International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

Performance Isolation Issues in Network Virtualization in Xen

Blazej Adamczyk, Andrzej Chydzinski
Institute of Informatics
Silesian University of Technology
44-100 Gliwice, Poland
{blazej.adamczyk,andrzej.chydzinski} @polsl.pl

Abstract—Resource virtualization has been known and used
for a while as a mean of better hardware utilization and
cost reduction. Recently, the idea of virtualization of network-
ing resources has become of vital importance to networking
community. Among other things, this is connected with the
fact that the virtulization principle is built in many discussed
Future Internet (FI) architectures. In this study we deal
with the virtualization of networking resources offered by
Xen virtual machine monitor. We are especially interested
in the performance isolation across virtual network adapters.
Firstly, we demonstrate several problems with the performance
isolation. In particular, the results of a number of experiments
in which the activity of one virtual machine influences the
network performance of any other are presented. We also
examine the fairness, predictability and configurability of the
network I/0 scheduler in Xen. Secondly, we propose solutions
to the problems revealed by our experiments. In particular,
we introduce prioritization into Xen Netback driver, add
a verification mechanism to the output buffer and discuss
possibilities of some other improvements.

Keywords-performance isolation; Xen; virtualization; net-
work scheduler.

I. INTRODUCTION

The increasing number of different IT services are making
the virtualization idea a very important aspect of computer
science. Virtual Machine Monitors (VMMs) bring about
the dynamic resource allocation and enable full utilization
even of the most powerful servers, while still maintaining
good fault isolation between virtual machines (VMs, also
called domains in Xen). However, the services provided
over the network may require a certain quality, which is not
easy to ensure in a virtualized environment. Several VMs
can share the same physical network interface as well as
other hardware (processor, memory etc.) what likely makes
one VM affect other VMs’ performance. Therefore, the
performance isolation is crucial in case of some applications
and has to be carefully verified.

In this paper, we focus on Xen VMM, [2], which is one
of the most popular virtualization platforms and an Open
Source project. Firstly, we present a study of the network
performance isolation between Xen virtual machines. Differ-
ent test scenarios allowed us to identify several problems.
Secondly, we carefully analyze the Xen CPU scheduler and
the network I/O scheduler to find out their possible source
and resolution method.

The motivation behind our study is the fact that virtu-
alization of networking resources has recently became of
vital importance to networking community. This is partly
connected with the fact that the virtualization principle is
built in many projects dealing with propositions on the
Future Internet architecture, for example in 4WARD FP7,
[3], FIA MANA, [4], AKARI, [5], PASSIVE FP7, [6],
GENI, [7], IIP, [8]. As observed in [9], creating high-
level abstractions of networking resources, that cover the
underlying physical infrastructure and implementation may
help to overcome several drawbacks of the current Internet
architecture. For instance, virtualization allows coexistence
of multiple networking technologies in the network layer
and offers a possibility to deploy easily new architectures,
protocols and services.

The remaining part of the paper is structured as follows.
First, a short account of the literature connected with the
subject is given in Section II. In Section III-A, Xen general
architecture is overviewed. Then, a detailed Xen networking
structure is presented in Section III-B. A description of the
Xen schedulers is presented in Section III-C. Section IV-A
describes the testing environment and its parameterizations.
The results and discussion on them are contained in Section
IV-B. Finally, propositions of methods for improving the
network performance isolation in Xen are presented in
Section V. Conclusions are gathered in Section VI.

II. STATE OF THE ART

This study verifies that there are problems related to the
performance and isolation of virtualized network resources.
Network adapter sharing and scheduling without virtualiza-
tion is well described in literature. Virtualized environments,
however, introduce additional software layer what does not
allow to apply directly the existing solutions. Consider-
ing virtualized environments several previous studies [10]-
[16], [27]-[29] focus on analysis of the performance of
I/O operations and some of them present partial solutions.
Unfortunately, these studies do not examine isolation and
manageability in the field of resource sharing in considered
virtualization platforms. In [17], however, the authors tried
to approach the performance isolation problem focusing
on all kinds of resources. Unfortunately, this study was
performed on older version of Xen with an older CPU sched-

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

139

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

Dom0 DomU
Back-end | I/O sched. Front-end driver
!
Standard driver VCPUs
VCPUs + Hypervisor
] CPU scheduler
; ¥
NIC CPUs

Figure 1.
directly on hardware, NIC - Network Interface Card, VCPU - virtual CPU.

uler implementation. They assumed that the main source
of the problem is connected with CPU assignment and
scheduling. As they have proven such general improvement
idea can partially increase the performance isolation of
all resources. We think, however, that to achieve really
good performance isolation across virtual network adapters,
the proposed CPU scheduler improvement is not the only
change that has to be made because in the existing Xen
networking implementation packet scheduling is performed
randomly. We present that even on a low CPU utilization
the problem is still noticeable and is related to the network
scheduler itself. We have verified that applying a modified
(for virtualization purposes) Weighted Round Robin (WRR)
network scheduler improves the performance isolation and
provides better control over virtual network devices.

III. XEN VIRTUALIZATION ARCHITECTURE

A. Xen VMM

Different virtualization environments have been developed
throughout the years. Xen, due to its unique architecture
(Fig. 1), is one of the leading solutions. The core of Xen,
which is responsible for control over all virtual machines,
is a tiny operating system called Xen Hypervisor. Its main
tasks are CPU scheduling, memory assignment and interrupt
forwarding. In contrast to other VMM, the virtualization of
all other resources is moved outside the hypervisor. Such
original approach has the following advantages:

o Device drivers are not limited to the hypervisor op-
erating system because they are installed on a virtual
machine (any OS),

e Device drivers, as the most vulnerable software, are
isolated from the hypervisor, significantly increasing
the stability,

Xen architecture. DomO - Xen primary virtual machine, DomU - other Xen virtual machine, Hypervisor - main Xen operating system running

« Distributed virtualization of resources allows creation
of several driver domains, eliminating the single point
of failure,

o Small hypervisor operating system is much more reli-
able, efficient and stable.

There are two main virtualization methods. The first one
allows to run any kind of OS and emulates all the necessary
hardware to create an impression that the guest system is
running on a physical machine. Second approach is to run a
modified guest operating system, which is “aware” of being
virtualized. The latter, called paravirtualization, is much
more efficient, but limited to some operating systems only.
Xen provides both methods, but performs much better in the
paravirtualization mode, which will be the only method used
further in this paper.

To make the I/O operations as fast as possible, Xen
introduced also paravirtualized device drivers. Each guest
domain (Xen VMs are also called ’domains”) has the front-
end drivers installed. Such drivers, provided with Xen,
are communicating with the back-end drivers running on
a special driver domain (DomO in Fig. 1). All requests
addressed to a certain hardware are first scheduled and
processed by the back-end driver, then are sent to the
standard device driver inside the driver domain and finally
reach the hardware. Thanks to Xen internal page-flipping
mechanism called XenBus [18], [19] such solution is much
more efficient than the standard emulation technique.

B. Xen networking architecture

To perform analysis of the network-related problems it
is necessary to explain Xen networking architecture in
detail. For each virtual interface the back-end network
driver, called Netback, creates a virtual network interface
in domainQ called vif. All virtual interfaces which share

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

140

the same physical device are connected with it using a
standard Linux level-2 bridge. The Netback process which
is responsible for handling traffic of each virtual interface
is scheduling this traffic and passing it to the bridge. The
existing scheduling scheme implemented in Xen by default
is a simple Credit Scheduler and will be described in section
II-C2. Finally, the bridge passes the packets to the device
driver output queue and the device driver sends the packets
to the hardware. Figure 2 presents the outgoing traffic path
through Xen virtualization platform.

Such solution has several advantages. Firstly, the admin-
istrator has direct control over virtual interfaces from within
domain0. Secondly, it is possible to monitor and analyze the
packets passing through these interfaces using standard tools
like tepdump [20] or wireshark [21]. Finally, the traffic can
be filtered and manipulated on the bridge level by creating
custom ethernet bridge rules using ebtables [22] utility. All
the above can be applied for both in and outgoing network
traffic.

C. Xen schedulers

The main goal of this study is to examine the network
performance isolation across Xen guest domains. It means
to check if activity of one virtual machine influences the
network performance of any other. The resulting knowledge
is of great importance from the perspective of many network-
related applications.

There are two elements in Xen, which may influence
such isolation, namely the CPU scheduler and the network
I/O scheduler [23]. Despite the fact that the schedulers are
very simple algorithms, their analytical analysis is still far
from being solvable. Creating a mathematical model of such
systems even with large approximation is a very complex
task and very often proves to be impossible. In the following
two sections a description of the two schedulers is given.

1) CPU Scheduler: The fundamental part of each multi-
tasking operating system is the CPU scheduler. Its aim is to
create an impression that all running processes are executed
in parallel. Typically, there are much more processes than
available physical CPUs and the processes have to share
CPU time. The scheduler is responsible for this division.

Inside Xen VMM, the hypervisor is the main operating
system running on the physical machine. It is responsible
for scheduling physical CPU time among virtual machines.
To make the process easier the term virtual CPU (VCPU)
is introduced. Every VM in Xen can have multiple virtual
processors. Also, every domain is running operating system
with another scheduler, which divides a VCPU time among
processes running inside the guest operating system. The
hypervisor on the other hand, schedules the physical CPU
time among VCPUs.

The newest version of Xen uses the credit scheduler [24],
[25]. It assigns two parameters for each domain - weight
and cap. The weight defines how much CPU time a domain

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

gets comparing to other virtual machines. The cap parameter
is optional and describes the maximum amount of CPU a
domain can consume. Using this two parameters the number
of credits can be calculated. As a VCPU runs, it consumes
credits. While VCPU has existing credits, its priority is
called under and it gets CPU time normally. When there are
no credits left, the priority changes to over. Each physical
CPU maintains its own local VCPU queue. In the first place,
the VCPU tasks with priority under from the local queue are
executed. Then, if there are no VCPUs with priority under,
the scheduler looks for such tasks in other CPU queues. If
there are no tasks with priority under, the tasks with priority
over from the local queue are executed. The credit scheduler
in Xen can be summarized in the following algorithm and
diagram (Fig. 3):
1) Process preemption - the scheduler takes control over
CPU.
2) Last taken VCPU inserted back into the local queue
according to its credits number.
3) Have the highest priority VCPU from the local queue
used all its credits?

o No: Highest priority VCPU taken from the local
queue.

e Yes: SMP Load Balancing - highest priority
VCPU taken from other CPU queues.

4) Switching context to the currently taken VCPU - the
VCPU takes control over CPU.

Considering this CPU scheduler in the context of the
network performance isolation, it is worth noticing that the
scheduler operates on virtual CPUs only, so it should not
have a strong impact on I/O performance. The network
1/O scheduler, on the other hand, works as a kernel thread
inside domain0 using its VCPUs so a fair VCPU scheduling
scheme should not influence its performance. However, it
may happen that one misbehaving VM will slow down
the total responsiveness and performance of other domains.
Also, as it was presented in [17], the Xen CPU scheduler
does not take into account the amount of CPU consumed by
the driver domain on behalf of other VM. This may also have
an impact on the network performance isolation, as some
domains may use more CPU time than they are allowed.
Furthermore, a different type of I/O request (e.g., more
demanding, like disk driver requests) can potentially slow
down the driver domain and affect the network performance
of other VMs.

2) Network I/O scheduler: Looking at Xen architecture
and analyzing its source code from the network performance
isolation point of view, one can easily note that the most
interesting part is the aforementioned Netback driver. It
contains another scheduler, responsible for gathering all I/O
requests sent to a certain physical network adapter. This
network scheduler is not a complex mechanism and probably
can be improved. Its only configuration parameter is the

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

141

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

Dom1l
Dom O
_| ethO
Netback driver /
Scheduler / |
.. /
i bro H /
i r éwfl.O O I P Dom?2
eth0 :
- R o ;wfz.o n - ethO
éwa.O I—
' . Dom3
S ethO
| I
Figure 2. Xen networking architecture.
Xen Hypervisor VCPU 1
DomU
Scheduler Process preemption
~» VCPUx [+ DomU
-oeess ©emption
A VCPUY [pomy
|| Switch
context context
DomU
; : VCPU M

Processor 1 Processor N

rrrrrrr » - Execution flow

——— -Data flow

Figure 3. Xen CPU scheduler

maximum rate (parameter rate) - in fact it can be perceived
as the credits number in the scheduler. The administrator can
specify only the maximal throughput achieved by a certain
virtual network adapter. Unfortunately, there is no way to
prioritize and control the quality of service in more details.

The scheduler itself counts the amount of data
sent/received in given periods. If rafe has been reached, it
sets a callback to process the request in next periods. Such
solution is efficient, but does not guarantee any fair share or
quality. In fact, a misbehaving VM can theoretically flood
driver domain with requests because it processes all of them
even those which are further rejected.

IV. EXPERIEMENTS

A. Experimental setup

To perform the tests, we installed Linux Gentoo with Xen
4.0.0 on Intel Quad Core 2 (2.83GHz), 4GB RAM, with
hardware virtualization support. Two guest domains, each
having 1 VCPU and 1GB of RAM, were created. Although
there were separate physical CPU available for each VM,
both VCPUs were pinned to the same physical CPU. Such
configuration was used in order to check the influence of
the CPU scheduler on the network performance. All network
measurements were taken using iperf application. The UDP
protocol transferring datagrams of 1500B to an external host
over 100Mb link was used. We used the 100Mb link (instead
of 1Gb) to demonstrate that the isolation problems are still
present without a heavy CPU utilization. Only the outgoing

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

142

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

143

traffic was measured, as this was our main point of interest. 40 ‘ ‘ ‘ ‘ ‘
The testing environment is presented in Fig. 4. w1l —
Q 35 | VM 2
Physical machine External machine g 30|
0
~ o
PV 1 T LCCLICIZ NS g 257 |
PvV2 [@ o207 3¢
15
o o , 0 5 10 15 20 25
Figure 4. Testbed configuration. PV1, PV2 - Xen paravirtualized machines, .
NIC - Network Card Interface. Time s
40 &
B. Results o o3| Xﬁ 0
In the first experiment, we observed how activity of one §
VM can affect the performance of another, when both VMs o 30 1
are configured with the same rate parameter. Four values 8 25 | oo
of rate were used in different test runs: 25Mb/s, 30Mb/ s, H T
35Mb/s and 40Mb/s. In every run one machine started its 4 20t
transfer at the very beginning and the other started after Ss
of delay. For every rate value, the experiment was repeated 15 ‘
10 times and the 0.95 confidence intervals were derived. The 0 5 10 15 20 25
results are presented in Fig. 5. Time s
Firstly, we can see that the actual rate is always a little
smaller than rate parameter. As for the performance isola- 40 W] ——
tion, it is not too bad for low values of rate. However, with & 351 VM 2
growing rate, the confidence intervals are getting larger and §
larger - in sample runs we can observe stronger variations of 0 30 ¢
the throughput achieved by each VM. For the value of rate o 2 |
equal to 35Mb/s, the performance isolation becomes rather o
weak (although only about 60 percent of the total bandwidth 4207
is consumed). It is also worth to mention that a single VM
throughput is stable even above 80Mb/s what proves that 15
this effect is in fact a performance isolation issue. 0 5 10 15 20 25
Thus the only way to achieve a good isolation is to limit Time s
virtual adapters by far, which is not a satisfactory solution.
Also, it is worth mentioning that having only the upper limit 40
parameter is not enough in many cases. It would be much 2 351
better to have any means to prioritize certain virtual adapter 8
or even to have a minimum rate parameter and a scheduler 30 ¢
satisfying these requirements. o
In the second experiment, different rate values per each 8 251
VM were used. Fig. 6 shows results for rate = 30Mb/s 5 20 |
in one VM, and rate = 40Mb/s in another. The isolation .
problem still remains but, what is worth noticing, both VMs 15 : : : :
affect each other similarly. 0 5 10 15 20 25
In the presented two experiments the performance iso- Time s

lation problem was either mild or moderate, depending on

the configuration. In the following two experiments, we will Figure 5. The throughput per VM for different values of rate parameter,

demonstrate more severe performance isolation issues. ?;mely for 25Mb/s, 30Mb/s, 35Mb/s and 40Mb/s, counting from the
In the third experiment, we verified how Xen divides >

available bandwidth among two VMs when the maximal rate

is not set. A sample path of the throughput achieved by each

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

40 ‘ ‘
W1l —
0 L : . , VM 2 =wwemn
B 35 it '..;..:.ll-... ';*4;.*;*“;ﬁll.lllill
S| O ’.l H et H
0]
)
©
I
i)
-
m
0]
N
Q
=
0]
D
G 25 L .-w---l--l!]
b
m 20 [l
15 :
0 5 10 15 20 25

Time s

Figure 6. Total throughput per VM for different values of rate parameter
(30Mb/s and 40Mb/s.

VM in time is presented in Fig. 7. Surprisingly, sometimes
one virtual machine gets the total throughput and the other’s
throughput decreases to 0. Moreover, there are long periods
when one VM dominates the other by far. Therefore, we
have in fact no performance isolation at all in this case.

100

80

Bitrate Mb/s

200 300 400

Time s

0 100 500

Figure 7. Sample throughput processes in time for two separate VMs
without limits

In the fourth set of tests, we wanted to verify if a
very abusive virtual machine can take more bandwidth than
others. This time we wanted to check the performance
isolation of the network I/O scheduler only, therefore we

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

pinned one physical CPU to each VM.

In the first test, one domain was trying to transfer data
over one connection using full available speed, while the
second domain was using two connections, both of them
trying to achieve full available speed. In the next test, the
second domain was using three connections at full available
speed.

The results are presented in Fig. 8. As it can be observed,
the more abusive domain is, the better throughput it achieves.
Naturally, if the rate parameter had been set, the overactive
domain would never have crossed the maximum rate. In the
lower ranges however, the problem remains.

100 ‘ ‘
w1l —
2 g VM 2 (2x more active) wemerei”
g
60
8 o2, . o O T S
ot i S R R, S W W bt A A
T 40 -
)
o 20
O L |
0 20 40 60 80 100
Time s
100 ‘ ‘
WM 1l —
2 g VM 2 (3x more active) wwweeee
Q
by
0
)
©
g
i)
-.4
m

Time s

Figure 8. Bandwidth division with one overactive VM.

In the last experiment, we wanted to check if non-network
I/0O requests can influence the network performance isolation
of another domain. During the experiment one VM was
constantly sending datagrams at full speed, while the second
VM was performing some extensive disk operations (fio tool
was used for this purpose). The results are presented in Fig.
9; to and t; are points in time when the extensive disk
operations were initiated and finished, respectively.

We can see that other I/O request can also have a strong
impact on the network performance. This is probably caused
by driver domain not being able to process all the I/O
requests. Block device access is being handled by separate
block device back-end drivers. Disk operations are much
more demanding in the driver domain than the Netback

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

144

drivers because disk is used by many crucial system compo-
nents and when a disk request is in a blocked state waiting
for a response all other mechanisms using disk are blocked
as well causing the whole system to perform badly.

140
120 ¢
100
80 1 ——
60 |
40
20

0

Bitrate Mb/s

0 '5 10 15 20 25 30 35 40 45
to . L
Time s

Figure 9. Disk I/O influence on network performance. (¢ - disk I/O start,
t1 - disk I/O finish)

V. IMPROVEMENTS

After detailed analysis of the problem, we have gathered
some ideas on how to modify Xen to improve the net-
work performance isolation. Currently, in the driver domain
several Netback kernel threads can be running, depending
on the number of VCPUs. Furthermore, several virtual
network adapters are mapped with one Netback kernel thread
dynamically and this single Netback thread schedules the
work using a simple round-robin algorithm, additionally
taking into account rate parameter (omitting adapters, which
used up all their bandwidth in the current period). Our idea
is to introduce two additional parameters for every virtual
adapter, namely priority and min rate. To implement the
former, it would be necessary to change the round-robin
mechanism to a more advanced priority based queue. Of
course, we have to remember that the algorithm should not
increase significantly the time complexity. The min rate
parameter could use the same prioritization mechanism,
assigning higher priorities to interfaces, which have not yet
achieved the minimum rate. Depending on the results, it may
be also necessary to introduce a user level application for
maintaining the niceness level of each Netback thread inside
the driver domain, according to actual needs.

1) Prioritization: The very first step to solve all the
aforementioned problems is to introduce a prioritization
mechanism into Xen’s Netback driver. This will allow for
better control over virtual interfaces and additionally sched-
ule the packets in more predictable way thus preventing
guests domains to flood the backend driver with requests
what should result in improved isolation. To achieve such
functionality we implemented the simple Weighted Round
Robin algorithm [26]. We decided to use the WRR because
of its simplicity, low complexity and to present that even

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

the basic scheduling scheme can improve the performance
isolation by far comparing to the native random scheduler.
The actual implementation is presented in Algorithm 1.

Algorithm 1 The implemented version of WRR scheduler

min = infinity
for each vif do
vif.weight = vi f.priority /mean_pkt_size
if min > vif.weight then
min = vi f.weight
end if
end for
for each vif do
vif.packets_to_serve = vif.weight/min
end for
while true do
for each vif do
if vif.has_packets_to_send() then
counter =0
while counter < vif.packets_to_serve do
event = vif.wait_for_event()
if event = new_packet_to_send then
vif.process_packet()
set timer to end of transmission time
else if event = timer_elpased then
counter + +
end if
end while
end if
end for
end while

In a virtualized environment where a packet passes several
virtual adapters before it reaches the actual real interface and
each interface has its own input buffer, the WRR scheduler
has to be modified to guarantee that the scheduled packets
will not be dropped before they reach the wire. Dynamic and
real-time priority assignment in this scheduler was created
by additional Linux kernel sysctl parameters, i.e., prioritize
and priorities. The first parameter defines whether to use the
WRR scheduler or not. Second parameter is an array of the
actual priority values for each virtual adapter.

Each vif has a separate queue of data to transfer and
a priority. The latter corresponds to the weight in the
implemented WRR algorithm. Total bandwidth available
at the physical link is shared proportionally between all
active virtual interfaces according to their weights. Because
the packets are scheduled at the virtual driver level, they
are processed almost immediately. This may cause wrong
behaviour when the queue gets empty and after some time
recieves a new packet while the last one is still transmitting.
In standard WRR implementation the new packet would be
transmitted because of the blocking send operation. This is
why we had to introduce a waiting mechanism (in means

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

145

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

146

of a timer) so that all transmitted packets are actually sent 45 ‘ ;
before switching to the next queue. Xﬁ % o
To test the prioritization we performed simple experiment o 0
where two VMs transmit data to an external host. In the 3 351
meantime the priorities were changed every second. At the j
beginning VM 1 had much bigger priority, in the end VM 2 e 307
was favored in the same proportion (i.e., 30/1). The results 4:3 25 +
are presented in Figure 10. m 2 [¥_‘ I
100 M] —— v 0 5 10 15 20 25
8 80 MM% VM2] Time s
g % 45 ‘ ‘ ‘ ‘ ‘
" 60 ' 1 ™1 —
D 5 40 & VM 2
Lo 1 o
» *&% g 35
m 20 m}f%}% 9 3|
0 . :
0 20 40 60 80 100 120 140 160 5 257
Time s 20 1
Figure 10. Results of the improved scheduler for changing priorities of B 0 5 10 15 20 25
each VM.)
Time s
2) Buffer overflow in Domain 0: After implementing the 45 :
WRR scheduling scheme the results in terms of perfor- L
mance and isolation were better but still not satisfactory . 0 e
especially at high throughputs (i.e., around the output device é 35 |
bandwidth). Gathering a small sample of output traffic at \
the physical device led us to the conclusion that the WRR 5 307 G2 saaansnas 2as soganseaa) Soy
scheduler is working correctly for most of the time however 5 o5t
sometimes the packets from different vifs are not sent in a
correct amounts (according to WRR weights). 20
Knowing the above and that the scheduler itself is imple- 15
mented correctly, it became obvious that the output traffic 0 5 10 15 20 25
is being distorted after scheduling. Furthermore, looking at Time s
Xen networking architecture (see section III-B), one can 15 ‘ ‘ ‘ ‘ ‘
easily notice that the scheduling is applied before packets get VM 1 ——
to the bridge and finally to the physical device output queue. R 407 2
Normally, when the output queue is getting full the driver 3 351)
informs higher layers and stops packet transmission using = N"l‘“‘ ~hT Y 5 20nn sanne
netif _stop_queue function. Xen Netback driver implementa- % 307
tion lacks a mechanism of verification the output buffer of 0 oas
physical device before sending data to bridge. This results o
in distorted scheduling and larger amount of packet drops. 20
We modified the Netback module adding such verification. 15
After detecting that the physical device output queue is full 0 5 10 15 20 25
the packet is left in the vifs output queue. Of course this Time s

may lead to situation when the buffer of virtual interface
gets full as well what ﬁnally results in netif _stop_queue at Figure 11. Results of the improved scheduler taking into consideration
domainU level what is desired and makes the vif operation th][\);}t)/b;ffer for rate parameter equal to 25Mb/s, 30Mb/s, 35Mb/s and
more similar to the operation of real hardware drivers. '

3) Improved scheduler results: After applying the mod-
ification we have repeated the experiments to verify if the

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

100 ; ‘
VM2

s 80
~N
Q
E 60 L
3 'LMA‘&L”H‘M‘.\ Ml »l M blhe Ao b Ko e INVWS
o R e, ey N M g 0 e e
g a0 |
2
b |
T20

200 300 400

Time s

500

Figure 12. Results of the improved scheduler for one long measurement
without rate parameter.

modified scheduler indeed provides better isolation. Figures
11 and 12 present the results.

Comparing Figures 5 and 11 it can be easily seen that
the WRR scheduler makes the bandwitdh sharing fair and
stable. There does not seem to be any influence of one virtual
interface on another. There are, however, some fluctuations
(even if only one vif is transmitting) which were not noticed
in the unmodified version what makes us think this is a
minor problem which can be resolved and will be a subject
of our further investigation.

Considering Figures 7 and 12 one can see that the
modified Netback driver again makes the bandwidth sharing
fair and predictable. Both virtual machines get more or
less the same result and none is favored nor discriminated.
In our opinion, this experiment shows the most significant
benefits of applying our modification. In unmodified Xen
environment there is no actual network scheduling what
makes the outcome (both bandwidth and delays) dependent
only on CPU scheduling and assignment. Application of
WRR scheduler influences the way virtual interfaces send
data and thus require CPU. This, as we can see, significantly
decreases the CPU scheduling influence. Unfortunately, the
disk I/O influence is still not fully addressed by our solution
as we changed only the packet scheduling mechanism.
Probably a good idea to minimize this effect would be to ad-
ditionally use the solution proposed in ?? but unfortunately
we could not verify this as we used a newer version of Xen.

It is worth to notice that the applied packet scheduler
by improving the fairness and isolation can also positively
influence the delays. We think that for our testing scenario,
where the packet sizes were constant and the most important
factor was the throughput, the WRR algorithm was a good
choice. However, for other scenarius and use cases it might
be better to implement a different scheduling scheme which
may improve the interesting parameters. For example, when
a real IP networks are concerned the packets have random
sizes and thus it would be good to choose the Deficit

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

Round Robin (DRR) scheduling or in case when fairness
is concerned the Weighted Fair Queueing could be used.
Of course, the more complex scheduling algorithm is used
the more overhead is caused by the networking layer thus
some schedulers may be hard to implement. In case of our
implementation the overhead is minimal and does not affect
the overall system performance.

Both the prioritization and buffer modification presented
above may be of great use for system administrators who
are providing services to external clients and wish to have
good control over network resources and at the same time
maintain the performance isolation at higher level.

4) Further improvements: Prioritization and the afore-
mentioned buffer modification brings a lot of new pos-
sibilities and improves the performance isolation by far.
Nevertheless, in high CPU utilization scenarios it may be not
sufficient. We may think of much more complicated mech-
anisms. Virtualization makes the problem very complex, as
three different schedulers may affect the isolation: CPU
Scheduler, Domain 0 VCPU Scheduler and Netback 1I/0
Scheduler. To achieve best results it might be necessary to
synchronize all schedulers. Thus, partial solutions providing
the minimal rate parameter for given virtual interface may
prove very valuable. Further, a modification proposed in
[17] may also help to increase the performance isolation
taking the aggregate CPU consumption into consideration.
Finally, we would like to test the scalability of our solution
on a better hardware with more VMs running. All these are
subjects of our future study.

VI. CONCLUSION

Xen is a powerful and stable virtualization platform,
what accompanied with its Open Source formula makes
it one of the most interesting VMMs, especially for re-
search purposes. However, when the network virtualization
is considered, the weak point of Xen is its lack of proper
performance isolation. We demonstrated this using five sets
of tests. The problems with isolation are caused by several
factors mostly connected with CPU and I/O schedulers.
We proposed the Netback driver modification using WRR
algorithm to provide prioritization. We have also briefly
presented an idea for future improvements.

VII. ACKNOWLEDGMENTS

This work is partially funded by the European
Union, European Funds 2007-2013, under contract number
POIG.01.01.02-00-045/09-00 “Future Internet Engineering”.
This is extended version of the paper [1], presented during
the International Conference on Cloud Computing, GRIDs,
and Virtualization, Rome, September 25-30, 2011.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

147

REFERENCES

[1] B. Adamczyk, A. Chydzinski: On the performance isolation
across virtual network adapters in Xen, in Proceedings of the
International Conference on Cloud Computing, GRIDs, and
Virtualization. Rome, September 25-30, 2011, pp. 222-227.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield: Xen and the art of
virtualization, in Proceedings of the 19th ACM Symposium on
Operating Systems Principles, New York, 2003, Vol. 37, pp.
164-1717.

[3] The 4WARD Project, http://www.4ward-project.eu/index.php,
30-12-2011

[4] A. Galis, et al., Management and Service-aware Networking
Architectures (MANA) for Future Internet. System Functions,
Capabilities and Requirements, Position Paper, Version V6.0,
3rd May 2009.

[5] AKARI Architecture = Design Project,
project.nict.go.jp/eng/index2.htm, 30-12-2011

http://akari-

[6] The PASSIVE Project, http://ict-passive.eu/about/, 30-12-2011

[7] Global Environment for Network Innovations
http://www.geni.net/, 30-12-2011

Project,

[8] Future Internet Engineering, http://iip.net.pl, 30-12-2011

[9] T. Anderson, L. Peterson, S. Shenker, J. Turner: Overcoming
the Internet Impasse through Virtualization, Computer, Volume
38, Issue 4, April 2005, pp. 34-41.

[10] P. Padala et al.: Adaptive control of virtualized resources
in utility computing environments, ACM SIGOPS Operating
Systems Review, Vol. 41, No. 3, 2007, pp. 289-302.

[11] Y. Song, Y. Sun, H. Wang, and X. Song: An adaptive resource
flowing scheme amongst VMs in a VM-based utility comput-
ing, in Proceedings of the 7th IEEE International Conference
on Computer and Information Technology (CIT), 2007, pp.
1053-1058.

[12] J. Liu, W. Huang, B. Abali, and D. K. Panda: High perfor-
mance VMM-bypass I/O in virtual machines, in Proceedings
of the annual conference on USENIX, 2006, Vol. 6, pp. 3-3.

[13] V. Chadha, R. Illiikkal, R. Iyer, J. Moses, D. Newell, and
R. J. Figueiredo: I/O processing in a virtualized platform: a
simulation-driven approach, in Proceedings of the 3rd Interna-
tional Conference on Virtual Execution Environments, 2007,
pp. 116-125.

[14] D. Ongaro, A. L. Cox, and S. Rixner: Scheduling I/O in
virtual machine monitors, in Proceedings of the 4th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments, 2008, pp. 1-10.

[15] G. Liao, D. Guo, L. Bhuyan, and S. R. King: Software tech-
niques to improve virtualized I/O performance on multi-core
systems, in Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
San Jose, California, 2008, pp. 161-170.

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

[16] S. R. Seelam and P. J. Teller: Virtual I/O scheduler: a
scheduler of schedulers for performance virtualization, in
Proceedings of the 3rd International Conference on Virtual
Execution Environments, 2007, pp. 105-115.

[17] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat: Enforc-
ing Performance Isolation Across Virtual Machines in Xen;
In Proceedings of the 7th ACM/IFIP/USENIX Middleware
Conference, 2006, pp. 342-362.

[18] Y. Xia, Y. Niu, Y. Zheng, N. Jia, C. Yang, and X. Cheng:
Analysis and Enhancement for Interactive-Oriented Virtual
Machine Scheduling, in Proceedings of the IEEE/IFIP Inter-
national Conference on Embedded and Ubiquitous Computing,
2008, Vol. 2, pp. 393-398.

[19] Xen Wiki, http://wiki.xensource.com/xenwiki/XenBus, 29-
06-2011.

[20] Van Jacobson, Craig Leres and Steven McCanne: tcpdump,
Lawrence Berkeley National Laboratory, University of Califor-
nia, Berkeley, http://www.tcpdump.org, 30-12-2011.

[21] Gerald Combs, et al.: Wireshark, http://www.wireshark.org/
about.html, 30-12-2011.

[22] B. De Schuymer, et al.: ebtables, http://ebtables.sourceforge.
net/, 30-12-2011.

[23] J. Matthews, E.M. Dow, T. Deshane, W. Hu, J. Bongio, PF.
Wilbur, and B. Johnson: Running Xen: A Hands-on Guide to
the Art of Virtualization; Prentice Hall; April 2008.

[24] L. Cherkasova, D. Gupta, and A. Vahdat: Comparison of
the three CPU schedulers in Xen, SIGMETRICS Performance
Evaluation Review; September 2007, Vol. 35, No. 2., pp. 42—
51.

[25] G. W. Dunlap: Scheduler development update, Xen Sum-
mit North America 2010, http://www.xen.org/files/xensummit_
intel09/George_Dunlap.pdf, 29-06-2011.

[26] A. K. Parekh and R. G. Gallager: A generalized proces-
sor sharing approach to flow control in integrated services
networks: The single-node case; IEEE/ACM Transactions on
Networking; 1993, Vol. 1, pp. 344-357.

[27] G. Somani and S. Chaudhary: Application Performance Isola-
tion in Virtualization in Cloud Computing; CLOUD 09. IEEE
International Conference, 2009; pp. 41 48.

[28] N. M. M. K. Chowdhury and R. Boutaba: Network virtualiza-
tion: state of the art and research challenges; Communications
Magazine, IEEE, vol. 47, no. 7, pp. 20 26, Jul. 2009.

[29] P. Yuan, C. Ding, L. Cheng, S. Li, H. Jin, and W. Cao: VITS
Test Suit: A Micro-benchmark for Evaluating Performance
Isolation of Virtualization Systems; in e-Business Engineering
(ICEBE), 2010 IEEE 7th International Conference on, 2010,
pp. 132 139.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

148

