infection, with an increase of at least one point from baseline.

We further defined a continuous measure, Post COVID-
19 Symptoms Intensity (PCSI), as he highest mean score
among symptoms meeting the PCC criteria defined above.
PCSI preserves symptom severity granularity, facilitating more
nuanced modeling and analysis. It supports both statistical and
machine learning approaches and can serve as a proxy for the
binary PCC definition when needed. For non PCC participant,
a proxy was used by taking the value of the symptom with
the highest mean score in the 90-150 days post-infection.

C. Data cleaning and preprocessing

The raw data from different questionnaires were organized
into multiple tables, each containing information collected
at the participant level for specific dates. After cleaning
and preprocessing, participants with a sufficient number of
shared variables were filtered. This filtering process resulted
in the creation of a merged database that consolidated all the
necessary information required for the study and analysis. For
the predictive analysis, we adopted the steady-state hypothesis,
utilizing only the pre-infection period for feature extraction.
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TABLE I. POPULATION CHARACTERISTICS. BLUE REPRESENT PROPORTION OVER KNOWN VALUES.

SARS-CoV-2 positive | Included | Excluded | PCC Positive | PCC Negative
n=13191 n=4657 n=8534 n=715115.4% | n=3942 | 84.6%
Characteristics Modalities n % n % n % n % n %
18-39 1520 12 411 9 | 1109 13 | 61 9 350 9
Age 40-59 7006 53 2315 50 | 4691 55 | 426 60 1889 48
>60 4665 35 1931 41 | 2734 32 | 228 32 1703 43
Gender Male 4631 35 1679 36 | 2952 35 | 190 27 1489 38
Female 8560 65 2978 64 | 5582 65 | 525 73 2453 62
<25 5830 44 2111 45 | 3719 44 | 276 39 1835 47
BMI 25< BMI <30 | 5173 39 1827 39 | 3346 39 | 297 42 1530 39
>30 2188 17 719 15 | 1469 17 | 142 20 577 15
None 7948 67 3118 67 | 4830 68 | 381 53 2737 69
Chronic disease One. 2212 19 914 20| 1298 | 18 | 178 25 736 19
Multiple 1643 14 625 13| 1018 | 14 | 156 22 469 12
Unknown 1388 11 1388 30
Yes 1292 10 438 9 | 84 10 | 79 11 359 9
Smoking No 11783 90 4219 91 | 7564 | 90 | 636 89 3583 91
Unknown 116 1 116 1
Excellent 1189 11 492 11 | 697 10 | 41 6 451 11
Self-assessed Very good 3886 34 1631 35| 2255 34 | 185 26 1446 37
health prior to Good 5645 50 2302 49 | 3343 50 | 406 57 1896 48
infection Mediocre/poor | 580 5 232 5 | 348 5 &3 12 149 4
Unknown 1891 14 1891 22
High 4907 38 1035 22 | 3181 | 38 | 272 38 895 23
Medium 5054 39 1751 | 38 | 3303 = 39 | 297 42 1454 37
Educational level | Low 2777 21 1726 37 | 1742 | 21 | 140 20 1454 37
Other 305 2 12 2 193 2 12 100 3
Unknown 148 1 33 1 115 1 6 1 27 1
Vaccination Full 6701 57 3149 68 | 3552 50 | 417 58 2732 69
prior to Partial 562 5 0 0 562 8
infection No 4492 38 1508 32 | 2984 42 | 298 42 1210 31
Unknown 1436 10 1436 17
Original 2747 21 987 21| 1760 21 | 193 27 794 20
Variant Alpha 1417 11 190 4 | 1227 15 | 40 5 150 4
Delta 1096 8 444 6 | 652 8 80 11 364 9
Omicron 7931 60 3066 66 | 4865 57 | 402 57 2662 68
Yes 190 1 44 1 146 2 15 2 29 1
Hospitalization No 12663 99 4512 1 99 | 8151 98 | 683 98 3829 99
Unknown 338 3 101 2 | 237 3 17 2 84 2

As the result of preprocessing, a total of 4,657 partic-
ipants were included in this study. Table I illustrates the
characteristics of the total population observed (subset of the
cohort with a covid-19 diagnosis), included and excluded
group (based on missingness of information) and finally the
subgroups with positive or negative post-covid assessment.
Base characteristics of the included and excluded population
are similar. It is to be noted that women account for 73%
of the cases while representing 64% of the base dataset.
This indicates that women are more likely to be at risk for
Post COVID-19 condition than men. Conversely, for low PCC
symptom intensities, the proportion of women is smaller.

D. Preliminary statistics

To assess the impact of input variables and investigate
potential dependencies between the input variables and the

outcome (presence of PCC), we applied two statistical tests.
These tests are outlined below:

o Chi-square test: This test assesses whether two categori-
cal variables are independent [11] and used to study the
relation between two categorical variables, i.e., vaccina-
tion and PCSI. By evaluating the p-value obtained from
the test statistic at the chosen confidence level, we deter-
mine whether to reject the null hypothesis (indepedence)
in favor of the alternative hypothesis (dependence). A
confidence level of 95% is typically used and the null
hypothesis is rejected if p — value < 0.05.

o Cramer’s V test: This test quantifies the strength of
association between two categorical variables [12]. A
value close to zero indicates a weak dependency, while a
value approaching 1 suggests a strong dependency.
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Using these tests, we analyzed the influence of vaccination
on PC symptom intensity, with the results depicted in Figure 2.
This analysis was also conducted for other variables; however,
we present only the results for vaccination, as it serves as a
crucial preventive measure against COVID-19. To simplify the
interpretation, we rounded the PCSI score. From the figure, it
is evident that most participants who are fully vaccinated are
less likely to experience high levels of PCSI (2,790 out of
3,149 or 88% vaccinated participants report intensity levels 1
or 2). However, due to a lack of representative observations
for higher intensity levels, we cannot confidently establish a
relationship between vaccination and PCSI for these cases. The
Chi-square test statistic (p < 0.05) confirms the significance
of this relationship, even though the strength of the association
is weak (Cramer’s V = 0.072).

PC_INTENSITY

VACCINE 1 5 3 4 5 Total
2514 276 225 108 26 3149

complete vaccin 79.8% 88% 7.1% 34% 08% 100%
71% 54.9% 59.7% 545% 70.3% 67.6%

1028 227 152 a0 11 1508

ne 68.2% 151% 101% 6% 0.7% 100 %
29% 451% 403% 455% 29.7% 324 %

3542 503 377 198 37 4657

Total 76.1% 108% 81% 43% 08% 100%
100% 100% 100% 100% 100% 100%

¥2=81.995 - df=4 - Cramer's V=0.133 - p=0.000

Figure 2. Chi-square test between vaccination and PCSI scores. The test
results indicate a significant relationship (p < 0.05) between vaccination
and PCSI scores.

To further examine the relationships between multiple vari-
ables simultaneously, the Multiple Correspondence Analysis
(MCA) [13] is used. It allows identification and visualization
of underlying structures in a set of nominal categorical data
as is the case in this study. It can be seen as the categorical
equivalent of principal component analysis (PCA), projecting
data points into a low-dimensional Euclidean space where each
axis represents a component, with the corresponding variance
explained in percentage. Figure 3 depicts the obtained results.

The MCA plot reveals that high PCSI (5) is linked to
the presence of chronic diseases and poorer overall health.
Additionally, it appears that women are more likely to ex-
perience higher PCSI compared to men. The original SARS-
CoV-2 variant does not show a strong correlation with PCC,
suggesting a lower risk. Lastly, individuals in better general
health seem to have a reduced risk of developing PCC.

III. METHODOLOGY AND RESULTS

In this section, we outline an evaluation pipeline designed
to select and benchmark various predictive models using the
data obtained from the pre-processing stage. The goal of this
study is to predict the target variable, y, which represents
the intensity of Post COVID-19 condition. The intensity is
modeled as a continuous variable ranging between 1 (low
intensity) and 5 (high intensity). Given its continuous nature,
the problem is formulated as a regression task, where the
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Figure 3. Multiple Correspondence Analysis considering static and
vaccination variables. The PCSI variable is discretized (1-5 in clear blue).

models aim to approximate the mapping f : X — y, with
X € RP being the set of p explanatory variables (features).
The overall structure of the proposed pipeline is illustrated in
Figure 4.

Training data
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Figure 4. Benchmark and evaluation pipeline

In the context of statistical learning, the data are partitioned
into three subsets:

o Training set (Dypain): It involves 60% of all the partici-
pants (4657) and is used to estimate the parameters 6 of
the predictive model fy;

« Validation set (Dy,): It involves 10% of the participants
and is used to estimate the hyperparameters 0y, of the
predictive model fy;

o Test set (Diest): It involves 30% of all the participants,
and it is used to evaluate the performance of the trained
model on unseen data and assess the generalization ability
of the model.

After selecting the models, their hyperparameters (fyp) are
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fine-tuned to optimize performance. This crucial step enhances
the model’s predictive capabilities and is elaborated on in Sec-
tion III-C. The optimization process may involve techniques
such as grid search or gradient-free optimization methods (e.g.,
Nevergrad), depending on the model’s complexity.

Subsequently, each model’s performance is evaluated based
on a set of criteria measuring accuracy and reliability. The
results are presented using both tabular and graphical tools
to facilitate comparison and interpretation. These results offer
insights into the models’ predictive capabilities and help
identify the most suitable approach for modeling PCSIL

Lastly, to identify patient profiles and implement preventive
measures against Post COVID-19 condition, it is crucial to
assess the significance of the explanatory variables used for
model training and parameter adjustment. Depending on the
model utilized, we employ explanation and interpretation
tools to extract meaningful insights. These insights can offer
valuable guidance for the medical field.

A. Evaluated Methods

To tackle the regression problem, we evaluated and com-
pared several data-driven models, including Linear Ridge
Regression (LR), Random Forest (RF), Gradient Boosting
(GB), and Multi-Layer Perceptron (MLP). LR is a linear model
enhanced with regularization to address multicollinearity and
reduce overfitting. RF is an ensemble technique that builds
multiple decision trees and aggregates their predictions for ro-
bust regression. GB sequentially combines weak learners, typi-
cally decision trees, to minimize errors and improve predictive
accuracy. MLP is a feed-forward neural network excelling at
modeling non-linear relationships with fully connected layers
of neurons and non-linear activation functions.

B. Evaluation criteria

Considering that PCSI is a continuous target variable, we
have selected four evaluation criteria to assess the model’s
performance, which are: MAPE (Mean Absolute Percentage
Error), MAE (Mean Absolute Error), MSE (Mean Squared
Error) and Pearson correlation between predicted and actual
values.

C. Experimental setup

We fine-tuned all the presented models to determine the
optimal set of hyperparameters. For hyperparameter opti-
mization, we employed the Nevergrad library [14]. The best
hyperparameters for MLP were: 3 hidden layers with 126
neurons each, ReLU activation function, Adam optimizer with
a learning rate of 9 x 10~%, and 200 training epochs. For
RF, the optimal settings included 500 estimators, a maximum
depth of 12, a maximum sample fraction of 0.4, and 25
maximum features. Similar hyperparameters were achieved for
GB. Lastly, for LR, the L2 regularization strength multiplier
was set to 1.0. To ensure the stability and robustness of the
results, we conducted K-fold (K = 5 cross-validation and the
results are reported using mean and standard deviation across
the five folds.

D. Results

This section presents and discusses the results obtained by
the methods introduced and summarizes their performance in
Table II. Using each method, different combinations of fea-
tures are compared through the introduced evaluation criteria.
The “All" feature combination represents the integration of
all characteristics, including static variables, symptoms, and
vaccination data. For clarity, the best results for each method
are marked in bold, while the best performance for each
evaluation criterion is highlighted in green. Additionally, all
performance metrics are averaged across K = bH-fold cross-
validation and results are reported as MEAN =+ STD (refer to
Section III-C for details on the experimental setups). Pearson’s
correlation is reported using the pair (test statistic, p-value).

TABLE II. COMPARISON BETWEEN VARIOUS INTRODUCED MODELS AND
FEATURES COMBINATION FOR PREDICTION OF PCSI.

Evaluation criteria
Methods | Features MAE MSE MAPE Pearson
All 61 + .01 | .68 + .02 | .29 £+ .01 | (.56, 6e-70)
LR Static J1+£.02 | 91 +£.05 | .35+ .01 | (.28, 2e-16)
Symptoms | .62 £.02 | .70 £ .04 | 30 & .01 | (.57, 2e-69)
Vaccination | .81 £ .02 | .99 £ .05 | .41 £+ .01 NaN
All 60 +£ .01 | .67 £ .02 | .28 + .01 | (.58, 7e-73)
RE Static 72 4+.02 ] 93 +.05 | .35+ .01 | (.26, le-15)
Symptoms | .60 £ .01 | .66 £ .03 | .28 &+ .01 | (.57, 5e-72)
Vaccination | .79 + .02 | .99 £ .06 | .39 + .01 | (.04, le-1))
All 61 + .01 | .66 £ .01 .28 £+ .01 | (.57, 4e-74)
GB Static 72 4+.02 1 90+ .05 | .35+ .01 | (.29, Te-17)
Symptoms 61 + .01 | .68 £.02 | .28 &+ .01 | (.55, 8e-82)
Vaccination | .81 £ .02 | 99 £ .06 | .41 £ .01 | (.05, 6e-1)
All 45 £ .05 | 90 £+ .12 | .19 £+ .03 | (.25, 3e-18)
MLP Static 87 £ .18 | 1.4+ .78 | 43 £ .07 | (21, 4e-9)
Symptoms 776 £ .11 | 98 + .38 | .34 + .05 | (43, 5¢-33)
Vaccination | .80 = .03 | 1.03 + .05 | .41 £+ .03 | (.04, 2¢-1)

As shown in Table II, the best performance for each method
is achieved when all features are combined. However, with the
exception of MLP, the performance remains comparable even
when only symptom-based features are used. It is worth noting
that neural network-based methods, such as MLP, have the
capability for automatic feature extraction, whereas traditional
statistical approaches like LR, RF, and GB require a dedicated
feature engineering step.

We observe that the performance, in terms of the MAE
metric, remains very similar across the four approaches when
all features are combined. An MAE value of 0.60 indicates
that, on average, the predicted values deviate by 0.60 points
from the actual observations. Given that the PCSI ranges
from 1 to 5, a deviation of 0.60 in intensity is unlikely to
significantly affect the overall conclusions.

Finally, we note that the best result in terms of MAPE is
achieved using MLP, with a value of 0.19. This indicates that,
on average, the predictions deviate by 19% from the actual
intensity values. Interestingly, the highest Pearson correlations
between predictions and actual values are obtained with RF
and GB, rather than MLP. This discrepancy can be attributed
to the differences in how these models capture relationships
within the data. RF and GB are ensemble-based methods
that excel in capturing complex interactions between features,
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which may result in higher linear correlations (as measured
by Pearson correlation) between predicted and actual values.
On the other hand, MLP, being a neural network, is better
suited for non-linear patterns and optimization for specific
loss functions, which may explain its superior performance
in minimizing relative errors (as captured by MAPE).

E. Interpretation

Using explainability tools, this section allows to better
understand the models’ decision through some statistics such
as estimated feature coefficients and feature importance.

The top 9 most influential features, along with their corre-
sponding Linear Ridge Regression (LR) coefficients, averaged
over 5-fold cross-validation are presented in Table III. These
coefficients indicate the direction and magnitude of each fea-
ture’s contribution to the prediction of PCSI. Many common
acute symptoms, such as loss of sense of smell, headache, and
muscle pain, exhibit strong positive contributions, suggesting
they are associated with a higher risk of Post COVID-19
condition. Conversely, certain acute symptoms like fever or
pain when breathing show significant negative contributions,
indicating that their presence is less likely to increase the
risk of Post COVID-19 condition. This distinction highlights
the nuanced relationship between acute and long-term COVID
symptoms.

TABLE III. ESTIMATED COEFFICIENTS OF LINEAR REGRESSION FOR
PREDICTION OF POST COVID-19 CONDITION

Variable Coef | Variable Coef

Loss of sense of smell/taste  0.32 Pain when breathing  -0.58
Headache 0.28 | Fever (38° or higher) -0.27

Muscle pain/aches 0.27 Omicron variant -0.26
Lower back pain 0.23 | Heaviness in arms/legs -0.08
Original variant 0.17 Very good health -0.07
Feeling warm & cold 0.16 No chronic disease -0.07
Red, painful eyes 0.16 Age group -0.06
Sneezing 0.16 Smoker -0.05
Difficulty breathing 0.14 Male -0.03

The importance of features obtained by the Random Forest
(RF) model is illustrated in Figure 5 using a bar plot. For
clarity and brevity, only the top 10 most important features
were extracted from the full set. The identified features show
some overlap with those presented in Table III, although
their relative importance differs. Notably, muscle pain emerges
as the most important predictor of PCSI. Additionally, the
feature representing the time interval between vaccination and
infection (VACCIN_TTTI in the bar plot) is highlighted as a
significant contributor. This finding supports the hypothesis
that vaccination timing influences the risk and severity of
Post COVID-19 condition, emphasizing its potential impact
on disease outcomes.

Based on the SHAP explanation tool, the most influential
features for the MLP model predicting PCSI are identified in
Figure 6. Key symptoms such as difficulty breathing, diarrhea,
fluctuating body temperature, muscle pain, and sneezing had
high positive SHAP values, indicating strong contributions to
increased symptom intensity.
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Figure 5. Feature importances resulted using Random Forest model for
prediction of PCSI

Smoking was associated with higher PCSI, likely due to
its impact on respiratory health. In contrast, the absence of
chronic diseases and prior vaccination were linked to reduced
intensity, emphasizing the protective role of good baseline
health and immunization. Additionally, female sex was as-
sociated with higher PCSI, in line with existing research on
sex-based vulnerability to post-viral syndromes [15]. These
findings highlight the complex interplay of symptoms and
individual factors in shaping Post COVID-19 outcomes.

Smoking yes High
Gender female
Chronic disease
Delta variant
Feeling warm & cold
Sneezing
Muscle pain
No vaccine
Diarrhea

Difficulty breathing

-0.1 0.0 0.1
SHAP value

0.2 Low

Figure 6. Interpreting MLP influential factors using SHAP

IV. CONCLUSION AND PERSPECTIVES

This study aimed to identify patient profiles at higher risk
of developing PCC and predict its intensity using machine
learning approaches. We utilized features that were grouped
into static, vaccination, and symptom-related variables. Statis-
tical analyses revealed that women and patients with chronic
diseases are more susceptible to PCC. Predictive analysis using
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four different models demonstrated strong performance across
all methods when combining all features, with MLP showing
slightly better results in terms of MAPE. The interpretability
analyses identified key predictors, including loss of smell,
headache, muscle pain, and vaccination timing, as well as
protective factors like the absence of chronic diseases. These
insights provide valuable information for tailoring interven-
tions and understanding the underlying risk factors of PCC.

Limitations and future works. The steady-state assumption
in our analysis limits the ability to capture temporal relation-
ships between symptoms or events. Model performance is also
constrained by the quality and completeness of the dataset,
highlighting the need for validation on independent datasets to
ensure robustness in real-world scenarios. Additionally, while
the models offer predictive value, they are intended as tools
to complement clinical judgment rather than replace it. These
gaps will be addressed in future studies.

Societal Impact. Post COVID-19 condition has profound so-
cietal implications, affecting physical and mental health, daily
functioning, and productivity [16][17]. It disrupts educational
and professional activities, with children and adults experi-
encing isolation, stress, and cognitive impairments. Predicting
PCC symptoms intensity can inform early interventions, al-
leviate healthcare burdens, and improve patients’ quality of
life.

ACKNOWLEDGMENT

This work was supported by the ZonMw COVID-19 pro-
gramme (10430302110002). The Lifelines initiative has been
made possible by subsidy from the Dutch Ministry of Health,
Welfare and Sport, the Dutch Ministry of Economic Affairs,
the University Medical Center Groningen (UMCG), Groningen
University and the Provinces in the North of the Netherlands
(Drenthe, Friesland, Groningen).

REFERENCES

[1] T. Lancet, The covid-19 pandemic in 2023: Far from over,
2023.

(2]

(3]
(4]
(5]

(6]

(7]

(8]
(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

A. V. Ballering, S. K. van Zon, T. C. olde Hartman, and J. G.
Rosmalen, “Persistence of somatic symptoms after covid-19 in
the netherlands: An observational cohort study,” The Lancet,
vol. 400, no. 10350, pp. 452-461, 2022.

F. Callard and E. Perego, “How and why patients made long
covid,” Social science & medicine, vol. 268, p. 113426, 2021.
https://www.who.int/europe/news-room/fact-sheets/item/post-
COVID-19-condition. retrieved: September, 2025.

C. E. Hastie et al., “Natural history of long-covid in a na-
tionwide, population cohort study,” Nature Communications,
vol. 14, no. 1, p. 3504, 2023.

R. Kessler, J. Philipp, J. Wilfer, and K. Kostev, “Predictive
attributes for developing long covid—a study using machine
learning and real-world data from primary care physicians in
germany,” Journal of Clinical Medicine, 2023.

C. Sudre and al., “Symptom clusters in covid-19: A potential
clinical prediction tool from the covid symptom study app,’
Science advances, 2021.

M. Leyli-abadi, ML4HEALTH Python Package. [Online].

Available: https://github.com/Mleyliabadi/MLAHEALTH.
J. B. Soriano, S. Murthy, J. C. Marshall, P. Relan, and J. V.

Diaz, “A clinical case definition of post-COVID-19 condition
by a delphi consensus,” The Lancet. Infectious Diseases, 2022.
S. Srikanth, J. R. Boulos, T. Dover, L. Boccuto, and D. Dean,
“Identification and diagnosis of long covid-19: A scoping re-
view,” Progress in biophysics and molecular biology, vol. 182,
pp- 1-7, 2023.

M. L. McHugh, “The chi-square test of independence,” Bio-
chemia medica, 2013.

H. Cramér, Mathematical methods of statistics. Princeton
university press, 1999, vol. 43.

M. Greenacre and J. Blasius, Multiple correspondence analysis
and related methods. CRC press, 2006.

J. Rapin and O. Teytaud, Nevergrad - A gradient-free opti-
mization platform, https://GitHub.com/FacebookResearch/
Nevergrad, 2018.

F. Bai et al., “Female gender is associated with long covid
syndrome: A prospective cohort study,” Clinical microbiology
and infection, vol. 28, no. 4, 611-e9, 2022.

M. Mayhew, G. Kerai, and D. Ainslie, “Coronavirus and the
social impacts of ‘long covid’on people’s lives in great britain:
7 april to 13 june 2021,” Newport, Wales: Office for National
Statistics, pp. 1-21, 2021.

A. MacLean et al., “Impact of long covid on the school ex-
periences of children and young people: A qualitative study,”
BMJ open, vol. 13, no. 9, 075756, 2023.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

20


https://github.com/Mleyliabadi/ML4HEALTH
https://github.com/Mleyliabadi/ML4HEALTH
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

	Introduction
	Preprocessing and data analysis
	Data description
	Definition of Post COVID-19 symptoms intensity (PCSI)
	Data cleaning and preprocessing
	Preliminary statistics

	Methodology and results
	Evaluated Methods
	Evaluation criteria
	Experimental setup
	Results
	Interpretation

	CONCLUSION AND PERSPECTIVES

