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Abstract—We consider a scenario of two sites connected over
a dedicated, long-haul connection that must quickly fail-over in
response to degradations in host-to-host application performance.
The traditional layer-2/3 hot stand-by fail-over solutions do
not adequately address the variety of application degradations,
and more recent single controller Software Defined Networks
(SDN) solutions are not effective for long-haul connections. We
present two methods for such a path fail-over using OpenFlow-
enabled switches: (a) a light-weight method that utilizes host
scripts to monitor application performance and dpctl API for
switching, and (b) a generic method that uses two OpenDaylight
(ODL) controllers and REST interfaces. For both methods, the
restoration dynamics of applications contain significant statistical
variations due to the complexities of controllers, north bound
interfaces and switches; they, together with the wide variety
of vendor implementations, complicate the choice among such
solutions. We develop the impulse-response method based on
regression functions of performance parameters to provide a
rigorous and objective comparison of different solutions. We
describe testing results of the two proposed methods, using
TCP throughput and connection rtt as main parameters, over a
testbed consisting of HP and Cisco switches connected over long-
haul connections emulated in hardware by ANUE devices. The
combination of analytical and experimental results demonstrate
that the dpctl method responds seconds faster than the ODL
method on average, even though both methods eventually restore
original TCP throughput.

Keywords–Software defined networks; OpenFlow; Opendaylight;
controller; long-haul connection; impulse-response; testbed.

I. INTRODUCTION

We consider scenarios where two remote sites are con-
nected over a dedicated long-haul connection with hundreds
of millisecond latency, such as a transcontinental fiber or
satellite link [1], as illustrated in Figure 1(a). Different client-
server application pairs are executed at different times on host
systems located at the sites, which range from data transfers
to on-line instrument monitoring to messaging. Applications
may incorporate different methods to account for network
losses and jitter; for example, they may utilize TCP or UDT
for guaranteed delivery, UDP for loss tolerant cases, custom
buffering methods and others at application level to account
for jitter. Furthermore, their performance may be optimized
or customized to connection parameters such as latency, jitter
and loss rate; for example, TCP parameters may be tuned for
long-haul connections and buffers of interactive codes may
be tuned for long latencies and jitter of satellite links. The
connection quality can degrade due to a variety factors such
as equipment failures, weather conditions, and geographical
events, which may be reflected in host-to-host application
performance. Indeed, the client-server application pairs may
respond differently to various degradations, such as decreased
throughput of file transfers, increased jitter in streaming, loss
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Figure 1. Two sites connected over long-haul connections.

of end-to-end control in computational steering, and in some
cases (such as messaging) having very little effect. As a miti-
gation strategy, a physically diverse and functionally equivalent
standby path is switched to when the performance of currently
running application pairs degrades.

The performances of application pairs are continuously
monitored on host systems, and the current primary path is
switched out when needed, for example, by modifying Virtual
Local Area Networks (VLAN) and route tables on border
switches and routers, respectively. In our use cases, human
operators watch host-level performance monitors, and invoke
Command Line Interface (CLI) commands or web-based in-
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terfaces of network devices for path switching. Typically, the
path fail-overs are accomplished either by manual configu-
ration or through device-specific scripts. Since triggers for
path switching are dynamically generated by application pairs,
they are not adequately handled by conventional hot standby
layer-2/3 solutions that solely utilize connection parameters.
For example, certain losses may be tolerated by messaging
applications but not by monitoring and control applications of
instruments and sensors. Currently, the design and operation
of such application-driven fail-over schemes require a detailed
knowledge of host codes, and the specialized interfaces and
APIs of switches, such as custom TL1, CURL and python
scripts, which currently vary significantly among vendor prod-
ucts. Furthermore, in our use cases such fail-over operations
must be coordinated between two physically-separated opera-
tions centers located at the end sites. The combination of recent
advances in host and network virtualization technologies [2]
offers very promising and potentially game changing solutions
to seamlessly automate the dynamic fail-over workflows that
integrate diverse application monitors and network elements.

We are interested in exploiting the network and host
virtualization layers to unify and automate such monitoring
and path switching operations. Automated scripts for these
tasks provide the following advantages over current practices:
(i) improved response time, since scripts can be executed
much faster than manual configurations, (ii) reductions in
performance degradations due to human errors in application
monitoring and path switching, and (iii) reductions in site
operations costs of host systems and network devices.

A. SDN Solutions
The rapidly evolving Software Defined Networks (SDN)

technologies [3], [4] seem particularly well-suited for automat-
ing the path switching tasks, when combined with host moni-
toring codes. In particular, the northbound interfaces of SDN
controllers can be used to communicate the path degradations
information to trigger path switching; then, the path can be
switched by installing flow entries that divert traffic onto the
standby path using the southbound controller interfaces [5].
Thus, SDN technologies provide two distinct advantages over
current network operations:

(a) trigger modules of new applications can be “dropped
in place” with no no major software changes by using
communications via generic northbound interfaces, and

(b) switches from different vendors with virtual interfaces can
be simply be swapped, avoiding the re-work often needed
to account for custom interfaces and operating systems.

While the problem space of our use cases is somewhat straight-
forward, their SDN solution space is much more complex: due
to the rapid developments in underlying technologies, these is
a wide array of choices for controllers and switches, which in
turn leads to a large number of solution combinations. Indeed,
their complexity and variety requires systematic analysis and
comparison methods to assess their operational effectiveness
and performance, such as recovery times. In addition, com-
pared to certain data-center and network provisioning scenarios
for which SDN technologies have been successfully applied,
these long-haul scenarios present additional challenges. First,
single controller solutions are not practical for managing the
border switches at end sites due to the large latency. Second,

solutions that require a separate control-plane infrastructure
between the controllers and switches are cost prohibitive, in
sharp contrast to the connection-rich data-center or Internet
scenarios.

B. Outline of Contributions
In this paper, we present automated software solutions for

path fail-over by utilizing two controllers, one at each site,
that are coordinated over a single connection through mea-
surements. We first describe a light-weight, custom designed
dpctl method1 for OpenFlow border switches that uses host
Linux bash scripts to: (i) monitor the connection parameters,
such as rtt or TCP throughput, at the host-level and detect
degradations that require a fail-over, and (ii) utilize dpctl API
to install and delete flow entries on the border switches to
implement path fail-over when needed. This script is about
hundred lines of code, which makes it easier to analyze for
its performance and security aspects. We then present a more
generic ODL method that utilizes two OpenDaylight Hydro-
gen (ODL) controllers [6] located at the end sites. We use
REST interface of ODL controller to communicate the trigger
information for path switching in the form of new OpenFlow
entries to be installed on border switches. We also utilize Linux
bash scripts to monitor the connection performance to gener-
ate fail-over triggers, and invoke python REST API scripts
to communicate new flow entries to ODL controllers. The
executional path of this approach is more complex compared
to the dpctl method since it involves communications using
both northbound and southbound ODL interfaces and invoking
several computing modules within ODL software stack. Thus,
a complete performance and security analysis of this method
requires a closer examination of much larger code base that
includes both host scripts and corresponding ODL modules,
including its embedded http server.

We present implementation and experimental results using
a testbed consisting of Linux hosts, HP and Cisco border
switches, and ANUE long-haul hardware connection emulation
devices. We utilize TCP throughput as a primary performance
measure 2 for the client-server applications, which is effected
by the connection rtt and jitter possibly caused by path
switching, and the available path capacity. Experimental results
show that both dpctl and ODL methods restore the host-to-host
TCP throughput within seconds by switching to the standby
connection after the current connection’s RTT is degraded (by
external factors). However, the restoration dynamics of TCP
throughput show significant statistical variations, primarily as
a result of interactions between the path switching dynamics of
controllers and switches, and the highly non-linear dynamics
of TCP congestion control mechanisms [7]–[9]. As a result,
direct comparisons of individual TCP throughput time traces
corresponding to fail-over events are not very instructive in
reflecting the overall performance of the two methods.

To objectively compare the performance of these two
rather dissimilar methods, we propose the impulse-response

1Note that dpctl is originally intended for diagnosis purposes, which we
utilize as a controller.

2The overall approach is applicable to other application-level performance
measures such as response times, which typically degrade under connection
disruptions and recover when connection is restored. Our choice of TCP
is based on its widespread use for guaranteed packet delivery and its rich
dynamics.
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method that captures the average performance by utilizing
measurements collected in response to a train of path degra-
dation events induced externally. We establish a statistical
basis for this method using the finite-sample theory [10] by
exploiting the underlying monotonic properties of performance
parameters during the degradation and recovery periods. This
analysis enables us to objectively conclude that on the average
the dpctl method restores the TCP throughput several seconds
faster than the ODL method for these scenarios. This paper is
an expanded version of an earlier conference paper [1] with
additional explanations and details of SDN implementations,
and it also provide a complete derivation of the performance
equations for the impulse response method using finite sample
statistical analysis.

The organization of this paper is as follows. Two-site sce-
narios with dedicated long-haul connections are described in
Section II. A coordinated controllers approach for connection
fail-over, and its implementation using dpctl and ODL methods
are described in Section III. An experimental testbed consisting
of Linux servers and HP and Cisco switches is described in
Section IV-A, and the results of experiments using dpctl and
ODL methods using five different configurations are presented
in Section IV-B. The impulse response method to assess the
overall fail-over performance is presented in Section V-A, and
its statistical basis is presented in Section V-B. Conclusions
are presented in Section VI.

II. LONG-HAUL CONNECTION SWITCHING

We consider scenarios consisting of two sites connected
over a long-haul connection such as transcontinental fiber
routes or satellite connections as shown in Figure 1(a). The
sites house multiple workstations on which server and client
applications are executed, which form the client-server appli-
cation pairs over the long-haul connection as shown in Figure
1(b). The client-server application performance depends on
the quality of the connection specified by parameters such as
latency, loss rate, and jitter. These connection parameters may
degrade due to external factors such as equipment failures,
fiber cuts and weather events. Such factors will be reflected
in the degradation in client-server performance, which may be
detected by the performance monitoring software implemented
at application-level, for example, using Linux scripts. To pro-
tect against such factors, a parallel standby path is provisioned
that can be switched-over to when performance degradations
are detected. The border switches or routers at the sites are
connected to both the primary long-haul connection that carries
the traffic, and the stand-by connection whose traffic can
be activated as needed. In our case, these connections are
implemented as layer-2 VLANS at the border switches, which
can be modified to implement the fail-over. All traffic between
the sites is carried by the single long-haul connection, in-
cluding client-server communications and other traffic needed
for coordinating network operations; in particular, it is not
cost-effective to provision a separate “control” connection for
supporting the network configuration operations unlike in other
cases, such as in UltraScienceNet [11] a decade ago and more
recently in SDN based solutions.

Application codes on host systems continually monitor the
client-server performance, such as iperf for TCP throughput
and UDP loss rate. Under path degradations, these parameters
would be out of normal range, and such events are detected
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Figure 2. Configurations of dpctl and ODL controllers.

and alerts are sent to network operations. Typically, human
operators receiving the alerts modify the VLANS on border
switches to implement path switching, for example, by invok-
ing CLI or TL1 or curl scripts, or manually making the changes
through CLI or web interfaces. Due to different organizational
zones at the sites and the long separation between them, it is
not practical for a single network operations center to handle
connection switching at both sites, particularly, if the same
“degraded” connection is used for these communications as
well. Instead, such tasks are typically coordinated between the
two site organizations using other means such as telephone
calls. Due to the multi-step process needed here, the fail-
over operation can take anywhere between few minutes to
hours. Thus, it is highly desirable to automate the entire fail-
over work flow that includes application-level monitoring and
network-level switching as described in Introduction section.

III. COORDINATED SDN CONTROLLERS

For the long-haul scenarios considered here, a single
controller solution is not effective, although such approaches
with stable control-plane connections have been effective in
path/flow switching over local area networks using OpenFlow
[12], [13] and cross-country networks using customized meth-
ods [11], [14]. Since the controller has to be located at a
site, when primary connection degrades, it may not be able to
communicate effectively with the remote site. Our approach
is to utilize two controllers, one at each site, which are “in-
directly” coordinated based on the monitored application-level
performance parameters. When path degradation is inferred by
a host script, the controller at that site switches to the fail-over
path by installing the appropriate flow entries on its border
switch. If the primary path degrades, for example, resulting in
increased latency or loss rate, its effect is typically detected at
both hosts by the monitors, and both border switches fail-over
to the standby path approximately at the same time. If border
switch at one site fails-over first, the connection loss will be
detected at the other site which in turn triggers the fail-over at
the second site. Also, one-way failures lead to path switching
at one site first, which will be seen as a connection loss at the
other site, thereby leading to path switching at that site as well.
Due to recent developments in SDN technologies, both in open
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software [3], [4], [15] and specific vendor implementations
[16], [17], there are many different ways such a solution can
be implemented. We restrict here to OpenFlow solutions based
on open standards and software [12].

A. dpctl Method

As a part of OpenFlow implementation, some vendors
support dpctl API which enables hosts to communicate with
switches to query the status of flows, insert new flows and
delete existing flows. It has been a very useful tool primarily
for diagnosing flow implementations by using simple host
scripts; however, some vendors such as Cisco do not provide
dpctl support. We utilize dpctl API in a light-weight host script
that constantly monitors the connection rtt and detects when it
crosses a threshold and invokes dpctl to implement the fail-over
as shown in Figure 2(a). The OpenFlow entries for switching
to the standby path are communicated to the switch upon
the detection of connection degradation. This script consists
of under one hundred lines of code and is flexible in that
the current connection monitoring module can be replaced
by another one such as TCP throughput monitor using iperf.
Compared to methods that use separate OpenFlow controllers,
this method compresses both performance monitoring and
controller modules into one script, and thereby avoids the
northbound interface altogether; for ease of reference, we refer
to this host code as the dpctl controller. This small footprint of
the code makes is easier to analyze both from performance and
security perspectives. Also, the executional path of this code
is very simple since it involves application monitoring directly
followed by communications with the switch; in particular, this
method does not require a separate controller that is constantly
running at the end sites.

B. OpenDaylight Method

We now present a method that utilizes two ODL Hy-
drogen controllers and REST interfaces to implement fail-
over functionality using OpenFlow flows as shown in Figure
2(b). ODL is an open source controller [6] that communicates
with OpenFlow switches 3, and is used to query, install and
delete flow entries on them using its southbound interface.
The applications communicate with ODL controller via the
northbound interface to query, install and delete flows. ODL
software in our case runs on linux workstations called the
controller workstations, and the application monitoring codes
can be executed on the same workstation in the local mode
or can be executed on a different workstation in the remote
mode.

The same performance monitoring codes of the dpctl
method above are used in this case to detect path degradations
but are enhanced to invoke python code to communicate
new flows for switching paths to ODL controllers via REST
interfaces; the content of these flow entries are identical to
previous case. Thus, both the software and executional paths
of this method are much more complicated compared to
previous case, and also the ODL controllers are required to
run constantly on the servers at end sites. Also, this Hydrogen

3ODL provides interfaces to much broader classes of switches and appli-
cations, but we limit our discussions to the functionalities that are directly
related to long-haul scenarios described in Section II.
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ODL code4 is much more complex to analyze since it involves
not only the REST scripts but also the ODL stack which by
itself is a fairly complex software. The execution path is more
complex since it involves additional communication over both
northbound and southbound interfaces of ODL controllers.

The dpctl and ODL methods represent two different fail-
over solutions, and the choice between them depends on their
recovery performance in response to triggers. In the next
section, we describe a set of experiments using HP and Cisco
switches that highlight the performances of controllers and
switches. However, a direct comparison of the measurements
between various configurations is complicated by their sta-
tistical variations, which we account for using the impulse
response method described in Section V.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the details of testbed and
tests using dpctl and ODL controllers, and then describe the
experimental results.

A. Emulation Testbed
The experimental testbed consists of two site LANs each

consisting of multiple hosts connected via 10GigE NICs to
the site’s border switch. The border switches are connected
to each other via local fiber connection of few meters in
length and ANUE devices that emulate long-haul connections
in hardware, as shown in Figure 3. Tests are performed in
configurations that use pairs of HP 5064zl and Cisco 3064
devices as border switches. These switches are OpenFlow-
enabled but only HP switches support dpctl interface. We only
utilize OC192 ANUE device in our tests, which can emulate
rtts in the range of [0-800] milliseconds with a peak capacity
of 9.6 Gbps. These devices are utilized primarily to emulate
the latencies of long-haul connections, both transcontinental

4Later ODL releases starting with Helium, including Lithium and Beryllium,
support more agile code builds wherein only the needed service modules are
loaded (as karaf features [6]), thereby significantly reducing its size. However
the execution path remains the same as in Hydrogen.
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fiber and satellite connections, to highlight the overall recovery
dynamics. However, no efforts are made to highlight their ca-
pacity differences, for example, by limiting the latter to typical
satellite connection capacities, which could have resulted in
somewhat muted dynamics. The conversion between 10GigE
LAN packets from the border switches and long-haul OC192
ANUE packets is implemented using a Force10 E300 switch,
which provides 10GigE LAN-PHY and WAN-PHY conversion
as shown in Figure 4.
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Figure 4. Remote and local modes of ODL controller configurations.

Two classes of Linux hosts are connected to the border
switches. The controller hosts (feynman1 and feynman2) are
utilized to run ODL controllers, and client and server hosts
(feynman3 and feynman4) are used to execute monitoring and
trigger codes along with client server codes, for example iperf
clients and servers. Five different configurations are employed
in the tests as shown in Table I. The dpctl tests utilize only
the client and server hosts to execute both monitoring and
switching codes. In these tests, dpctl is used to communicate
flow modification messages between the hosts and HP 5064zl
switches, and Cisco switches are not used. Configuration
A corresponds to these tests with the monitoring and dpctl

Table I. Five test configurations with two controllers, two connection
degradation methods and two switch vendors.

test controller path switch
configuration method degradation vendor

A dpctl path switch HP
B ODL local path swith HP
C ODL remote path switch HP
D ODL remote rtt extension HP
E ODL remote rtt extension Cisco

scripts running on server/client hosts, and it uses HP border
switches. For ODL remote mode tests, the monitoring codes on
client/server hosts utilize REST interface to communicate flow
message needed for fail-over; both HP and Cisco switches are
used in these tests. Configurations C-E implement these tests,
which employ ODL controllers running on controller hosts
and monitoring scripts running on server/client hosts. In ODL
local mode tests, the monitoring and client/server codes are
executed directly on control hosts. Configuration B implements
these tests, and it is identical to Configuration C except its
scripts are executed on controller hosts. The measurements in
Configurations B and C are quite similar, and hence we mostly
present results of the latter.

In the experiments, connection degradation events are im-
plemented by external codes using two different methods:

(a) Path switching using dpctl: The current physical path with
a smaller rtt is switched to a longer emulated path, whose
rtt is sufficient to trigger the fail-over. This switching
is accomplished by using dpctl or ODL by installing
OpenFlow entries on the border switches to divert the
flow from the current path to longer path. The packets
enroute on the current path will be simply be dropped
and as a result the short-term TCP throughput becomes
zero. After the fail-over, the path is switched back to the
original path, and the TCP flow recovers gradually back
to previous levels.

(b) RTT extension using curl scripts: The current connec-
tion’s rtt is increased by changing the setting on ANUE
device to a value above the threshold to trigger the fail-
over. This is accomplished using http interface either
manually or using curl scripts. Unlike the previous case,
the packets enroute on the current path are not dropped
but are delayed; thus, the instantaneous TCP throughput
does not always become zero but is reduced significantly.
After the fail-over, the original rtt is restored, and TCP
throughput recovers gradually to previous levels.

The first degradation method using dpctl to switch the paths is
only implemented for configurations with HP border switches
in Configurations A - C. The second method is used for both
HP and Cisco system in Configurations D and E, and since the
curl scripts are used here to change delay settings on ANUE
devices, and border switches are not accessed.

B. Controller Performance
TCP throughput measurements across the long-haul con-

nection are constantly monitored using iperf. The default
CUBIC congestion control module [18] for Linux hosts is
used in all tests. The rtt between end hosts is also constantly
monitored using ping, and path switching is triggered when
it crosses a set threshold; this module can be replaced by a
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more general application-based trigger module, for example, to
detect when throughput falls below or jitter exceeds thresholds.
The path degradations are implemented as periodic impulses
and the responses are assessed using the recovery profiles of
TCP throughput captured at one second intervals. Also, the
ANUE dynamics in extending the rtt affect the TCP throughput
recovery, and we obtain additional baseline measurements by
utilizing a direct fiber connection that avoids packets being
routed through ANUE devices. Thus, TCP throughout traces
in our tests capture the performances of: (a) controllers,
namely, dpctl and ODL, in responding to fail-over triggers
from monitoring codes, and in modifying the flow entries on
switches, typically by deleting the current flows and inserting
the ones for standby path, and (b) border switches in modifying
the flows entries in response to controller’s messages and re-
routing the packets as per new flow entries.

  Example Trace:  

path switch 

TCP throughput loss 

latency increase 

input 
impulse train 

throughput 

rtt 

Figure 5. Trace of impulse response of TCP throughput for dpctl method
with local primary path and path switching degradation.

An example TCP throughput trace of a test run in Config-
uration A is shown in Figure 5 for the dpctl method, with fiber
connection as the primary path, and using the path switching
degradation method. The connection rtt is degraded at the
periodicity of 50 seconds by externally switching to the longer
ANUE path, and the change is detected as shown in the bottom
plot, which in turn triggers the fail-over. TCP throughput
parameters on the hosts are tuned to achieve 10Gbps for the
default rtt, and it degrades once the connection rtt is increased
to 30ms after path switching. Upon the detection of increased
rtt, the default path is restored, which in turn restores TCP
throughput to the original value as shown in the middle plot
of Figure 5. Note that throughput trace shows significant
variations during the recovery periods following the fail-over,
even in this simplest among the test configurations.

The restoration profiles of TCP throughput in these tests
reflect the detection of connection degradation and fail-over,
followed by the recovery response of the non-linear dynamics
of CUBIC congestion control mechanism. Three different TCP
recovery profiles from the tests are shown in Figure 6: (a)
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Figure 6. TCP throughput for dpctl method for configuration A and ODL
methods for configuration D and E.

Configuration A: dpctl method using HP switches with con-
nection degradation by path switching, (b) Configuration D:
ODL method using HP switches with connection degradation
by rtt extension, and (c) Configuration E: ODL method using
Cisco switches with connection degradation by rtt extension.
As seen in these plots, TCP response dynamics contain sig-
nificant variations for different degradation events of the same
configuration as well as between different configurations.

The individual TCP throughput recovery responses to
single path degradation events reveal more details of the
difference between configurations as shown in Figure 7. The
delayed response of ODL method compared to dpctl method
can be seen in Figure 7(a) for Configurations A and B.
Since the packets in transit during the switching are simply
lost during path switching, the instantaneous TCP throughput
rapidly drops to zero for Configuration A. On the other
hand, some of the packets in transit when rrt is extended
are delivered, and as a result TCP throughput may be non-
zero in some cases, as shown in Figure 7(b). Another aspect
is that, TCP throughput recovers to 10Gbps when the direct
fiber connection is used between the switches, but only peaks
around 9 Gbps when packets are sent via ANUE connection
with zero delay setting as shown in Figure 7(b). Also, the
recovery profiles are different between HP and Cisco switches
in otherwise identical Configurations E and F as shown in
Figure 7(c). Thus, TCP dynamics depend both on the controller
primarily in terms of recovery times, and on the switches
in terms of the peak throughput achieved and its temporal
stability.

We now consider more details of the dpctl and ODL
methods using HP switches with path switching degradation
shown in Figure 7(a) with the primary fiber connection. Here,
the TCP throughput becomes zero and rtt crosses the threshold
immediately following the path switching degradation, and
both controllers respond to the fail-over triggers and switch
the path back to original fiber connection. Since these config-
urations are identical except the controllers, the recovery time
of ODL method is a few seconds slower than dpctl method.
However, the complex dynamics and statistical variations of
TCP profiles make it harder to draw general conclusions
about their comparative performance based on such single
degradation events.
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Figure 7. Trace of impulse response of TCP throughput for dpctl method
with local primary path and path switching degradation.

C. Switch Performance

TCP performance is effected by the path traversed by
the packets between the border switches, in addition to its
dependence on dpctl and ODL methods as described in the
previous section (Figure 7(b)), thereby indicating the effects
of the connection modality on client-server performance. In
configurations A and B, the primary connection is few me-
ters of fiber between the switches, and TCP throughput is
restored to around 10 Gbps after the fail-over as shown in
Figure 7(a). In Configurations D and E, the packets are sent

through the emulated connection, which consists of long-haul
Force10 E300 switch and OC192 ANUE emulator with the
peak capacity of 9.6 Gbps. In this case, both peak value and
the dynamics of TCP throughput are effected as shown in
Figure 7(b); as expected, the peak is below 9.6 Gbps but there
are significant variations in the throughput. Furthermore, the
connection modality effects HP and Cisco switches differently
as shown in Figure 7(c) in that the latter reached somewhat
lower peak throughput and exhibited larger fluctuations 5.

Although we focussed on TCP throughput measurements
in this section, the overall approach is applicable to other
performance parameters such as latency in reporting sensor
measurements, response times of remote control operations,
and loss of quality in voice and video transmissions. In
general, we consider that the chosen performance parameter
degrades when the current connection properties degrade, and
it recovers when stand-by connection is restored. This overall
characterization is used to develop a method to systematically
compare the measurements under different configurations.

V. IMPULSE RESPONSE METHOD

We present the impulse response method in this section
that captures the overall recovery response by “aggregating”
generic (scalar) performance measurements (such as TCP
throughput as in previous section) collected in response to
periodic connection degradations. It enables us to objectively
compare the performances of different methods and devices
by extracting the overall trends from measurement traces of
multiple fail-over events. While our discussion is centered
around TCP measurements described in the previous section,
the overall approach is more generically applicable for compar-
ing configurations with different controllers and switches, and
it is particularly useful when the recovery throughput traces
are not amenable to simple, direct comparisons.

A. Response Regression Function
A configuration X that implements the fail-over is specified

by its SDN controller and switches that implement the fail-
over, and also the monitoring and detection modules that
trigger it. Let δ(t − iT ), i = 0, 1, . . . , n denote the input
impulse train that degrades the connection at times iT + TD,
where t represents time, T is the period between degradations
and TD < T is the time of degradation event within the period.
Let TX(t) denote the parameter of interest at time t, such
as TCP throughput, as shown in Figure 6 for configurations
X=A,D,E. Let RX(t) = B − TX(t) denote the response
that captures the “unrealized” or “unused” portion of the peak
performance level B. For example, over a connection with
capacity B it is the residual bandwidth at time t above TCP
throughput TX(t); it is close to zero when throughput is close
to the peak and it is close to B during the fail-over period when
throughput is close to zero. We define the impulse response
function RX(t) such that

RXi (t) = RX(t− iT ), t ∈ [0, T )

is the response to ith degradation event δ(t − iT ), for i =
0, 1, . . . , n. An ideal impulse response function is also an

5No connection-specific TCP optimizations are performed in these tests,
and it is quite possible that different optimizations may be needed to achieve
comparable throughput in these two configurations.
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Figure 8. Examples of impulse response functions for Configurations A-E
for a single path degradation.

impulse train that matches the input, wherein each impulse rep-
resents the instantaneous degradation detection, fail-over and
complete recovery the parameter. But in practice, each RXi (t)
is a “flattened” impulse function whose shape is indicative of
the effectiveness of the fail-over. In particular, its leading edge
represents the effect of degradation and its trailing edge repre-
sents the recovery, and the narrower this function is the quicker
is the recovery. Examples of RX1 (.) are shown Figure 8 for
configurations A-E; these TCP measurements show significant
temporal variations that persist across the different degradation
events, which make it difficult to objectively compare these
single-event time plots. In general, such variations are to be
expected in other performance parameters such as latency and
response time associated with sensor and control applications.
Nevertheless, certain general trends seem apparent such as the
faster TCP response of the dpctl method compared to the ODL
method.

We define the response regression of configuration X as

R̄X(t) = E
[
RXi (t)

]
=

∫
RXi (t)dPRX

i (t),

for t ∈ [0, ), where the underlying distribution PRX
i (t) is

quite complex in general since it depends on the dynamics
of controllers, switches, end hosts, application stack and mon-
itoring and detection modules that constitute X . It exhibits
an overall decreasing profile for t ∈ [0, TD + TI ] followed
by an increasing profile for t ∈ (TD + TI , T ], where TI is
the time needed for the application to react to connection
degradation. After the fail-over, TCP measurements exhibit an
overall increasing throughput until it reaches its peak as it
recovers after becoming nearly zero following the degradation.
We consider that a similar overall behavior is exhibited by the
general performance parameters of interest.

We define the response mean R̂i(t) of R̄i(t) using the
discrete measurements collected at times t = jδ, j =
0, 1, ..., T/δ, as

R̂X(jδ) =
1

n

n∑
i=1

(
RXi (jδ)

)
which captures the average profile. Examples of R̂Xi (.) for
TCP throughput are shown Figure 9 for different configurations
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Figure 9. Impulse response regressions for n = 10 and T = 50 sec: (a)
top-left: A and C, (b) top-right: A and D, (c) bottom-left: D and E , and (d)

bottom-right: all.
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Figure 10. Comparison of response means of dpctl (configuration A) and
ODL (configuration C) methods using 100 path degradations with T = 50

seconds.
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based on 10 path degradations with T = 50 seconds between
them, which show the following general trends.

• The dpctl method responds seconds faster than ODL
method as indicated by its sharper shape although their
leading edges are aligned as shown in Figure 9(a).

• The connection degradation implemented by the rtt ex-
tension has a delayed effect on reducing the throughput
compared to the path switching degradation method as
indicated by its delayed leading edge in Figure 9(b).

• The dynamic response of regression profiles of HP 5604zl
and Cisco 3064 switches are qualitatively quite similar
as shown in Figure 9(c), but the latter achieved some-
what lower peak throughput overall; note that the larger
throughput variations at individual switching events of the
latter case are “averaged” in these plots.

In view of the faster response of dpctl method, we collected
additional measurements in configurations A and C using
100 path degradations, and the resultant response means are
somewhat smoother compared to 10 degradations as shown in
Figure 10 (a) for both dpctl and ODL methods. Furthermore,
the response mean of ODL method remained consistent with
more measurements, and a histogram of the relative delays of
ODL method compared to dpctl method is plotted in Figure
10(b), and they are in the range of 2-3 seconds in majority of
cases. These measurements clearly show the faster response
of the dpctl method for these scenarios. Such performance is
expected because of its much simpler code and execution path,
both in terms of computation and communication.

In general, dpctl is primarily intended for diagnostic pur-
poses and has not been used for control, and as a result its
performance for the latter has not been investigated much,
in particular, its scalability with respect to the number of
flow entries. We tested the effectiveness of dpctl method with
respect to the number of flow entries used for path switching;
in above tests, for each path fail-over, two flow entries are
used by both dpctl and ODL methods on each border switch.
We increased the number of additional flow entries to 10
and 100 for each fail-over in dpctl method, and the resultant
TCP throughput measurements are shown in Figure 11(a),
along with those of the original ODL method. The impact
of additional flow entries in dpctl method is not apparent
from a visual inspection of these plots, primarily due to TCP
throughput variations. The response means for these cases are
plotted in Figure 11(b) which show no significant differences
due to the additional flow entries. But, they show that the
response of dpctl method is still 2-3 seconds faster than ODL
method on average even with the additional flow entries.

From an engineering perspective, the above performance
comparisons based on the measurements seem intuitively
justified, but the soundness of such conclusions is not that
apparent. In the next section, we provide a statistical justi-
fication for the use of response mean R̂(t) as an estimate
of the response regression R̄(t) by exploiting the underlying
monotonic properties of the performance parameter, namely
its degradation followed by recovery, as illustrated by TCP
throughput measurements. Due to the somewhat technical
nature of the derivations, these details are relegated to separate
next section.

(a) TCP traces

(b) response means

Figure 11. Comparison of response means of dpctl (configuration A) with 10
and 100 additional flows and original ODL (configuration C) methods using

100 path degradations with T = 50 seconds.

B. Finite Sample Statistical Analysis

A generic empirical estimate R̃X(t) of R̄(t) based on
discrete measurements collected at times t = jδ, j =
0, 1, ..., T/δ, is given by

R̃X(jδ) =
1

n

n∑
i=1

[
g
(
RXi (jδ)

)]
for an estimator function g. We consider that the function class
M of R̃X(.) consists of unimodal functions, each of which
consists of degradation and recovery parts when viewed as a
function of time. For ease of notation, we also denote R̃X(.)
by f in this section such that it is composed of a degradation
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function fD and a recovery function fR as follows:

f(Ri(t)) =

{
fD(Ri(t)) if t ∈ [0, TD + TI ]

fR(Ri(t)) if t ∈ (TD + TI , T ]
(1)

where fD ∈ MD and fR ∈ MR correspond to the leading
and trailing edges of the response regression. The expected
error I(f) of the estimator f is given by

I(f) =

∫
[f(t)−RXi (t)]2dPRX

i (t),t

=

∫
[0,TD+TI ]

[fD(t)−RXi (t)]2dPRX
i (t),t

+

∫
(TD+TI ,T ]

[fD(t)−RXi (t)]2dPRX
i (t),t

= ID(fD) + IR(fR).

The best expected estimator f∗ = (f∗D, f
∗
R) ∈ M minimizes

the expected error I(.), that is

I(f∗) = min
f∈M

I(f).

The empirical error of an estimator f is given by

Î(f) =
δ

Tn

n∑
i=1

T/δ∑
j=1

[
f(jδ)−

(
RXi (jδ)

)]2
.

The best empirical estimator f̂ = (f̂D, f̂R) ∈ M minimizes
the empirical error Î(.), that is,

Î(f̂) = min
f∈M

Î(f).

Since the response mean R̂(t) is the mean at each observation
time jδ, it achieves zero mean error, which in turn leads to
zero empirical error, that is, Î

(
R̂
)

= 0; thus, it is a best
empirical estimator. By ignoring the minor variations for the
smaller values of n, we assume that R̂ is composed of a non-
decreasing function R̂D followed by a non-increasing function
R̂R that correspond to decreasing and increasing parts of the
performance parameter (such as TCP throughput), respectively.
This assumption is valid for the response means of dpctl and
ODL methods in Configurations A and C, respectively, shown
in Figure 10. In both cases, the response mean is composed
of an increasing part followed by a decreasing part once the
small variations in the tail of ODL method are ignored.

We will now show that Vapnik-Chervonenkis theory [19]
guarantees that the response mean R̂(t) is a good approxi-
mation of the response regression R̄(t), and furthermore its
performance improves with more measurements from connec-
tion degradation events. Such performance guarantee is a direct
consequence of the monotone nature of the underlying fD
and fR functions. Furthermore, this performance guarantee is
distribution-free, that is, independent of the underlying joint
distributions of controllers and switches, and is valid under
very general conditions [10] on the variations of performance
parameter (such as TCP throughput) measurements. We note
that the underlying distributions could be quite complicated
and generally unknown, since they depend on complex inter-
actions between controller software and switches, which are
individually complex.

We now provide a complete proof of the above performance
result which was briefly outlined in [1]. Let R̂ =

(
R̂D, R̂R

)
such that the estimator is decomposed into two monotone parts,
namely non-decreasing R̂D and non-increasing R̂R such that

Î(R̂) = ÎD(R̂D) + ÎR(R̂R).

We now apply Vapnik-Chervonenkis theory [10] in the fol-
lowing to show that the error of estimator R̂, given by I

(
R̂
)

,
is within ε of the optimal error I(f∗) with a probability that
improves with the number of observations n. More precisely,
we show that the probability

P
{
I
(
R̂
)
− I(f∗) > ε

}
decreases with n independent of other factors related to
controller and switch distributions. We will establish this result
in the following three basic steps. In the first step, we have
the basic inequality

P
{
I
(
R̂
)
− I(f∗) > ε

}
≤ P

{
I
(
R̂D

)
− I(f∗D) > ε/2

}
+P

{
I
(
R̂R

)
− I(f∗R) > ε/2

}
,

which follows from the observation that the negation of the
condition in either right term implies the negation of the con-
dition in left term. Then, by applying the uniform convergence
property of the expected and empirical errors over function
classes MD and MR corresponding to the first and second
terms on the right hand side [10], respectively, we obtain

P
{
I
(
R̂
)
− I(f∗) > ε

}
≤ P

{
max
h∈MD

|ID (h)− ÎD(h)| > ε/4

}
+P

{
max
h∈MR

|IR (h)− ÎR(h)| > ε/4

}
.

Then, by applying the uniform bound ( [20], p. 143) provided
by Vapnik-Chervonenkis theory to both right hand side terms,
we obtain

P
{
I
(
R̂
)
− I(f∗) > ε

}
≤ 16N∞

( ε

2B
,MD

)
ne−ε

2n/(8B)2

+16N∞
( ε

2B
,MR

)
ne−ε

2n/(8B)2

where N∞ (ε,A) is the ε-cover size of function class A
under L∞ norm. Detailed properties of the ε-cover can be
found in [20], and for our purpose, we note that the ε-cover
size is a deterministic quantity that depends entirely on the
function class. Consequently, the above probability bounds are
distribution-free in that they are valid for any joint distribution
of controllers and switches at the sites, since the ε-covers here
depend entirely on the function classes MD and MR.

Then, the monotonicity of functions in MD and MR es-
tablishes that their total variation is upper bounded by B. This
property in turn provides the following upper bound for the ε-
cover sizes of both function classes [20]: for A =MD,MR,
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we have

N∞
( ε

2B
,A
)
< 2

(
4n

ε2

)(1+2B/ε) log2(2ε/B)

.

By using this bound, we obtain

P
{
I
(
R̂i

)
− I(f∗) > ε

}
< 64

(
4n

ε2

)(1+2B/ε) log2(2ε/B)

ne−ε
2n/(8B)2 .

This bound provides qualitative insights into this approach
when “sufficient” number of measurements are available. The
exponential term on the right hand side decays faster in n than
the growth in other terms, and hence for sufficiently large
n it can be made smaller than a given probability α. Thus,
the expected error I(R̂) of the response mean used in the
previous section is within ε of the optimal error I(f∗) with
a probability that increases with the number of observations,
and is independent of the underlying distributions. An indirect
evidence of this artifact is noticed in the increased stability of
the response mean as we increase the number of connection
degradation events from 10 to 100 in Figures 9(a) and 10,
respectively.

The above probability estimates are not necessarily very
tight in part due to the distribution-free nature of the per-
formance guarantee. Nevertheless, this analysis provides a
sound statistical basis for using the response mean R̂ as an
approximation to the underlying response regression R̄ for
comparing different controllers and configurations.

VI. CONCLUSIONS

We considered scenarios with two sites connected over
a dedicated, long-haul connection, which must fail-over to a
standby connection upon degradations that affect the host-to-
host application performance. Current solutions require sig-
nificant customizations due to the vendor-specific software
of network devices and applications, which often have to be
repeated with upgrades and changes. Our objective is to exploit
the recent network virtualization technologies to develop faster
and more flexible software fail-over solutions. The presence
of a single long-haul connection and application-level triggers
in these scenarios necessitate a solution that is different from
usual single controller methods commonly used in many SDN
solutions.

We first presented a light-weight method that utilizes host
scripts to monitor the connection rtt and dpctl API to imple-
ment the fail-over. We then presented a second method using
two OpenDaylight (ODL) controllers and REST interfaces.
We performed experiments using a testbed consisting of HP
and Cisco switches connected over long-haul connections
emulated in hardware by ANUE devices. They show that both
methods restore TCP throughput, but their comparison was
complicated by the restoration dynamics of TCP throughput
which contained significant statistical variations. To account
for them, we developed the impulse-response method based
on statistical finite-sample theory to estimate the response
regressions. It enabled us to compare these methods under
different configurations, and conclude that on the average the
dpctl method restores TCP throughput several seconds faster
than the ODL method.

It would be of future interest to generalize the proposed
methods to trigger fail-overs based on parameters of more
complex client-server applications that utilize TCP for reliable
delivery. The performance analysis of such methods will likely
be much more complicated since the application dynamics may
be modulated by the already complicated TCP recovery dy-
namics. Our test results are based on using CUBIC congestion
control mechanism [18] which is the default on Linux systems,
and it would of future interest to test the performance of other
congestion control mechanisms, including high-performance
versions for long-haul [21] and satellite [22] connections.

Currently there seems to be an explosive growth in the
variety of SDN controllers including open source products,
such as Helium, Lithium and Beryllium versions of ODL,
Floodlight [23], ONOS [24] Ryu [25] and others, and also
vendor specific products and adaptations. Furthermore, there
is a wide variety of implementations of OpenFlow standards
by switch vendors, ranging from building additional software
layers on existing products to developing completely native
implementations. It would be of future interest to develop
general performance analysis methods that enable us to com-
pare various SDN solutions (that comprise of controllers,
switches, docker containers and application modules) for more
complex scenarios such as data centers and cloud services
distributed across wide-area networks. In particular, it would
be of interest to develop methods that directly estimate the
performance differences between different configurations from
measurements using methods such as the differential regression
method [26].

It would be of future interest to generalize the approach
of this paper to develop a baseline test harness wherein a
controller or a switch can be plugged into a known, fixed
configuration. The general approach is to develop canonical
configurations each with fixed components of the harness, such
as application trigger modules, physical network connections
and others. Then, impulses responses of different controllers,
switches or other SDN components can be generated in these
configurations, and they can be objectively compared to assess
their relative performance.
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