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Abstract—We propose an epidemic compartment model, which
includes mortality caused by the disease, but excludes demographic
birth and death processes. Individuals are represented by random
walkers, which are in one of the following states (compartments)
S (susceptible to infection), E (exposed: infected but not infectious
corresponding to the latency period), I (infected and infectious),
R (recovered, immune), D (dead). The disease is transmitted
with a certain probability at contacts of I to S walkers. The
compartmental sojourn times are independent random variables
drawn from specific (here Gamma-) distributions. We implement
this model into random walk simulations. Each walker performs
an independent simple Markovian random walk on a graph, where
we consider a Watts-Strogatz (WS) network. In order to mimic
the effect of long-distance travelers, we subject the simple Markov
walks to stochastic resetting, which means that the walkers in each
time step are relocated to any node of the network with a certain
probability. Only I walkers may die. For zero mortality, we prove
the existence of an endemic equilibrium for basic reproduction
number Ry > 1 and for which the disease free (globally healthy)
state is unstable. We explore the effects of long-range-journeys
(stochastic resetting) and mortality. Our model allows for various
interpretations, such as certain chemical reactions, the propagation
of wildfires, and in population dynamics.

Keywords — Compartment model; mortality; random walks; complex
graphs; resetting; population dynamics.

I. INTRODUCTION

Sudden outbreaks of epidemics are recurrently threatening
humanity and represent major challenges for human societies
and public health services. Since the breakout of the COVID-
19 pandemic, epidemic models have attracted considerable
attention. More than ever, there is a need of basic understanding
of the underlying mechanisms of epidemic propagation. In
many cases persistent oscillatory and quasi-periodic behavior
or spontaneous outbursts, features, are observed. One of the
first works tackling the issue of oscillatory dynamics is the one
by Soper [1], which appeared a century ago in the literature.
So-called compartmental models, where the individuals of a
population are divided according to their states of health, have
become popular in the field of epidemic modeling. The first
model of this type was introduced a century ago in the seminal
work of Kermack and McKendrick [2], where individuals are
in one of the states (compartments) susceptible (to infection) -
S, infected and infectious - I, recovered (immune) - R. While
standard SIR models are able to capture essential features of
some common infectious diseases such as mumps, measles,
rubella and others, they have revealed to be unable to describe
above-mentioned oscillatory and quasi-periodic behaviors. The
classical SIR model has been generalized in many directions
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[3]-[6] and consult [7] for a model related to the context of
COVID-19 pandemic.

In the present paper, we explore the spreading of a disease
by combining a microscopic multiple random walkers approach
with a compartment model exhibiting random compartmental
sojourn times. In this work we close a gap in existing
models, and establish an exact stochastic system of evolution
equations describing the transitions among the compartments
(see (2) and (3)) from which explicit, in general non-Markovian
convolutional evolution equations can be obtained, by averaging
over the involved random variables. These equations are
general and beyond existing Markovian models when non-
exponentially distributed compartmental sojourn times are
assumed. Our formulation allows for arbitrary compartmental
sojourn time distributions including time-fractional ones, and
also incorporate a stochastic notion of mortality into the
dynamics. This novel stochastic approach opens a large field
to tackle the spreading dynamics of a wide range of real-
world diseases, with and without mortality. Moreover, our
model allows for further generalizations, such as inclusion of
demographic effects originating from natural birth and death
processes. Such generalizations may be of interest for classes of
diseases with a "slow" dynamics evolving on time-scales (such
as decades) where changes in the population number become
relevant. A prominent example is Hansen’s disease (leprosy),
which exhibits extremely long latency periods (around five
years).

By conducting a linear stability analysis, we prove for zero
mortality that the disease free state is stable for Ry < 1
and unstable for Ry > 1 (R( denotes the basic reproduction
number), where a globally stable endemic state emerges
whenever the compartment sojourn times have finite means,
for which we obtain explicit formulas (see relations (6)).
These formulas generalize the well-known classical results
of Kermack and McKendrick [2] to arbitrary distributions of
compartmental sojourn times and multiple compartments.

Let us give a brief sketch of the state of the art and
some related works, where we confine the discussion to
recent developments with focus on epidemic spreading models
in various kinds of random networks. In order to relate
macroscopic compartment models to microscopic dynamics,
epidemic spreading has been studied in random graphs with
emphasis on the complex interplay of the network topology and
spreading features [8]-[11]. Further works consider stochastic
compartmental models combined with random walk approaches
[12]-[19] including non-exponentially distributed compartmen-
tal sojourn times leading to non-Markovian models [20]-[24].
An increasing number of works consider epidemic propagation
on networks. In reference [19], involving generalized Laplacian
operators, spreading features are thoroughly analyzed, where
an upper bound for the epidemic SIS threshold for any graph
topology is obtained. Related works to our model can be found
in references [17], [21]-[24] and [34].

The remainder of our paper is organized as follows. In
section II we introduce a mean field picture of our compartment
model with the transition pathways among the compartments,

where we establish novel stochastic compartment evolution
equations with mortality. Special attention is given to the
analysis of the case of zero mortality, for which we derive
explicit formulas of the endemic state as well as the condition
of its existence. Section III is devoted to the outline of the
multiple random walkers approach. Inclusion of stochastic
resetting into the random walks enables us to study the effect
of long-distance travelers. In Section IV we summarize the
main results of the present stage of this project as far presented
in this paper. Finally, we conclude our ongoing project in
section V and discuss future directions together with some
possible generalizations of our model.

II. MEAN FIELD COMPARTMENT MODEL

Here, we study the large class of infectious diseases with
direct transmission among individuals, which also exhibit
mortality. The large list of these diseases includes Influenza,
COVID-19, Chickenpox, Hepatitis A, Ebola, and many others.
We propose a compartment model, in which individuals ("ran-
dom walkers") are in one of the following states (compartments)
S (susceptible to infection), E (exposed: infected but not
infectious corresponding to the latency period), I (infected and
infectious), R (recovered, immune), and D (dead). We assume
random waiting times ¢, %7, tr in compartments E, I, R. The
delay time tg is the latency period, i.e., the time between the
moment of infection (transition S to E) and outbreak of the
disease (transition E to I). ¢; is the duration of the disease
(infected and infectious state) during which the walker can
infect S walkers and die. We introduce a random survival time
tpr measured from the moment of transition into compartment
I (outbreak of the disease). The walker survives if t5; > tr
and dies otherwise (when t5; < t7). A surviving walker passes
through the SEIRS pathway

S—- —-1I—R—S.

A walker which dies from the disease (i.e., tpy < tj) runs
through the SEID pathway

S— —1—D.

For the infection rate, we assume a simple bilinear function
inspired from the mass-action law

A(t) = BS(t)J (1), (D

where 5 > 0 is a constant, which contains the information on
the probability of infection in a contact of an S and I walker
and features of the random walks. The stochastic formulation
of the evolution equations of the compartmental population
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fractions reads

%ﬁ’f) — A+ (At —tp —tr —tR)O(tar — t1))
+Jo(0(t =t — tr)O(tar — 1))
+Ro(8(t — tr))

d%t) = A(t) - (At —tg))

%gt) = (A(t—tg)) — (A(t — tg — t1)O(ts — t1))
—Jo(0(t — t1)O(tar — t1)) — %t(t)

MO — (At~ 1~ 0000 — 1)

+Jo{6(t = t1)O(tar — t1))
—Jo(0(t —tr —tr)O(tar — tr))
—(A(t —tg —t; — tr)O(trr — t1))
—Ro(8(t — tr))
2

and the mortality rate

dD(t)

dt 3)
S(t), E(t), J(t), R(t), D(t) denote, the fractions of the suscep-
tible, exposed, infected, recovered (immune), and dead walkers
populations, where S(¢) + E(t) + J(t) + R(t) + D(t) = 1.
We consider initial conditions S(0) = Sy, J(0) = Jo,
E(0) = 0, R(0) = Ry, D(0) = 0 and assume that the
disease occurs at ¢ = 0 for the first time with a few infected
walkers Jy, no exposed and dead walkers, and possibly some
immune (vaccinated) walkers Ry, allowing to explore effects
of vaccination. O(..) indicates the Heaviside unit step function,
§(..) the Dirac’s é-distribution, and (... ) stands for averaging
with respect to the contained (independent) random variables
teg,tr,tr,tyr > 0 drawn from probability density functions
(PDFs)

PT‘Ob(tE’I’R’M S [’T,T+d7’]) = KE’[’R’]\/[(T)dT

indicating the probabilities that tg 1 gy € [7,7 + d7]. The
following averaging rule applies

<f(tE,I,R,M)> = /0OO f(M)Kg r,rm(T)dT. 4)

For causal functions as in (2) this yields convolutions

(At = tman) = [ A=K

With these relations, the evolution equations (2) and (3) can
be averaged taking convolution forms (see [22, 23] for related
details).

a) Zero mortality — endemic equilibrium: The limit of
immortality of the walkers is retrieved from (2) for tp; = oo
thus O(tpr — t7) = 1 and O(¢; — tpr) = 0 and therefore
4 D(t) = 0. Then equations (2) read

= Jo(6(t—tar)O(tr—tar) )+ (At—ts—tar)O(tr—tar)).

950 _ A+ (At~ ts — tr — tn))

dt
+Jo(d(t —tr —tr)) + Ro(d(t — tr))

O _ aw)— (A - 1)
%it): (At —tg)) — (At —tg —t1)) — Jo(6(t — 1))
dR:Tf)= (At —tp —tr)) + Jo(6(t — t1))

—Jo(d(t —tr —tr))
~Ro(8(t —tr)) — (A(t —tp —tr — tr)) -

with S(t) + E(t) + J(t) + R(t) = 1. In order to derive the
endemic equilibrium, it is convenient to work with Laplace
transformed (5), where f(\) = [ f(t)e dt is the LT of
f(t). We use the limit value theorem f(c0) = limy_,0 Af())
to obtain the constant asymptotic values of the endemic
equilibrium as [22]

Se :,Rlioy RO:B<t1>7
_Ro—1(r)

Be = Ro (T)

Ro—1(t1) ©

_Ro—1{t1)

oo = Ro (T)
_ Ro—1({tr)

e = Ro (T)

The endemic equilibrium is independent of the initial conditions,
where (T) = (tg +t; +tg) and A, = R;’zgl ﬁ (6) exists
for Ro = B(t;) > 1, which also is the spreading condition of
the disease when Sy = 1 is considered. R indeed is the basic
reproduction number. In (6) <tE,1,R> = fOOO TKp 1 r(T)dr
stand for the mean compartmental sojourn times, assuming here
their finiteness. Relations (6) generalize the classical result [2]
to arbitrary waiting time distributions and multiple compartmen
Here we consider Gamma distributed waiting times due to the
high flexibility of Gamma distributions to adopt the behaviors
of a wide range of real world diseases (see e.g., [22], [23] for
details).

III. RANDOM WALK SIMULATIONS WITH RESETTING

We assume that each walker navigates for discrete times
independently on an ergodic network [25], [26]. In order to
describe the random walk of each walker, we denote with 7 =
1,... N the nodes of the network and introduce the symmetric
N x N adjacency matrix (A;;), where A;; = 1 if the pair of
nodes 7, j is connected by an edge, and A;; = 0 if the pair
is disconnected. Further, we assume A;; = 0 to avoid self-
connections of nodes. We restrict our analysis to undirected
networks, where edges have no predefined direction and the
adjacency matrix is symmetric. The degree k; of a node i
counts the number of its neighbor nodes (connected with ¢ by
edges). Each walker performs independent Markovian steps
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Figure 1. Effect of resetting on the spreading for zero mortality with emergence of endemic states in a large world Watts-Strogatz (WS) network (generated by

the PYTHON NetworkX library) of 1500 nodes with 200 walkers. Colors indicate the compartments of walkers. Compartmental sojourn times are Gamma

distributed with (t7) : (tg) : (tg) =4 :2: 1, which can be identified in the plots, corroborating (6) for all considered resetting rates p. The infection state of
the graph at runtime 1000 is exhibited by the inset. The basic reproduction number R is monotonously increasing with p.
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Figure 2. Spreading with high mortality and resetting in the WS graph of Figure 1 for resetting probability p = 0.6. The inset shows the infection state of the
graph at runtime ¢ = 250 (D walkers are invisible) with eventually only about 100 survived walkers out of 1500. We use the same color code as in Figure 1.
The right frame depicts the epidemic wave and left frame the evolution of the cases of death.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: ISBNFILL 11



PANDEMICS ANALYTICS 2025 : International Conference on Pandemics Analytics - 2025

between connected nodes. The steps from a node ¢ to one of
its k; = Zjvzl A;; neighbor nodes are chosen with probability
1/k;, leading for all Z walkers to the same transition matrix,
namely [26]-[28]

Ay
H(iﬁj):k—f, z=1,...,Z, di,j=1,...,N, (1)

which is by construction row-normalized Z;\Ll It — j)=1.

In addition, we relocate (‘reset’) the walkers at each time

instant to randomly chosen nodes with a certain probability p.

This modifies the transition matrix of the steps for each walker
to

Wi = qll(i — j) + pRj, p+qg=1, (®)

where in our simulations we have uniform resetting probabilities
R; = % to each node of the network. (8) introduces long-range
journeys into the random walks, and the spreading behavior is
modified compared to local walks (7). Stochastic resetting (SR)
is a fundamental process in nature where dynamical systems are
reset to the initial or randomly chosen states. SR occurred only
a decade ago in the literature [29] and has meanwhile launched
a myriad of models and opened a wide interdisciplinary field,
e.g., [30]-[33] (and many others).

I'V. RESULTS AND DISCUSSION

In Figure 1, we depict the simulated time evolution of
compartmental populations (absolute numbers of walkers)
under the influence of resetting for some values of relocation
probability p and zero mortality. The independent motion of
each walker is governed by (8). The parameters are such that
no spreading occurs without resetting with Ry = 1 where the
disease is eventually extinct (left upper frame). Increasing p
introduces more long-range displacements where the number of
contacts of S and I walkers and hence infection rates with basic
reproduction numbers R, increase. The disease is spreading
from p = 0.2 with monotonously increasing endemic values
E., J., R, and R with p. Our simulations corroborate (6), i.e.,
the ratios of the observed endemic values correspond to the
ratios of mean compartmental sojourn times. We determined
Ro in the simulations from the first equation of (6).

We assumed in our mean field model, a simple mass-action
law for the infection rates (1), leading with (5) to the endemic
states (6). These endemic values are in excellent agreement
with the large-time asymptotics obtained from the random walk
simulations (see Figure 1). This remains true when the random
walks of the individuals are subjected to resetting, which in
the large time limit affects only the macroscopic transmission
coefficient (5. These observations suggest that random walks
indeed offer suitable microscopic pictures of the corresponding
spreading dynamics.

Animated simulation-videos on Watts-Strogatz graphs can
be launched online by clicking on the slanted text for a case
without mortality and no resetting (see (5)). A further animation
video of the spreading under resetting (p = 0.6) on the graph
of Figure 1 and similar parameters includes mortality (see (2),
(3)). Simulation (Python) codes with parameters and further

details can be obtained upon request or consult our website
supplementary materials.

The present model can be generalized in several directions,
for instance, to vector-borne transmission pathways [23] or
assuming non-monotonous infection rates (different from
simple mass-action-laws) for which under certain conditions
the endemic equilibrium exhibits bifurcations, allowing for
emergence of chaotic attractors [34].

The present paper reflects a snapshot of our work in progress.
In the next steps, we analyze the evolution equations (2), (3)
with mortality in order to derive the effective reproduction
number Rj,; with mortality. Performing a linear stability
analysis around the healthy initial state Sy, Ry, which consists
of a fraction of susceptible walkers S(0) = Sp =1 — Ry, and
some immune (vaccinated) walkers R(0) = Ry leads to the
spreading condition (instability of the initial state) for R > 1.
As a preliminary result of this follow-up analysis, we report
here that the ‘effective reproduction number’ of the disease
with mortality and presence of some immune walkers yields

Rt = B - Ry) /Om By (£) (1)dt

= B(1 = Ro)(min(tar,t1))

< ﬂ/ O (t)dt = B{t;) = Ro,
0

where R is the basic reproduction number without mortality
and no immune walkers at ¢ = 0. In the immortal limit
(tpr — o0, @pr(t) — 1) one has Ry — R (in absence of
immune walkers Ry = 0). This relation contains the mean
of the "true" sojourn time min(tys,t;) in compartment I
and the persistent probabilities @y 7(t) = (O(tar,r — 1)) =
1-— fg K7 (7)d7. Moreover, it contains the probability that a
walker is in compartment I (infected and infectious and alive)
D (1) ®(t) = (O(tar —1)O(t; —t)) = (O(min(tas, tr)—t)).
The next steps in this analysis will include the investigation
of the large time asymptotics of the spreading dynamics with
mortality, among other directions, which we will briefly outline
subsequently.

V. CONCLUSION AND FUTURE WORK

We proposed a multiple random walkers epidemic com-
partment model, which accounts for mortality: An infected
walker may die during the period of its infection. We excluded
demographic birth and death processes. The compartmental
sojourn times were considered to be independent random
variables drawn from specific (here Gamma-) distributions.
By including stochastic resetting into the random walks, in
which walkers are relocated to random positions, we are able
to mimic the effects of long-range voyages on the spread
of the disease. By considering zero mortality, we observed
that the macroscopic compartment model (endemic states (6))
remains true for any resetting rate p, where the macroscopic
transmission coefficient 5 is monotonously increasing with
the resetting rate. Increasing numbers of long-range journeys
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may drive the basic reproduction number to values above one,
which launches the spreading of the disease. It follows that
measures reducing long-range voyages can be an effective way
to block the propagation of an epidemic. The results of the
simulations suggest that in all cases, above equations (6) for
the endemic states remain valid and capture well the large time
asymptotics.

Finally, we conclude that our approach of multiple random
walkers navigating independently in a complex network is a
powerful tool to capture the microscopic dynamics of epidemic
spreading. We included stochastic resetting into the random
walks mimicking long-range voyages of the walkers and found
that the basic reproduction number increases monotonously
with the resetting rate p. The message of this result clearly
is that prohibiting to a certain extend traveling in epidemic
contexts can be effective to prevent spreading of the disease.

As mentioned, the next steps will include an asymptotic
analysis of the spreading dynamics with mortality. To that
end, we will investigate the evolution equations (2), (3) in the
Laplace space and use the limit value theorem to determine the
large time asymptotic state. This infinite time limit is supposed
to be a disease free state, containing only susceptible walkers
(walkers that survived the epidemic wave) and dead walkers.
Also, the effect of resetting on the mortality of walkers (infinite
time limit of the fraction of dead walkers) will be explored
analytically and numerically in details. For a related analysis
of a mortal vector borne disease, we refer to a recent model
[23].

A further promising direction is to account for infection
rates beyond the present mass-action law (1) by including

information of the network topology and the random walk.

Introduction of individual navigation rules for specific walkers
can be of interest as well.
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