
304

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Mitigating Some Security Attacks
in MPLS-VPN Model “C”

Shankar Raman∗, Balaji Venkat†, and Gaurav Raina†

India-UK Advanced Technology Centre of Excellence in Next Generation Networks
∗Department of Computer Science and Engineering,†Department of Electrical Engineering

Indian Institute of Technology Madras, Chennai 600 036, India
Email: mjsraman@cse.iitm.ac.in, balajivenkat299@gmail.com, gaurav@ee.iitm.ac.in

Abstract—In certain models of inter-provider Multi-Protocol
Label Switching (MPLS) based Virtual Private Networks (VPNs),
spoofing and replay attacks against VPN sites are two key
concerns. MPLS VPN model “C” can scale well with respect to
maintenance of routing state when compared with models “A”
and “B”. But this deployment model is not favoured due to the
aforementioned security concerns in the data-plane. The inner
labels associated with VPN sites are not encrypted during data
transmission. Therefore it is possible for an attacker to spoof or
replay data packets to a specific VPN site. We propose a label-
hopping technique which uses a set of randomised labels and a
method for hopping amongst these labels to address these type
of attacks. To reduce the computation time complexity for such
algorithms, we propose the use of Timing over Internet Protocol
connection and Transfer of Clock (TicToc) based Precision Time
Protocol. Simulations show that by using the TicToc protocol,
along with the label-hopping technique, we can mitigate spoofing
and replay attacks at line-rate. As we address key security
and performance concerns, we make a plausible case for the
deployment of MPLS based VPN inter-provider model “C”.

Index Terms—MPLS; VPN; Model “C”; Label-hopping; Spoof-
ing attack; Replay attack.

I. I NTRODUCTION

Mitigating spoofing and replay attacks in Multi-Protocol
Label Switching - Virtual Private Networks (MPLS-VPNs) is
a key concern [1]. MPLS [2] technology uses fixed size labels
to forward data packets between routers. Specific customer
services (for example, Layer 3 (L3)-VPNs based on Border
Gateway Protocol (BGP) extensions), can be deployed by
stacking the labels. BGP-based MPLS L3-VPN services are
provided either on a single Internet Service Provider (ISP)
core or across multiple ISP cores. The latter cases are known
as inter-provider MPLS VPNs, which are broadly categorised
and referred to as models “A”, “B” and “C” [3].

Model “A” uses back-to-back VPN Routing and Forward-
ing (VRF) connections between Autonomous System Border
Routers (ASBRs). Model “B” uses exterior BGP (eBGP) re-
distribution of labelled VPN Internet Protocol version4 (IPv4)
routes from Autonomous Systems (AS) to neighbouring AS.
Model “C” uses multi-hop Multi-Protocol (MP)-eBGP redis-
tribution of labelled VPN IPv4 routes and eBGP redistribution
of IPv4 routes from an AS to a neighbouring AS. Model “C”
is scalable for maintaining routing states and hence preferred
for deployment in the Internet [4]. Security issues in MPLS,

especially MPLS-based VPNs, continue to attract attention[5].
The security of model “A” matches the single-AS standard

proposed in [6]. Model “B” can be secured on the control-
plane, but on the data-plane the validity of the outer-most label
(Label Distribution or Resource Reservation Protocol label) is
not checked. This weakness could be exploited to inject crafted
packets from inside an MPLS network. A solution for this
problem is proposed in [4]. Model “C” can be secured on the
control-plane but has a security weakness on the data-plane.
The ASBRs do not have any VPN information and hence the
inner-most label cannot be validated. In this case, the solution
used for model “B” cannot be applied. An attacker can exploit
this weakness to send unidirectional packets into the VPN
sites connected to the other AS. Therefore, Internet Service
Providers (ISPs) using model “C” must either trust each other
or not deploy it [7]. A simple solution to this problem is to
filter all IP traffic with the exception of the required eBGP
peering between the ASBRs, thereby preventing a large num-
ber of potential IP traffic-related attacks. However, controlling
labelled packets is difficult. In model “C”, there are at least two
labels for each packet: the Provider Edge (PE) label, which
defines the Label Switched Path (LSP) to the egress PE, and
the VPN label, which defines the VPN associated with the
packet on the PE.

Control-plane security issue in model “C” can be resolved
by using IPSec [8]. The authors propose an IPSec encryption
technique for securing the PE of the network. The authors also
highlight that the processing capacity could be over-burdened.
Further, if IPSec is used in the data-plane then configuring
and maintaining key associations could be difficult. If an
attacker is located at the core of the network, or in the network
between the providers that constitute an inter-provider MPLS
VPN, then spoofing is possible. The vulnerability of MPLS
against spoofing attacks and the impact on performance of
IPSec has been discussed in [9]. If the inner labels that
identify packets going towards a L3-VPN site are spoofed,
then sensitive information related to services available within
the organisational servers can be compromised.

The algorithm previously proposed by us to mitigate spoof-
ing attacks is anO(N) algorithm, whereN represents the
payload size chosen for hashing [1]. However, using payload
to obtain the hash value can encourage replay attacks on
a VPN site. It should be noted that the labels used in the

305

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

label-hopping algorithm are valid only for a certain period
of time. An attacker could resend a valid data packet within
this time period. The label-hopping algorithm accepts such
packets. Such an attack reduces the network performance as
redundant data packets get processed repeatedly. A simple way
to solve this problem is to include a sequence number with
every packet, but this increases the payload size. Therefore
label-hopping with hashing based on payload cannot be used
to provide protection against replay attacks.

In this paper, we expand the work presented in [1] in the
following ways:

1) We use Timing over IP Connection and Transfer of
Clock (TicToc) to achieve label synchronisation and
hence mitigate replay as well as spoofing attacks.

2) We show that use of TicToc, hashing and pseudo-random
number generators to mitigate replay attacks leads to
a constant time (O(1)) computational time complexity
increase to the algorithm that mitigates spoofing attacks.

Additionally, we show that the computational time complex-
ity of the label-hopping algorithm can be reduced fromO(N)
to O(1) by using time-based synchronisation techniques like
Network Time Protocol (NTP) or TicToc. Such methods will
be useful in a real time data transfer scenario in MPLS VPNs
as they incur very low processing overhead. The advantage of
the proposed scheme is that it can be used wherever MP-eBGP
multi-hop scenarios arise. We also show that the proposed
method can reduce the burden on Deep Packet Inspection
Engines (DPIEs), but can contribute towards more processing
time for ISP’s billing schemes. As far as we know, no ISP has
implemented MPLS VPN model “C”. Large scale deployment
of this model has been avoided due to security concerns. The
methods proposed in this paper make a case for the potential
deployment of MPLS VPN model “C’ by ISPs.

The rest of the paper is organised as follows. In Section II,
we discuss the pre-requisites of the proposed scheme. Sec-
tion III reviews the label-hopping technique. In Section IV, we
present a method by which the computational time complexity
can be reduced using TicToc. In Section V, we present
algorithms that protect model “C” against spoofing and replay
attacks. In Section VI, we present our simulation results. Some
of the implementation issues are discussed in Section VII. In
Section VIII, we present the impact of label-hopping scheme
on two applications; namely deep packet inspection engine
and ISP’s billing. Section IX outlines our contributions, and
highlights some avenues for further work.

II. PRE-REQUISITES FOR THE LABEL-HOPPING SCHEME

We briefly review the network topology for model “C”, the
PE configuration and the control-plane exchanges needed for
the proposed scheme.

A. MPLS VPN model “C”

The reference MPLS-eBGP based VPN network for
model “C” as described in [10] is shown in Figure 1, along
with the control-plane exchanges. A legend for Figure 1
is given in Table I. The near-end PE (PEne) and far-end

PE (PEfa) are connected through the inter-provider MPLS
based core network. The VPN connectivity is established
through a set of routers from different AS and their ASBRs.
In the VPN, MP-eBGP updates are exchanged for a set of
Forward Equivalence Classes (FECs). These FECs, which have
to be protected, originate from the prefixes behindPEne in a
VPN site or a set of VPN sites.

B. PE configuration

Various configurations are needed in the PEs inside the
Autonomous Systems (AS) to implement the label-hopping
scheme. These are listed below:

1) A set of “m” algorithms that generate collision-free
labels (universal hashing algorithms) are implemented
in the PEs. Each algorithm is mapped to an index
A = (a1, a2, · · · am) ,m ≥ 1. Ordering of the algorithms
must be the same in the PEs. If the PEs used are from
different vendors then a standardised set of algorithms
must be used.

2) The bit-selection pattern is used by the PE. This helps in
determining the bits chosen for generating the additional
label. This additional label plays a role in avoiding
collision in the hash values.

3) PEne is configured for a FEC or a set of FECs repre-
sented by an aggregate label (per VRF label). For each
FEC or a set of FECs, a set of valid labels used for
hopping,K = (k1, k2, k3, · · · kn) , n > 1 and,ki 6= kj
if i 6= j, is configured inPEne. This helps in selective
application of the schemes for the FECs. In the case of
bi-directional security, the roles of the PEs are reversed.

C. Control and data-plane flow

Initially, set K and the bit-selection pattern used by the
PEs are exchanged securely over the control-plane. Optionally
an index fromA, representing a hash-algorithm, could also
be exchanged. We propose that only the index is exchanged
between the PEs, as it enhances the security for two reasons.
First, the algorithm itself is masked from the attacker. Second,
the algorithm can be changed frequently, and it would be
difficult for the attacker to identify the final mapping that
generates the label to be used for a packet. Figure 1 depicts
this unidirectional exchange fromPEne to PEfa.

Once the secure control-plane exchanges are completed,
we apply the label-hopping technique.PEfa forwards the
labelled traffic towardsPEne through the intermediate routers
using the label-stacking technique (Figure 2). The stacked
labels along with the payload are transferred between the
AS and ASBRs before they reachPEne. Using the label-
hopping algorithmPEne verifies the integrity of labels. Upon
validation, PEne uses the label information to forward the
packets to the appropriate VPN service instance or site. This
data-plane exchange fromPEfa and PEne is depicted in
Figure 3. A legend for Figure 3 is given in Table I. Figure 3
also shows how the labels for the packets are specified when
the data packets flow from CE2 to CE1. In the figure, the L3

306

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

header network address is172.16.10.1 whose gateway is CE1.
We now present the label-hopping scheme.

Abbreviation Description

AS Autonomous Systems
ASBR Autonomous System Border Router
CE Customer Edge Routers
LDP: L1-L4 Label Distribution Protocol with link labels
NH Next Hop
PE Provider Edge Routers
POP, V1 Label between AS1 andPEne

VPN Virtual Private Network

TABLE I: Legend for Figures 1 and 3

III. L ABEL-HOPPING TECHNIQUE

Once a data packet destined to thePEne arrives at the
PEfa a selected number of bytes from the payload is chosen
as input to the hashing algorithm. The resulting hash-digest
is used to obtain the first label for the packet. The agreed
bit-selection pattern is then applied on the hash-digest to
determine an additional label, which is then concatenated with
the first label. OncePEne receives these packets it verifies
both the labels.

The implementation steps for the control-plane at thePEne

and PEfa are given by Algorithm 1 and Algorithm 2. The
implementation steps for the data-plane at thePEfa and
PEne are given by Algorithm 3 and Algorithm 4.

A brief explanation of these algorithm follows:
Algorithm 1 exchanges four attributes, namely

1) the acceptable Forward Equivalence Classes (FECs),
2) valid and acceptable labels for each of the FECs,
3) the pointer or instance to the hash algorithm, and
4) the bit selection pattern to be used, with thePEfa using

a secure control-plane exchange.

Step 3 of Algorithm 1 assumes that the functionCP-
SendPacket()sends secure encrypted data packet toPEfa.

Algorithm 1 Control-planePEne algorithm

Require: FEC[] Forward Equivalence Classes, K[] valid la-
bels, A[i] hash algorithm instance, I[] the bit-selection
pattern chosen for the inner label.

1: Begin
2: packet = makepacket(FEC,K, A[i], I);
3: CP-SendPacket(PEfa, MP-eBGP, packet);
4: End

Algorithm 2 receives the secure packet, decrypts it and then
fills up its tables by extracting the FECs and the label mapping
of the FECs. It then selects the hash algorithm based on the
instance or the pointer passed by thePEne. These are done in
steps3−7. We assume that both the PEs implement the same
hash algorithms corresponding to the pointers or instancesthat

are passed. Note that this is pre-configured in the routers. The
PEfa also gets to know the valid bit selection pattern that is
acceptable for thePEne in step8.

Algorithm 2 Control-planePEfa algorithm

Require: None

1: Begin
2: packet = CP-ReceivePacket(PEne); // from PEne

3: FEC[] = ExtractFEC(packet); // extract FECs
4: K[] = ExtractLabels(packet); // extract the labels
5: selectHashAlgorithm(A[i]); // hash algorithm to use
6: RecordValues(FEC); // information forPEfa

7: RecordValues(K); // information on the keys
8: RecordValues(I); // bit-selection pattern to be used
9: End

Algorithm 3 describes the processing that occurs before the
data packets are sent fromPEfa. Steps3−6 in the algorithm
checks whether the label-hopping algorithm is enabled for
the FEC. If it is not enabled, the algorithm will proceed to
exchange data packets without label-hopping. If the label-
hopping algorithm is enabled for the FEC, then the hash-digest
of the packet, as well as the first and additional labels are
generated at steps7− 9. The data packet is then encapsulated
with the labels and sent to thePEne.

Algorithm 3 Data-planePEfa algorithm

Require: None

1: Begin
2: packet = DP-ReceivePacket(Interface);
3: match = CheckFEC(packet); // Is the algorithm enabled?
4: if match == 0 then
5: return; // algorithm not enabled.
6: end if
7: hash-digest = calculateHash(A[i],packet);
8: first-label = hash-digest %|K|;
9: addl-label = process(hash-digest,I)

10: DP-SendPacket(PEne, first-label, addl-label, packet);
11: End

Algorithm 4 receives the encapsulated packet fromPEne.
It then determines whether the FECs deploy the label-hopping
scheme; see steps3−6. In steps7−11, the algorithm extracts
the labels from the packet and calculates the hash-digest for the
packet as well as the inner and additional labels. It compares
the calculated values with the extracted values of the labels;
see steps12−17. If a match exists on the labels sent byPEfa,
then the packet is considered to be valid. The data packets are
passed to the CE after removing the labels that match.

Figure 4 gives a modified version of a sequence diagram for
all the four algorithms discussed in this section. This diagram
also partially shows the calls executed by the PEs in the control
and data-planes.

307

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

172.16.10.0/24 172.16.20.0/24
PE_ne PE_fa

CE1 CE2

AS1

ASBR1

AS2

ASBR2

Net:PE_ne
LDP Label: POP

Net:PE_ne
LDP Label: L1

Net:PE_ne
LDP Label: L2

Net:PE_ne
LDP Label: L3

Net:PE_ne
LDP Label: L4

NH:PE_ne
VPN Labels: k1, k2,...,kn
Bit pattern: I[]
Algorithm Index(Optional):A[i]

Fig. 1: Control-plane exchanges for model “C” [10]

Frame / L2
Header

Label 1 Label 2 Label 3 L3 header Payload

Label Stack

S=0 S=0 S=1

Fig. 2: Label stack using scheme outlined for model “C”

172.16.10.0/24 172.16.20.0/24
PE_ne PE_fa

CE1 CE2

AS1

ASBR1

AS2

ASBR2

172.16.10.1

L4|V1|I1|172.16.10.1

L3|V1|I1|172.16.10.1

L2|V1|I1|172.16.10.1

L1|V1|I1|172.16.10.1

V1|I1|172.16.10.1

Packets sent from PE_fa to PE_ne

Fig. 3: Data-plane flow for model “C” [10]

Algorithm 4 Data-planePEne algorithm

Require: None

1: Begin
2: packet = DP-ReceivePacket(Interface);
3: match = CheckFEC(packet);
4: if match== 0 then
5: return; //no match
6: end if
7: label-in-packet=extractPacket(packet, LABEL);
8: inner-label=extractPacket(packet, INNER-LABEL);
9: hash-digest=calculateHash(A[i],packet);

10: first-label=hash-digest %|K|;
11: additional-label = process(hash-digest,I)
12: if label-in-packet6= first-label then
13: error(); return;
14: end if
15: if inner-label 6= additional-labelthen
16: error(); return;
17: end if
18: DP-SendPacket(CE1, NULL, NULL, packet);
19: End

PE_ne PE_fa

Internet

Control-Plane: Algorithm 1
CP_SendPacket()

Control-Plane: Algorithm 2
CP_ReceivePacket()

Data-Plane: Algorithm 3
DP_SendPacket()

Date-Plane: Algorithm 4
DP_ReceivePacket()

CE

Date-Plane: Algorithm 4
DP_SendPacket()

Fig. 4: A modified sequence diagram showing the applicability
of the algorithms in the control and the data-plane.

The values inK need not be contiguous and can be
randomly chosen from a pool of labels to remove coherence
in the label space. Also the algorithms used could be either
vendor dependent or a set of standard algorithms mapped the
same way by thePEne andPEfa. If the two PEs involved
are from different vendors we assume that a set of standard
algorithms are used. In order to avoid too many processing
cycles in the line cards ofPEne andPEfa, the hash-digest is

308

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

calculated over a predefined size of the payload. The additional
inner label is added to enhance protection against spoofing
attacks. With an increased label size, an attacker spends more
time to guess the VPN instance label for the site behind
PEne. There could be two hash-digests that generate the
same label. In this case, the two hash-digests are distinguished
using the additional label. Collisions can be avoided by re-
hashing or any other suitable techniques that are proposed in
the literature [11]. If collisions exceed a certain number,then
Algorithms 1 and 2 can be executed with a set of new labels.

A. Illustration

We now illustrate the label-hopping scheme. In Figure 1,
using Algorithms 1 and 2, a set of labels are forwarded
from PEne to PEfa. The roles ofPEne and PEfa are
interchanged for reverse traffic. Figure 2 shows a packet from
the data-plane for model “C” with the proposed scheme. In
Figure 2, “Label1” refers to the outermost label, while “Label
2” refers to the label generated from the hash-digest and
“Label 3” refers to the additional label that is generated as
shown in Algorithm 3. This additional label, denoted by S,
has a bottom of stack bit set; see Figure 2. These labels are
stacked immediately onto the packet and the path labels for
routing the packets to appropriate intermediary PEs are added.
Figure 3 also shows these path labels used by the data packet
to reachPEne.

Note that the labels that are exchanged need not be related
with the services offered by the VPNs. A separate mapping can
be maintained internally by the PEs. When the packet passes
through the core of an intermediary AS involved in model “C”,
or through the network connecting the intermediary AS, the
intruder or the attacker has the capability to inspect the labels
and the payload. However, the proposed scheme prevents the
attacker from guessing the right combination of the labels as
the labels change with every data packet.

B. Computational time complexity

The computational time complexity of the algorithms
executing at the control-plane isO(1). The data-plane
algorithms have a computational time complexity of
O(HashPacketSize). The packet size chosen for hashing
could either be64 or 128 bytes. Further control-plane ex-
changes are less frequent than the data-plane exchanges. In
terms of processing, hashing small data sizes may not be an
issue but frequently hashing every data packet increases the
processing time. Hence, it would be of interest to reduce the
computational time complexity of the data-plane toO(1).

The most time consuming step in the data-plane algorithms
is the hashing of data packets. We show how this hashing
step can be removed by using the Timing over IP connection
and Transfer of Clock (TicToc) [12] based Precision Time
Protocol Label Switch Path (PTP-LSP) [13]. We discuss some
important aspects of this algorithm.

IV. T ICTOC BASED LABEL-HOPPING

If we use the TicToc based PTP LSP then a pre-calculated
set of distinct valuesdijk for a specific time sloti, FECj and

a label indexk could be exchanged over the control-plane
periodically. These discrete values can then replace the hash
values calculated in Algorithms 3 and 4 thereby improving
speed-up. In this case, a few of the values fromd(i−1)jk and
d(i+1)jk must overlap withdijk forming a sliding window of
distinct values. The sliding window is necessary to accountfor
any latency in the clock information. In case|dijk| is large then
we can transfer a random seed for generating pseudo-random
numbersRij which generatesk values for every time instant
i and FECj. The algorithm for generating the pseudo-random
numbers must, a-priori, be known toPEfa andPEne. The
sliding window of labels with the distinct values for three
consecutive time slots is given in Figure 5.

The ports of the PEs must be configured to enable the func-
tioning of the TicToc protocol. The rest of the configuration
of the PEs is similar to the label-hopping schemed discussed
in Section II-B.

As before, for each FEC or a set of FECs, a set of valid
labels used for hopping in the initial time sloti is exchanged.
These labelsD = (d1; d2; d3; ˙...dn) wheren ≥ 1 and,ki 6= kj
if i 6= j are then configured inPEne. For the set of labelsD
time slicesTS = (TS1;TS2;TS3 ˙...TSn) are also exchanged.
These time slices can be periodically changed and a new set
of TS ranging fromTS1 to TSn can be exchanged after a
time duration ofTS Exchange Interval from time to time.

The complete sets of algorithms are given in the Appendix.
The algorithm given for the control and the data-plane have a
constant computational time complexityO(1) while achieving
the same objective of mitigating spoofing attacks. The main
reason behind using TicToc is to synchronise the labels based
on time. We could even consider the use of currently existing
Network Time Protocol (NTP) [14] instead of TicToc to
synchronise the labels. NTP is widely used to synchronise
a device to Internet time servers or other sources. However,
such a discussion is beyond the scope of this paper.

It should be noted that the algorithms protect against
spoofing attacks. Replay attacks are still possible on systems
implementing these schemes. In the next section, we show that
Algorithms 1, 2, 3, and 4 can also be modified to mitigate
replay attacks.

V. M ITIGATING REPLAY ATTACKS

In replay attacks, a valid data packet is replayed or delayed.
Since the previous algorithm uses three consecutive time slots,
an attacker can replay the packets within three time slots.
In the hashing based algorithms the packet can be replayed
many times until the labels are valid. Algorithms proposed
in the previous sections cannot detect such attacks. Therefore
to mitigate replay attacks we introduce a random seed. This
random seed, henceforth referred asRseed, generates pseudo
random numbers which are used as the label for the time slots.
We now discuss the modified algorithms in detail.

309

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

d11,.., d1k

FEC 1 FEC 2 FEC n

d21,.., d2l dn1,.., dnm

Time slot (i-1)

d11,.., d1k

FEC 1 FEC 2 FEC n

d21,.., d2l dn1,.., dnm

Time slot i

d11,.., d1k

FEC 1 FEC 2 FEC n

d21,.., d2l dn1,.., dnm

Time slot i+1

Fig. 5: Total distinct valid keys for a particular time sloti, various FECsj in a TicToc based protection against spoofing
attacks. In case the keys are too large then a random seed which can generate the keysdijk can be exchanged. In this case,
PEfa andPEne must know the random number generation algorithm a-priori.

A. PE configuration

PEs that implement this scheme need extra configuration
details in addition to those discussed in Section II-B. This
includes the algorithm for pseudo random number generator,
the random seed to be exchanged as well as the configuration
of ports for implementing the TicToc protocol.

B. Control and Data-plane flow

As given in the TicToc based algorithms in the Appendix,
the control-plane exchanges involve constructing a PTP LSP
for deriving the clock at thePEne and PEfa for the for-
warding direction. Each pair ofPEne andPEfa knows the
PTP port and corresponding PTP LSP used for the traffic.
The PTP LSP is intended for providing the clocking between
a pair ofPEne andPEfa. The clock or time-stamp derived
from this PTP LSP is used in the data-plane to determine the
valid label at that time instant. Upon validation,PEne uses
the label information to forward the packets to the appropriate
VPN service instance or site.

Once a data packet destined to thePEne arrives at the
PEfa the first-label is chosen using K, TS, andRseed. A
selected number of bytes from the payload is chosen as input
to the hashing algorithm. The agreed bit-selection patternis
then applied on the hash-digest to obtain an additional label,
which is then concatenated with the first label. OncePEne

receives these packets it verifies both the labels. Note thatin
case hashing is not preferred we could use the predetermined
set of labels as discussed in the Appendix. The details of the
algorithm to mitigate spoofing as well as replay attacks are
described below.

The PTP port number and the related PTP LSP information
are assumed to be configured before any information exchange
in the data-plane. Algorithm 5 forwards the FECs, their
associated keys, a set of valid time slices, a random seed
and the bit selection pattern for the inner labels fromPEne

to PEfa. The packets are exchanged using Multi protocol
External BGP (step3).

Algorithm 6 runs at thePEfa. It receives the packet and
extracts information related with FECs, labels, time slices,
random seed (steps2 − 6) and records them (steps8 − 12).
It selects the hash algorithm based on the instance and uses
the random seed value to generate pseudo-random numbers.
It is assumed that bothPEne and PEfa will use the same
pseudo-random number generator.

Algorithm 5 Control-planePEne algorithm

Require: FEC[] Forward Equivalence Classes, K[] valid la-
bels, TS[] valid time slices, A[i] hash algorithm instance,
I[] the bit-selection pattern chosen for the inner label,
Random seedRseedwhich is used for generating the
index into set K (set of labels), PTP port and PTP LSP
information.

1: Begin
2: packet = makepacket(FEC,K, TS, A[i], I, Rseed);
3: CP-SendPacket(PEfa, MP-eBGP, packet);
4: End

Algorithm 6 Control-planePEfa algorithm

Require: None

1: Begin
2: packet = CP-ReceivePacket(PEne); // from PEne

3: FEC[] = ExtractFEC(packet); // extract FECs
4: K[] = ExtractLabels(packet); // extract the labels
5: TS[] = ExtractTimeSlices(packet); // extract the time slices
6: Rseed = ExtractRandomSeed(packet); // extract theRseed

value.
7: selectHashAlgorithm(A[i]); // hash algorithm to use
8: RecordValues(FEC); // information forPEfa

9: RecordValues(K);
10: RecordValues(TS);
11: RecordValues(I); // bit-selection pattern to be used
12: RecordValue(Rseed);
13: End

Algorithm 7 is implemented byPEfa. Steps2− 6 identify
the current time slot. The keys for this time slot have already
been exchanged in the control-plane. The algorithm works
only if the label-hopping is enabled on the FECs. If the label
hopping is enabled steps13− 26 are executed. In step13, the
hash value of the packet is calculated. Steps14− 23 manages
the time slots. We assume that there aren time slots. If all the
time slots are completed, we wrap around to time slot0. A
random number is generated and a key for the particular time
slot is selected in step24. The additional labels are created
based on the previous identified bit pattern. The packet is then
forwarded to thePEne (see steps25− 26).

310

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 7 Data-planePEfa algorithm

Require: None

1: Begin // One time initialisation
2: CurrentTimeSliceIndex = 0;
3: CurrentMasterClock = PTP LSP Master Clock Times-

tamp;
4: CurrentTimeInstant = CurrentMasterClock;
5: NextTimeInstant = CurrentMasterClock

+ TS[CurrentTimeSliceIndex];
6: End
7: Begin // repeated for every data packet
8: packet = DP-ReceivePacket(Interface);
9: match = CheckFEC(packet); // Is the algorithm enabled?

10: if match == 0 then
11: return; // algorithm not enabled.
12: end if
13: hash-digest = calculateHash(A[i],packet);
14: if CurrentTimeInstant≤ NextTimeInstant ((+ or -) con-

figured seconds)then
15: // do nothing;
16: else
17: CurrentTimeSliceIndex++;
18: if CurrentTimeSliceIndex == nthen
19: CurrentTimeSliceIndex = 0; // check to wrap around
20: end if
21: CurrentTimeInstant = NextTimeInstant;
22: NextTimeInstant = CurrentTimeInstant

+ TS[CurrentTimeSliceIndex];
23: end if
24: first-label = K[GenerateRandom(Rseed) %|K|];
25: addl-label = process(hash-digest,I)
26: DP-SendPacket(PEne, first-label, addl-label, packet);
27: End

Algorithm 8 has to take care of lead or lag in the clock.
Since there could be a time-lag between sending and receiving
packets,PEne has to maintain three random seeds. These
include the random seed for the previous time slot and the
current time slot. In case the time-slots have already wrapped
once, the future random seed of the time slot is also stored.
Steps15−33 takes care of this activity. The else part in steps
17− 23 stores the previous, the current and the next random
seed (if it exists). The hashing should be applied on the packets
and then the correct label must be chosen based on the random
seed values. Steps2− 5 does a one-time initialisation for the
time slot. Functionality of steps12−14 and35−42 have been
discussed in Algorithm 4.

The change in the algorithm to randomly pick up a label
for the next time slot will help in avoiding man-in-the-middle
attackers from synchronising with the time slots. The labels
in the previous algorithms are predictable if a large numberof
packets were observed. TheRseedwill generate values in lock
step with the time slots at both thePEfa andPEna. This will

Algorithm 8 Data-planePEne algorithm

Require: None

1: Begin // One time initialisation
2: CurrentTimeSliceIndex = 0;
3: CurrentMasterClock = PTP LSP Clock Timestamp;
4: CurrentTimeInstant = CurrentMasterClock;
5: NextTimeInstant = CurrentMasterClock

+ TS[CurrentTimeSliceIndex];
6: Begin // For each packet
7: packet = DP-ReceivePacket(Interface);
8: match = CheckFEC(packet);
9: if match== 0 then

10: return; //no match
11: end if
12: label-in-packet=extractPacket(packet, LABEL);
13: inner-label=extractPacket(packet, INNER-LABEL);
14: hash-digest=calculateHash(A[i],packet);
15: if CurrentTimeInstant≤ NextTimeInstant ((+ or -) con-

figured seconds)then
16: // do nothing;
17: else
18: CurrentTimeSliceIndex++;
19: OldRseedIndex = RseedIndex;
20: RseedIndex = (GenerateRandom(Rseed) %|K|);
21: NextRseedIndex =

LookAheadRseedIndex(GenerateRandom(Rseed)%|K|);
22: RollbackRseed(Rseed by 1);
23: if CurrentTimeSliceIndex== n then
24: // check to wrap around
25: CurrentTimeSliceIndex = 0;
26: end if
27: CurrentTimeInstant = NextTimeInstant;
28: NextTimeInstant = CurrentTimeInstant

+ TS[CurrentTimeSliceIndex];
29: end if
30: // Check if label used before in the previous, current
31: // or future time slot can be used
32: // Check with OldRseedIndex, RseedIndex

// and NextRseedIndex
33: first-label = K[RseedIndex (+ or−1)];
34: additional-label = process(hash-digest,I)
35: if label-in-packet6= first-label then
36: error(); return;
37: end if
38: if inner-label 6= additional-labelthen
39: error(); return;
40: end if
41: DP-SendPacket(CE1, NULL, NULL, packet);
42: End

311

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prevent an attacker from synchronising with label changes and
hence replay attacks could be avoided. The sequence diagram
given in Figure 4 is valid for Algorithms 5-8.

Note that the changes to the label-hopping algorithms
presented in this section can be applied to the algorithms given
in the Appendix. This will ensure that the spoofing and replay
attacks are mitigated close to wire speed. We do not discuss
the details in this paper.

VI. SIMULATION

In this section, we present the simulation results on perfor-
mance, comparing the various label-hopping technique includ-
ing deep packet inspection where we encrypt and decrypt the
complete packet.

Implementing the label-hopping algorithm for sets of FECs
belonging to any or all VPN service instances may cause
throughput degradation. This is because the hash-digest com-
putation and derivation of the inner-label / additional inner
label calculation can be intensive operations. We therefore
compared our technique by choosing a part of the payload
as input to our hashing algorithm.

We simulated our algorithm on a2.5 GHz Intel dual
processor quad core machine. We compared the performance
of the label-hopping technique with a deep packet inspection
technique where the complete packet was encrypted before
transmission and decrypted on reception. The performance of
the data-plane level algorithm onPEne is shown in Figure 6.
Simulations without the use of TicToc schemes indicate that
we were able to process10 million packets per second when
we used 64-byte for hashing on a payload of size1024
bytes. For a hash using128-byte, we were able to process
approximately6.3 million packets per second. However, with
complete encryption and decryption of the packet, we were
able to process only about1 million packets per second.

The TicToc based algorithms given in the Appendix adds
only constant time to the computation. There is an increase
between1−3% in computation time depending on successful
identification of label from the correct time slot. Therefore
the results in Figure 6 show that the lines lie very closely to
wire-speed performance.

When we combine label-hopping, TicToc and pseudo ran-
dom number generation it adds approximately2 − 5% of
additional computation time to the label-hopping algorithm.
Since the difference in processing speeds is less than5%,
the performance with label-hopping lies very close to64 and
128 bit hash lines in the figure. We were able to process
approximately9.6 million packets for a64-bit hash and6
million packets for128-byte hash.

Based on the simulation results we suggest two solutions
that can be implemented:

• The payload based label-hopping can be applied to spe-
cific VPN traffic between the PEs which are mission-
critical and sensitive.

• The TicToc based label-hopping algorithm can be applied
on those VPNs that have high link reliability and require
line-rate operation.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Packets processed (million)

T
im

e
(s

ec
o

n
d

s)

No hashing (wire speed)
64 byte hash
128 byte hash
Deep Packet Inspection

0 5 10 15

Fig. 6: Performance comparison of complete packet encryption
and decryption with a64, 128 byte hash on a payload of
size1024 bytes. The performance of the TicToc based label-
hopping is very close to wire speed. Replay attack prevention
adds approximately2− 5% extra time to the algorithms.

In the next section, we consider some implementation issues
that must be addressed while using the label-hopping methods.

VII. I MPLEMENTATION

In the PEs label-hopping can be enabled or disabled by
using a look-up table. This look-up table can be used to effi-
ciently implement the algorithms which can be programmed
with an on or off bit to indicate whether the label-hopping
scheme is deployed. In case the scheme is deployed, then the
PEs compute inner labels2 and3 using Algorithm 8. If the
packet is valid it is accepted, else it is discarded.

One concern of the scheme is to have a method to tackle the
problem of fragmentation that can occur along the path from
PEfa to PEne. We can fragment the packet atPEfa and
ensure that the size of the packet is fixed before transmission.
The other method is to employ the Path maximum transfer
unit (Path-MTU) discovery process so that packets do not get
split further into multiple fragments. If packets are fragmented
this scheme fails. However, networks employ the Path-MTU
discovery process to prevent fragmentation and hence this
problem may not exist.

The proposed label-hopping method based on payload ex-
pects the same hashing algorithms to be used at both the
PEs. If the vendors of thePEne andPEfa are different then
interoperability issues must be addressed. In our scheme, we
chose the time instant that the packet leaves thePEfa and this
time instant serves as the variable component that the attacker
cannot decipher. This requires the use of time synchronisation
mechanism. This is provided by the PTP LSP.

312

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. I MPACT ON APPLICATIONS

We briefly discuss the impact of the label-hopping method
on a Deep Packet Inspection Engine (DPIE) and ISP billing.
We show that by using label-hopping the workload on the
DPIE can be reduced but the processing load on the ISP billing
mechanism would increase.

A. Enhancing DPIE performance

Once a spoofed packet is detected at thePEne an error rou-
tine is called (see Algorithm 8). Such packets can be collected
and periodically sent to a DPIE. Without the application of this
algorithm, all the packets that are received by the customer
site have to be sent to the DPIEs for possible attack detection.
The proposed technique helps in filtering packets which would
otherwise undergo deep packet inspection.

To mitigate attacks ranging from buffer overflow hack
attempts to denial of service attacks such as tear drop attacks,
the DPIEs record the packets in a secondary storage for
inspection and correlation. The correlation engines also need
computation power and memory, for deciphering and raising
alarms to the about possible attack on specific VPN or a set of
VPN sites. With reduced number of packets sent to DPIEs, the
attack detection and correlation can be applied only to these
filtered set of packets. It is important to note that if this label-
hopping scheme was not adopted, some sort of DPIEs would
have to be placed within the customer’s network.

Another less preferred method is to have the DPIEs on the
PE itself. With label-hopping scheme in place there is no need
for having DPIEs on the PEs. The error packets can be spanned
or replicated and sent to a suitable cluster of DPIE engines at
the customer site for further correlation. An alternate solution
for the ISP deploying the PEs could be to provide the first level
of warning while the customer’s hardware could do the rest
of the mitigation and protection. This would be a co-operative
solution between the customer and the ISP that reduces the
time taken in the event of an attack. The label-hopping scheme
would bring an extra level of protection.

B. ISP Billing

A concern of such a scheme is the billing related aspects for
ISPs as the labels change periodically. Most of the ISPs use
the labels to bill their customer. The modification to billing
can be done as follows: the traffic statistics are collected for
all the VPN labels as if they were separate labels. At the
egress PEs, statistics are gathered for the data packet and
labels coming towards it based on a set of labels that would
be exchanged. This data can then be used along with the
ASBR statistics (identifying the egress PE by the outer label)
for billing purposes. The label-hopping scheme involves more
processing for billing by the ISPs.

IX. OUTLOOK

Today, there is reluctance among service providers to use
MPLS VPN model “C” due to security concerns like spoofing
and replay attacks. We propose methods to secure the Inter-
Provider MPLS VPN model “C” data-plane by preventing
spoofing, replay and other unidirectional attacks.

A. Contributions

In this paper, we proposed a label-hopping scheme for inter-
provider BGP-based MPLS VPNs that employ MP e-BGP
multi-hop control-plane exchanges. In such an environment
without label-hopping, the data-plane is subject to spoofing
and replay attacks. Spoofing attacks can be prevented by using
the payload-based label-hopping scheme. A combination of
label-hopping, TicToc and the use of pseudo-random numbers
serve to mitigate replay attacks. The proposed schemes prevent
the spoofed or the replayed packets from getting into a VPN
site. Simulations show that the use of randomised labels for
label-hopping along with TicToc can operate at line-rate. All
the proposed schemes are computationally less intensive as
compared to other encryption-based methods. One additional
advantage, of the label-hopping scheme, is that the workload
for deep packet inspection engines can be reduced. However,
there would be an increase in computation time complexity
for ISP billing. This trade off could be worth considering.
We hope that the methods proposed will encourage ISPs to
experiment with MPLS VPN model “C”.

B. Avenues for future work

There are some cases where the label-hopping scheme
cannot be used. For example, consider Equal Cost Multicast
Path (ECMP) scenarios. In this case, a flow arriving at a router
could choose any of the available equal cost paths to reach
the destination. However, it is advisable that the flows of the
same service choose a unique path out of the available equal
cost paths. Otherwise, reordering of packets could occur at
the receiving end as two equal cost paths may not have the
same latency. For any real-time flows, reordering of packets
introduces processing concerns at the receiver. The current
practice to avoid reordering is to hash the flow labels so that
flows of the same service are redirected through a specified
unique path.

If flow hashing is done on Label Switching Routers (for
pseudowires in RFC 6391), then the labels generated by
the label-hopping technique might hash to different paths.
Therefore reordering schemes have to be introduced at the
receiver end. It is desirable to propose methods to solve this
problem in the future.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the UK EP-SRC
Digital Economy Programme and the Government of India
Department of Science and Technology (DST) for funding
given to the IU-ATC. The authors would like to thank Josh
Rogers, James Uttaro, Robert Raszuk, Tal Mizrahi, Robert
Raszuk, Greg Mirsky, Jakob Heitz and Bhargav Bhikkaji for
the extensive and useful email discussions.

REFERENCES

[1] S. Raman and G. Raina,Mitigating Spoofing Attacks in MPLS-VPNs using
Label-hopping, Proceedings of the Eleventh International Conference
on Networks (ICN 2012), pp. 241–245, ISBN: 978-1-61208-183-0.

[2] Y. Rekhter, B. Davie, E. Rosen, G. Swallow, D. Farinacci,and D. Katz,
Tag switching architecture overview, Proceedings of the IEEE, vol. 85,
no. 12, December 1997, pp. 1973–1983, doi:10.1109/5.650179.

313

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] Advance MPLS VPN Security Tutorials [Online], Available:
http://etutorials.org/Networking/MPLS+VPN+security/Part+II+Advanced
+MPLS+VPN+Security+Issues/, [Accessed: 20th December 2012]

[4] M. H. Behringer and M. J. Morrow,MPLS VPN security, Cisco Press,
June 2005, ISBN-10: 1587051834.

[5] S. Alouneh, A. En-Nouaary, and A. Agarwal,MPLS security: an
approach for unicast and multicast environments, Annals of
Telecommunications, Springer, vol. 64, no. 5, June 2009, pp. 391–400,
doi:10.1007/s12243-009-0089-y.

[6] C. Semeria, “RFC 2547bis: BGP/MPLS VPN fundamentals”, Juniper
Networks white paper, March 2001.

[7] L. Fang, N. Bita, J. L. Le Roux, and J. Miles,Interprovider IP-
MPLS services: requirements, implementations, and challenges, IEEE
Communications Magazine, vol. 43, no. 6, June 2005, pp. 119–128, doi:
10.1109/MCOM.2005.1452840.

[8] C. Lin and W. Guowei,Security research of VPN technology based
on MPLS, Proceedings of the Third International Symposium on
Computer Science and Computational Technology (ISCSCT 10), August
2010, pp. 168–170, ISBN-13:9789525726107.

[9] B. Daugherty and C. Metz,Multiprotocol Label Switching and IP, Part
1, MPLS VPNS over IP Tunnels, IEEE Internet Computing, May–June
2005, pp. 68–72, doi: 10.1109/MIC.2005.61.

[10] Inter-provider MPLS VPN models [Online], Available:
http://mpls-configuration-on-cisco-ios-software.org.ua/1587051990/
ch07lev1sec4.html, [Accessed 20th December 2012].

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to algorithms, 3rd edition, MIT Press, September 2009, ISBN-
10:0262033844.

[12] Timing over IP and Transfer of Clock Work Group [Online],Available:
http://datatracker.ietf.org/wg/tictoc/, [Accessed: 20th December 2012].

[13] Precision Time Protocol LSP [Online], Available:
http://www.nist.gov/el/isd/ieee/ieee1588.cfm, [Accessed: 20th December
2012].

[14] D. L. Mills, Computer Network Time Synchronization - the Network Time
Protocol on Earth and in Space, CRC Press, 2010. ISBN:1439814635,

APPENDIX

In this appendix, we show a constant timeO(1) algo-
rithm for mitigating spoofing attacks in MPLS VPNs using
time synchronized label-hopping. The time synchronization
is achieved using the TicToc protocol. We assume that each
(PEne, PEfa) pair knows the PTP port and the corresponding
PTP LSP used for sending and receiving time information. We
now present the four algorithms which removes packet based
hashing and uses time-based labels.

Algorithm 9 forwards the FECs, keys associated with the
FECs and a set of valid time slices fromPEne to PEfa.
The packets are exchanged using Multiprotocol External BGP
in step3. For every time slice instant this process is repeated.
This is shown is steps5−10. The algorithm then wraps around
and restarts from TS[0].

Algorithm 9 TicToc: Control-planePEne algorithm

Require: FEC[] Forward Equivalence Classes, D[] valid la-
bels, TS[] valid time slices, PTP port and PTP LSP
information.

1: Begin
2: packet = makepacket(FEC, D, TS);
3: CP-SendPacket(PEfa, MP-eBGP, packet);
4: Sleep(TS[1]);
5: For every time instant TS[i] starting from TS[2]...TS[n],
6: Begin
7: packet = makepacket(FEC, D);
8: CP-SendPacket(PEfa, MP-eBGP, packet);
9: Sleep(TS[i]);

10: End
11: End

Algorithm 9 shows thatPEne transfers the distinct values at
every time instant TS[i].PEne has to store the values for three
consecutive time intervals to ensure that the latency involved
in sending new labels toPEfa is also accounted.

The values sent by thePEne are extracted from the packet
in steps3 − 5. For example, the procedure ExtractLabelsAn-
dAppend(packet) given in Algorithm 10 helps thePEfa use
the new labels received at every new time instant fromPEne.
All the values are recorded in steps6 − 9, for executing the
verification activity when a packet arrives.
PEfa initiates the synchronization activity in steps1 − 6

in Algorithm 10. Once a packet is received then the algorithm
checks whether the FEC of the packet has label-hopping
enabled in steps9 − 12. If enabled, the time instances are
checked and a label is chosen for the current time index, added
to the packet and sent; see steps14− 27.

Extra work needs to be done at the level of the data-plane for
managing the synchronization so that packets are not rejected.
Hence,PEne can store values ofD for three consecutive time
slots.PEne synchronizes itself with the time slots ofPEfa.
This is shown in steps1− 6 and14− 25 in Algorithm 12. If
the label-hopping algorithm for the packet is enabled, thenthe

314

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 10 TicToc: Control-planePEfa algorithm

Require: None

1: Begin
2: packet = CP-ReceivePacket(PEne); // from PEne

3: FEC[] = ExtractFEC(packet); // extract FECs
4: D[] = ExtractLabelsAndAppend(packet); // labels
5: TS[] = ExtractTimeSlices(packet); // extract time slices
6: RecordValues(FEC); // information forPEfa

7: RecordValues(D);
8: RecordValues(TS);
9: End

Algorithm 11 TicToc: Data-planePEfa algorithm

Require: None

1: Begin // One time initialization start
2: CurrentTimeSliceIndex = 0;
3: CurrentMasterClock = PTP LSP Master Clock Times-

tamp;
4: CurrentTimeInstant = CurrentMasterClock;
5: NextTimeInstant = CurrentMasterClock

+ TS[CurrentTimeSliceIndex];
6: End // One time initialization end
7: Repeat forever
8: Begin
9: packet = DP-ReceivePacket(Interface);

10: match = CheckFEC(packet); // Is the algorithm enabled?
11: if match == 0 then
12: return; // algorithm not enabled
13: end if
14: if CurrentTimeInstant≤ NextTimeInstant (configured sec-

onds)then
15: // do nothing;
16: else
17: // Move by next TS[i]
18: CurrentTimeSliceIndex++;
19: if CurrentTimeSliceIndex == nthen
20: // check to wrap around
21: CurrentTimeSliceIndex = 0;
22: end if
23: CurrentTimeInstant = NextTimeInstant;
24: NextTimeInstant = CurrentTimeInstant

+ TS[CurrentTimeSliceIndex];
25: end if
26: label = Choose a label from CurrentTimeSliceIndex of

D[];
27: DP-SendPacket(PEne, label, packet);
28: End

received label is recorded and searched in the array of labels
that was already exchanged for that time slot. These activities
are shown in steps9 − 13 and 26 − 30. If the labels do not
match then it is an error and hence the packet is discarded.

Algorithm 12 TicToc:Data-planePEne algorithm

Require: None

1: Begin // One time initialization starts
2: CurrentTimeSliceIndex = 0;
3: CurrentMasterClock = PTP LSP Clock Timestamp;
4: CurrentTimeInstant = CurrentMasterClock;
5: NextTimeInstant = CurrentMasterClock

+ TS[CurrentTimeSliceIndex];
6: End // One time initialization ends
7: Begin
8: packet = DP-ReceivePacket(Interface);
9: match = CheckFEC(packet);

10: if match== 0 then
11: return; //no match
12: end if
13: label=extractPacket(packet, LABEL);
14: if CurrentTimeInstant≤ NextTimeInstant (configured sec-

onds)then
15: // do nothing;
16: else
17: // Move by next TS[i]
18: CurrentTimeSliceIndex++;
19: if CurrentTimeSliceIndex == nthen
20: // check to wrap around
21: CurrentTimeSliceIndex = 0;
22: end if
23: CurrentTimeInstant = NextTimeInstant;
24: NextTimeInstant = CurrentTimeInstant

+ TS[CurrentTimeSliceIndex];
25: end if
26: // Note that the arrayD must be3 times

// larger in this case
27: first-label = Check whether the current label is in D[]
28: if label 6= first-label then
29: error(); return;
30: end if
31: DP-SendPacket(CE1, NULL, NULL, packet);
32: End

Some remarks about the algorithms are given below:

• The label size will include that of the additional label
used in the label-hopping algorithms based on hashing.

• Due to non inclusion of additional label, bit selection
pattern is not needed.

• A mechanism to handle packet losses may be used when
the labels desynchronize.

• This algorithm can be implemented real-time and at
nearly line-rate.

