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Abstract—Wireless sensor networks (WSNSs), consisting
of autonomous sensor nodes, have emerged as ubiquitous
networks that span diverse application domains (e.g.,
health care, logistics, defense) each with varying applit@n
requirements (e.g., lifetime, throughput, reliability). Typically,
sensor-based platforms possess tunable parameters (e.g.,
processor voltage, processor frequency, sensing frequenc
which enable platform specialization for particular application
requirements. WSN application design can be daunting for
application developers, which are oftentimes not trained
engineers (e.g., biologists, agriculturists) who wish to
utilize the sensor-based systems within their given domain
Dynamic optimizations enable sensor-based platforms to ne
parameters in-situ to automatically determine an optimize
operating state. However, rapidly changing application
behavior and environmental stimuli necessitate a lightwejht
and highly responsive dynamic optimization methodology. i
this paper, we propose a very lightweight dynamic optimizabn
methodology that determines initial tunable parameter setings
to give a high-quality operating state in one-shot for time-
critical and highly constrained applications. We compare
our one-shot dynamic optimization methodology with other
lightweight dynamic optimization methodologies (i.e., geedy-
and simulated annealing-based) to provide insights into ta
solution quality and resource requirements of our methodabgy.
Results reveal that the one-shot solution is within 8% of the
optimal solution on average. To assist dynamic optimizatias
in determining an operating state, we propose an applicatio
metric estimation model to establish a relationship betwee
application metrics (e.qg., lifetime, throughput) and sener-based
platform parameters.

Keywords-Wireless sensor networks, dynamic optimization,
application metrics estimation
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makes WSN design challenging with commercial-off-the-
shelf (COTS) sensor nodes.

COTS sensor nodes are mass-produced to optimize cost
and are not specialized for any particular application.
Furthermore, WSN application developers oftentimes are
not trained engineers, but rather biologists, teachers, or
agriculturists who wish to utilize the sensor-based system
within their given domain. Fortunately, many COTS sensor
nodes possess tunable parameters (e.g., processor voltage
and frequency, sensing frequency) whose values can be
tunedfor a specific application. Faced with an overwhelming
number of tunable parameter choices, WSN design can be a
daunting task for non-experts and necessitates an autdmate
parameter tuning process for assistance.

Parameter optimizationis the process of assigning
appropriate (optimal or near-optimal) values to tunable
parameters either statically or dynamically to meet
application requirements.Static optimizations assign
parameter values at deployment and these values
remain fixed during the sensor node’s lifetime. Accurate
prediction/simulation of environmental stimuli is chaltgng
and applications with changing environmental stimuli do
not benefit from static optimizations. Alternativetlynamic
optimizationsassign parameter values during runtime and
reassign/change these values in accordance with changing
environmental stimuli, thus enabling close adherence to
application requirements.

There exists much research in the area of dynamic
optimizations [2][3][4][5][6], but most previous work gets
the memory (cache) or processor in computer systems.
Little work exists on WSN dynamic optimization, which

Wireless sensor networks (WSNs) consist of spatiallypresents additional challenges because of a unique design

distributed autonomous sensor nodes that observe
phenomenon (environment, target, etc.).

§pace, energy constraints, and operating environment.

WSNs ardhe dynamic profiling and optimization (DPOP) project

becoming ubiquitous because of their proliferation inaspires to alleviate the complexities associated witharens
diverse application domains (e.g., defense, health cardyased system design using dynamic profiling methods

logistics) each with varying application
(e.g., lifetime, throughput, reliability) [1]. For exanwl

requirementscapable of observing application-level behavior and dyioam

optimization to tune the underlying platform accordingly.[

a security/defense system may have a higher throughpthe DPOP project has evaluated dynamic profiling methods

requirement whereas an ambient conditions monitorindor observing application-level

application may be more sensitive to lifetime. This divigrsi

behavior by gathering
profiling statistics, but dynamic optimization methoddl sti
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need exploration. In this paper, we explore a fine-grained  design process.

design space for sensor-based platforms with many tunable The remainder of this paper is organized as follows.
parameters to more closely meet application requirementsection Il surveys previous work in the area of dynamic
(Gordon-Ross et al. [8] showed that finer-grained desigrbptimizations. Section Il presents our one-shot dynamic
spaces provide interesting design alternatives and result optimization methodology and Section IV describes our
increased benefits in the cache subsystem). The exploratigfpplication metrics estimation model leveraged by our one-
of a fine-grained design space coupled with limited batteryshot dynamic optimization methodology. Section V presents

reserves and rapidly changing application requiremertds anexperimental results and Section VI presents conclusiods a
environmental stimuli necessitates a lightweight and ligh fyuture research work directions.

responsive dynamic optimization methodology.

. I . . Il. RELATED WORK
Our main contributions in this paper are:

There exists much research in the area of dynamic
« We propose a lightweight dynamic optimization optimizations [2][3][4][5][6][9][10], however, most pkéous
methodology that determines appropriate initial tunablevork focuses on the processor or memory (cache) in
parameter values to give a good quality operatingcomputer systems. Whereas previous work can provide
state (tunable parameter value settings)oime-shot valuable insights into WSN dynamic optimizations, these
with minimal design exploration for highly constrained works are not directly applicable due to a WSN's unique
applications. Results reveal that this one-shot operatingesign space, energy constraints, and operating envitanme
state is within 8% of the optimal solution (obtained In the area of WSN dynamic profiling and optimizations,
from exhaustive search) averaged over several differerbridharan et al. [11] obtained accurate environmental
application domains and design spaces. stimuli by dynamically profiling the WSN's operating
« We evaluate alternative initial parameter settingsenvironment, but did not propose any methodology to
to provide a comparison with our one-shot initial leverage these profiling statistics for optimizations. rghe
parameter settings. Results reveal that the averaget al. [12] presented profiling methods for dynamically
percentage improvement attained by the one-shot initiainonitoring sensor-based platforms and analyzed the
parameter settings over alternative initial parametemassociated network traffic and energy, but did not explore
settings for different application domains and designdynamic optimizations. In prior work, Munir et al.
spaces is 33% on average. [13] proposed a Markov Decision Process (MDP)-based
« We analyze memory and execution time requirementsnethodology as a first step towards WSN dynamic
of our one-shot dynamic optimization methodology optimizations, but this method required prohibitivelydar
and compare these with other lightweight dynamiccomputational resources for larger design spaces. Ideally
optimization methodologies (greedy- and simulated-this method required a base station node with more
annealing (SA)-based). Results indicate that our oneeomputing resources to carry out the optimal operating
shot dynamic optimization methodology requires 204%state determination process, and these operating states
and 458% less memory on average as compared toould be communicated to other sensor nodes. The large
the greedy- and SA-based methodologies, respectivelgomputational requirements inhibited the methodology’s
The one-shot solution requires 18% less executionmplementation on resource constrained sensor nodes to
time on average as compared to the greedy- and SAenable autonomous operating state decisions. Kogekar et
based methodologies even if these methodologies aral. [14] proposed an approach for dynamic software
restricted to explore only 0.03% of the design space omeconfiguration in WSNs using adaptive software, which
average. used tasks to detect environmental changes (event
« To assist dynamic optimizations in determining anoccurrences) and then adapted the software to the
operating state, we for the first time, to the best of ournew conditions. Though their work considered software
knowledge, propose aapplication metric estimation reconfiguration, they did not consider senor node tunable
mode] which estimates high-level application metrics parameters.
(lifetime, throughput, and reliability) from sensor- In the area of WSN optimizations, Wang et al.
based platform parameters (e.g., processor voltage arfd5] proposed a distributed energy optimization method
frequency, sensing frequency, transceiver transmissiofor target tracking applications. The energy management
power, etc.). Our one-shot dynamic optimization mechanism consisted of an optimal sensing scheme that
methodology leverages this estimation model whenleveraged dynamic awakening of sensor nodes. The
comparing different operating states for optimizationdynamic awakening scheme awoke the group of sensor
purposes. We emphasize that this application metrimodes located in the target's vicinity for reporting the
estimation model can be leveraged by any dynamicsensed data. The results verified that dynamic awakening
optimization methodology and facilitates the WSN combined with optimal sensor node selection enhanced
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.. . Application Metri Applicati
the WSN energy efficiency. Liu et al. [16] proposed & Welght Factors.  Requirements

a dynamic node collaboration scheme for mobile targe
tracking in wireless camera sensor networks (wireles:
camera sensor networks can provide much more accura
information in target tracking applications as comparec
to traditional sensor networks). The proposed schem /
comprised of two components: a cluster head electi0|’/
scheme during the tracking process and an optimizatio/

Dynamic
Optimization
Controller

. WsN
\ Designer

One-Shot:
Tunable

Per-Sensor Node

. y | One-Shot . i
algorithm to select an optimal subset of camera sensol e Dynamic e | |
as the cluster members for cooperative estimation of th Exploration Optimization :

A Order Process !

target's location. Khanna et al. [17] proposed a reduced:
complexity genetic algorithm for secure and dynamic
deployment of resource constrained multi-hop WSNs. The
genetic algorithm adaptively configured optimal position
and security attributes by dynamically monitoring network . y )
. . . ~ - WSN: Wireless Sensor

traffic, packet integrity, and battery usage. Network

Several papers explored dynamic voltage and frequency =~
scaling (DVFS) for reduced energy consumption in WSNs Figure 1. One-shot dynamic optimization methodology farliss sensor
Min et al. [18] demonstrated that dynamic processor’®™°ks:
voltage scaling reduced energy consumption by 60%.
Similarly, Yuan et al. [19] studied a DVFS system pethodologies for sensor node parameter tuning.
that used additional transmitted data packet information
to select appropriate processor voltage and frequency IlI. DYNAMIC OPTIMIZATION METHODOLOGY
values. Although DVFS provides a mechanism for dynamic |n this section, we give an overview of our one-

optimizations, considering additional sensor node tumablshot dynamic optimization methodology and the associated

parameters increases the design space and the sensor nodggorithm. We also formulate the state space and objective
ability to better meet application requirements. To theé bés  function for our methodology.

our knowledge, our work is the first to explore an extensive )
sensor node design space. A. Overview

In prior work, Lysecky et al. [20] proposed SA-based Fig. 1 depicts our one-shot dynamic optimization
automated application specific tuning of parameterizednethodology for WSNs. WSN designers evaluate
sensor-based embedded systems and found that automatggplication requirements and capture these requiremsnts a
tuning can better meet application requirements by 40%igh-level application metrics(e.g., lifetime, throughput,
on average as compared to a static configuration ofeliability) and associatedweight factors The weight
tunable parameters. Verma [21] studied SA-based anthctors signify the relative weightage/importance of
particle swarm optimization (PSO) methods for automatedpplication metrics with respect to each other. The dynamic
application specific tuning and observed that an SA-basedptimization methodology leverages an application metric
method performed better than PSO because PSO oftesstimation model to determine application metric values
quickly converged to local minima. Exhaustive searchoffered by an operating state (we describe this application
algorithms have been used in literature for performancenetric estimation model in Section V).
analysis and comparison with heuristic algorithms. Mannio  Fig. 1 shows the per-node one-shot dynamic optimization
et al. [22] proposed a PareDown decomposition algorithnprocess (encompassed by the dashed circle), which is
for partitioning pre-defined behavioral blocks onto aorchestrated by thelynamic optimization controllerThe
minimum number of programmable sensor blocks anddynamic optimization controller invokes thene-shot
compared the partitioning algorithm’s performance with anstep wherein the sensor node operating state is directly
exhaustive search algorithm. Meier et al. [23] proposed amletermined by intelligent tunable parameter value sedting
exhaustive search based scheme called NoSE (Neighband hence the methodology is termedoag-shot The one-
Search and link Estimation) for neighbor search, linkshot step also determines an exploration order (ascending
assessment, and energy consumption minimization. or descending) for tunable parameters. This exploration

Even though there exists some work on optimizations inorder can be leveraged by anline optimization algorithm
WSNSs [15][18][19][24][25][26][27], dynamic optimizatits to provide improvements over the one-shot solution by
require further research and more in depth consideration$urther design space exploration and is the focus of our
Specifically, a sensor node’s constrained energy and soraduture work. This exploration order is critical in reducing
resources necessitate lightweight dynamic optimizatiothe number of states explored by the online optimization

Operating
State
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algorithm. The sensor node moves directly to the operating f(S) A
state specified by the one-shot step.dfnamic profiler ¥
records profiling statistics (e.g., battery energy, wisle O
channel condition) given the current operating state and Cf ffffffffffffffffffffff |
environmental stimuli and passes these profiling stasistic | i
to the dynamic optimization controller. CL ,,,,,,,,,,, i ;
The dynamic optimization controller processes the 1 . ! | >
profiling statistics to determine if the current operating 2 L Ut ﬂt St

state meets the application requirements. If the applinati

requirements are not met, the dynamic optimization Figure 2. Throughput objective functiofy (s).

controller reinvokes the one-shot dynamic optimization

process to determine the new operating state. This feedback

process continues to ensure the selection of a good opgratii" application metric, respectively, given that there are

state to better meet application requirements in the poesen application metrics. Each state € S has an associated

of changing environmental stimuli. objective function value and the optimization goal is to

determine a state that gives the maximum (optimal) objectiv

function value f°P!(s) (f°P'(s) indicates the best possible

The state spac8 for our one-shot dynamic optimization adherence to the specified application requirements given

methodology givenV tunable parameters is defined as:  the design spacé). The solution quality for any € S

S=P xPyx-xPy 1 can be determined by normalizing the objective function
value corresponding to statewith respect tof°r(s). The
where P; denotes the state space for tunable parametarormalized objective function value corresponding to #esta
i, Vie{l1,2,...,N} and x denotes the Cartesian product. can vary from 0 to 1 where 1 indicates the optimal solution.

B. State Space

Each tunable parametét; consists ofn values: For our dynamic optimization methodology, we consider
B _ B three application metricsi{ = 3), lifetime, throughput, and
Pi = {pis: Pias Pis -5 Pin} ¢ [P =m @) reliability, whose objective functions are denoted fys),

where | P;| denotes the tunable paramet@rs state space f:(s), andf.(s), respectively. We defing;(s) (Fig. 2) using
cardinality (the number of tunable values ). S is a set  the piecewise linear function:
of n-tuples (each n-tuple represents a sensor node state)

formed by taking one tunable parameter value from each L, st > P
tunable parameter. A single n-tuplec S is given as: Cu, + %, U < st < B
s = (p1y7p2y7”,’pNy); Di,, EPZ', ft(s): CLt+W’ LtS5t<Ut
Vie{l,2,....N}Lye{l,2,....n} (3 Cy, - =2, a < sp < Ly
We point out that some n-tuples i$i may not be feasible 0, St < Q. (5)

(such as invalid combinations of processor voltage and, o e s

denotes the throughput offered by statethe
frequency) and can be treated @&s not caretuples.

constant parameterls, andU, denote thedesiredminimum
C. Optimization Objection Function and maximum throughput, respectively, and the constant
garametermt and 3, denote theacceptableminimum and
maximum throughput, respectively. The constant pararseter
Ctr,, Cu,, andCg, in (5) denote thef,(s) value atL;, Uy,
i and 3;, respectively. A piecewise linear objective function
max f(s) = Zwkfk(s) captures accurately the desirable and acceptable ranges of
k=1 particular application metric. We consider piecewise dine

The sensor node dynamic optimization problem can b
formulated as an unconstrained optimization problem:

st. ses L ) .
objective functions as a typical example, however, our
w20, k=1,2...,m methodology works well for any other objective function
wr <1, k=1,2,....,m characterization (e.g., linear, non-linear) [13].
m The f;(s) and f,.(s) can be defined similar to (5).
Zwk =1, (4) We point out that some tunable parameters may affect
k=1

multiple application metrics (e.g., sending at a lower
where f(s) denotes the objective function characterizingpower might conserve energy but may increase the packet
application metrics and weight factorgy(s) and wy in loss ratio). Our dynamic optimization objective function
(4) denote the objective function and weight factor for thehandles such multi-effect parameters appropriately. éSinc
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our dynamic optimization objective function is a weighted parameters. The algorithm determinﬁ‘éi1 and fz’fin (the
sum of objective functions of individual application me&j ;" application metric objective function values) where the
the overall solution will be an operating state in which theparameter being exploreg is assigned its firgh;, and last
affect of these parameters is balanced out in a way tha; tunable values, respectively, and the remainder of the
gives the maximum overall objective function value. Antunable parameter®;,vj # i are assigned initial values
application metric with a higher weight factor will be given (lines 3-4),5f1/gi stores the difference betwe@fji and
precedence in arbitrating between the tunable parameterp_ . 0f5 > 0 means thatp;, results in an eaual or
that affect multiple application metrics. greéater objective function value as comparedpto for
parameterP; (i.e., the objective function value decreases
as the parameter value decreases). To reduce the number of
In this subsection, we describe the algorithm forstates explored while considering that an online optinozat
our one-shot dynamic optimization methodology. Thealgorithm (e.g., greedy-based algorithm) will typicallps
algorithm determines initial tunable parameter valuersgst  exploring a tunable parameter if a tunable parameter'sevalu
and exploration order (ascending or descending). Thigields a comparatively lower (or equal) objective function

exploration order can be used for the exploration of tunablealue, P;’s exploration order must be descending (lines 6-
parameters if further improvement over the one-shot smiuti 8). The algorithm assigng;, as the initial value ofP;

is desired, and this improvement is the focus of our future&or the £ application metric (line 9). If5fE < 0, the
work. algorithm assigns the exploration order as ascending’for
andp;, as the initial value setting af; (lines 11-13). This
Input: f(s), N, n, m,P

Output: Initial tunable parameter value settings and exploration 5fPi _CalCUIatlon procedure IS repeated _for aazllappllcatlon
order metrics and allN tunable parameters (lines 1-16).

1 for k + 1to0 m do Algorithm 1 determines appropriate initial parameter

D. One-Shot Dynamic Optimization Algorithm

2 for P; + P; to Py do . . e e f .
5 ffl;n « k' metric objective function value when valug settings corresponding to _|nd|V|duaI app!lcatlon
parameter setting is {P; = pi,, P; = Pj,, Vi # j} ; metrics, however, further calculations are required to
4 f7, « K™ metric objective function value when determine intelligent initial parameter value settingiatle
pazameterksettingkis {Pi = pi,, Pj = Pj,Vi#j}; for all the application metrics because the best initial
5 _‘SfPi; i, =iy value settings for different application metrics may be
6 if 0fp, = 0 then : different. Since some parameters are more critical to
7 explore P; in descending order ; . .. .
8 P[] + descending ; meeting application requirements than other parameters
9 chm —pf depending on the application metric weight factors, more
10 else _ _ consideration should be given to the initial parameterealu
12 j’;‘f’?rilzs'geﬁj‘?ﬁnqmg order ; settings corresponding to the application metrics withhig
13 PZQ% ok 9 weight factors. For example, sensing frequency is a clitica
14 end ! parameter for applications with a high responsivenesshteig
12 dend factor and therefore, initial value settings correspogdin
en

to the responsiveness application metric should be given
priority. We devise a technique for intelligent initial vl

settings such that the initial value settings consider the
impact of these settings on the overall objective function

. ) . .. . considering all the application metrics and the applicatio
Algorithm 1 describes our one-shot dynamic optimizationetrics’ associated weight factors. Our initial value isgf

algorithm to determine initial tunable parameter Valuetechnique is based on the calculations performed in
settings and exploration order. The algorithm takes aRlgorithm 1

input the objective functionf(s), the number of tunable
parametersN, the number of values for each tunable
parameter n (we assume for simplicity that tunable
parameters have an equal number of tunable values, however,
other values can be taken), the number of application
metricsm, and P where P represents a vector containing
the tunable parametersP = {P,,Ps,...,Py}. For where P(i, denotes the initial value setting for tunable
each application metrig, the algorithm calculates vectors parameteri, V i € {1,2,..., N} corresponding to th&"
P¥ and P% (where d denotes the exploration direction application metric (as given by Algorithm 1). An intelligien
(ascending or descending)), which store the initial valudnitial value setting vecto®, must consider all application
settings and exploration order, respectively, for the llma metrics’ weight factors with higher importance given to

return P¥, Pk vk e {1,...,m}

Algorithm 1: One-shot dynamic optimization algorithm.

The initial value settings vectoP(’f corresponding to
application metrick is given by:

Py ={pP; . P},....P},},Vke{1,2,....m} (6)

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

283

Table |

higher weight factors, i.e.,: SUMMARY OF APPLICATION METRICS ESTIMATION MODEL NOTATIONS
Py = {Py,....B, B3 S, |
Notation | Description
3 3 m m
Py ... ,POL3 R AR ’Pﬂzm} @) = Tiotime 1 days
wherel;, denotes the number of initial value settings taken By Battery energy in Joules
from P}V k € {1,2,...,m} such that};" I, = N. E. Energy consumption per hour
Our technique allows taking more initial value settings Ve Battery voltage in volts
corresponding to application metrics with higher weight G Battery capacity in mA-h

factors (since Algorithm 1 gives appropriate initial value Eproc Emcess"_‘g energy per hourh
settings for each application metric separately), ig.> Eecom ommunication energy per hour

Esen Sensing enert er hour
lk+1 & W > warl,V k € {1,2,...,m— 1} In - g. 9y p - -
.. . 1 Eroc Processing energy per hour in active mode|
(7), {1 initial value settings are taken from vectdt;, yo 5 . S r
2 d so on tol from vector proc rocessing energy per nour in idle mode
thsln [> from VeCtl?r By, E}en P 1 Etz . | Transceiver transmission energy per hour
Fg" such that {Pol’ Tt POzk} N {Pol L POzkﬂ b= Elr .s | Transceiver receive energy per hour
0,V k € {2,3,...,m}. In other words, we select those Ei_.. . | Transceiver idle energy per hour
initial value settings corresponding to the applicatiortnms Niz, Number of packets transmitted per hour
with lower weight factors that are not already selected thase EPFT Transmission energy per packet
on the application metrics with higher weight factors (i.e. Vi Transceiver voltage
P, comprises of disjoint or non-overlapping initial value Iy Transceiver current
settings). ti’ft Time to transmit one packet
In the situation where a weight factef is much greater 17 Transcelver sleep cument
than all of the other weight factors, an intelligent initalue tiy | Transceiver idle time per hour
setting P, would correspond to the initial value settings 158 ?aCKEt S_'Ze:j”tbytei e .
based on the application metric with weight factar, i.e.,: te ransceiver data rate (in bits/second)
ER. Sensing measurement energy
D _ pl _ 1 1 1 7 ——
Py=Py = {BR), Py, ...P,} Ei., Sensing idle energy .
o wS>w,. Vae {2 3 m} (8) Ny Number of sensors on the sensing board
! o V4 A Ns Number of sensing measurements per secpnd
E. Computational Complexity Vs Sensing board voltage
. . . I Sensing measurement current
The computational complexity of our one-shot dynamic - . :
timization methodology i©® (Nm), which is comprised of L Sensing measurement time
op . . L 9y ! . p_ . Is Sensing sleep current
the |_nteI_I|gent |n|_t|al parameter vglue settlpgs for mc_ilwal 7 Sensing idle tme
application metrics and.e.x.ploratlon ord_erlng (Algorlt.hm 1 R Aggregate throughput
(’)(Nm),_ anq |ntell|g_ent initial value settings con3|d§r|ng all Roon Sensing throughput
the application metric® (N +m), based on the Algorithm 1 Rproc | Processing throughput
calculations (Section 11I-D). This complexity reveals tloar Reom Communication throughput
one-shot methodology is lightweight and is thus feasibte fo Fs Sensing frequency
sensor nodes with tight resource constraints. RE., Sensing resolution bits
Fp Processor frequency
IV. APPLICATION METRICSESTIMATION MODEL D Number of instructions to process one bit
In this section, we propose an application metric o Time to transmit one packet
estimation model, which is leveraged by our one- P77 | Effective packet size

shot dynamic optimization methodology. This estimation
model estimates high-level application metrics (lifetime
throughput, reliability) from a sensor node’s parametersd

Er?ég's’cgir\?ecre\?x; v:lt:{c(;:e) aggr fgfg\ﬁfn(\%’e Sdeenss(’:'::gefr;?;incﬁfattery energy depletion. A sensor node typically contains
ge, etc.). Y AA alkaline batteries whose energy depletes graduallyas th

mode_ls key ele_ments. Tal_ole .I presen_ts a summary of ke3§ensor node consumes energy during operation. The critical
notations used in our application metrics estimation mOdelfactors in determining sensor node lifetime are battery

A. Lifetime Estimation energy and energy consumption during operation.
The sensor node lifetime in dayk, can be estimated as:

ue to sensor node failure, which is normally caused by

The lifetime of a sensor node is defined as the time
duration between the deployment time and the time before E

which the sensor node fails to perform the assigned task Ls = E. x 24 ©
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where E;, denotes the sensor node’s battery energy (Joulesyhere P, denotes the packet size in bytes aRd. denotes
and E. denotes the sensor node’s energy consumption peahe transceiver data rate (in bits/second).
hour. The battery energy in mWA, can be given by: E}r . can be calculated using a similar procedure as

trans
, El . E} can be calculated as:
E, =V,-C, (mWh) (10)

trans
E} s = Vi - I} -1 18
whereV;, denotes the battery voltage (Volts) afigl denotes trans = TL7 0t e (18)
the battery capacity (typically mA-h). Since 1J = 1 W&,  where V; denotes the transceiver voltagg, denotes the
can be calculated as: transceiver sleep current, at{g denotes the transceiver idle
L time per hour.
Ey = Ej, x 3600/1000 () (11) The energy consumed by the sensors during sensing the
We model E. as the sum of the processing, observed phenomenon accounts for seesing energyrhe

communication, and sensing energies, i.e.,: sensing energy mainly depends upon the sensing (sampling)
frequency and the number of sensors attached to the sensor
Ee = Eproc + Ecom + Esen (J) (12)  poard (e.g., the MTS400 sensor board [29] has Sensirion

SHT1x temperature and humidity sensors [30]). The sensors
gonsume energy while taking sensing measurements and
Switch to an idle mode for energy conservation while not
sensing.F., is given by:

whereEp ¢, Ecom, and Ese,, denote the processing energy
per hour, communication energy per hour, and sensin
energy per hour, respectively.

The processing energgccounts for the processor energy
consumed in processing the sensed data. We assume that the E. —E™ 4 g

, . . sen — sen sen

sensor node’s processor operates in two modes, active mode
and idle mode [28]. We point out that although we considewhere £ denotes the sensing measurement energy per

sen

active and idle modes only, a processor operating in othenour andE?_,, denotes the sensing idle energy per hour.

sleep modes (e.g., power-down, power-save, standby, etch.?, can be calculated as:
can also be incorporated in our modél,,.. is given by:

(13)

(19)

E™ =N, -V, I™ -7 x 3600 (20)

. sen

E,oc=FE +FE'

pres T moe T proe where N, denotes the number of sensing measurements per
where E7,. and E,, . denote the processor's energy second,V, denotes the sensing board voltag& denotes

consumption per hour in active mode and idle modethe sensing measurement current, #fdienotes the sensing

respectively. measurement timek’, . is given by:
The sensor nodes communicate with each other (e.g., } }
« . . . 3 1
send packets containing the sensed data information) Egen = Vs - Is - 1, x 3600 (21)

to accor_npll.sh the assigned appllcatlon t?Sk and th'?/vherels denotes the sensing sleep current ahdienotes
communication process consumesmmunication energy sensing idle time

The communication energy is the sum of the transmission,
receive, and idle energies for a sensor node’s transceiveg, Throughput Estimation

ie..: . Lo
In the context of dynamic optimization#iroughputcan

be interpreted as the sensor node’s sensing, processing,
where E{,. ., Ert. ., andE;. . . denote the transceiver's and transmission rate to observe a phenomenon. Three
transmission energy per hour, receive energy per hour, angrocesses contribute to the sensor node’s throughput
idle energy per hour, respectiveliz!® . . is given by: (i.e., sensing, processing, and communication). The
. okt throughput interpretation may vary depending upon the
= Nkt i (15 wsN application design as sensing, processing, and
whereN;it denotes the number of packets transmitted pelcommunication throughputs can have different relative

hour andEfft denotes the transmission energy per packet'mport"’mce for _dlfferent appllcqtlons. The aggregate
EPF s given as: throughput R (typically measured in bits/second) can be
tx .

considered as a weighted sum of constituent throughputs:

Ecom = Effans + E;’IZ‘EGHS + EZ:TG.TLS (14)

Etm

trans

EPRt v . PRt 16
te t oA iy (16) R = wsRsen+wpRproc+WeReom @ Wstwptwe. =1 (22)

where V; denotes the transceiver voltagg, denotes the
transceiver current, andf™’ denotes the time to transmi
one packettfft is given by:

t where Rgen, Rproc, and R, denote the sensing,
processing, and communication throughputs, respectively
ws, wp, andw, denote the weight factors for the sensing,

tfft = P X 8/ Ry, (17)  processing, and communication throughputs, respectively

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

285
. . . Table Il
Th_e sensing throughput is th_e tthUghpUt due to Sensing crosssowIRIS MOTE PLATFORM HARDWARE SPECIFICATIONS
activity and measures the sensing bits sampled per second.
Rien is given by: | Notation | Description Value
b Vi Battery voltage 36V
Rgen = Fy - RY,, (23) b y oY
Ch Battery capacity 2000 mA-h
. N, Processing instructions per bjt 5
where F, and R%,, denote the sensing frequency and U -oSing MSTHETonS P
. . . . R}, Sensing resolution bits 24
sensing resolution bits, respectively. .
. ) Vi Transceiver voltage 3V
The processing throughput is the throughput due to Ric Transceiver data rate 250 kbps
the processor’s processing of sensed measurements and Ire Transceiver receive current 155 mA
measures the bits processed per secéig.. is given by: I3 Transceiver sleep current 20 nA
Vs Sensing board voltage 3V
Ryroc = Fp/N® (24) m Sensing measurement current 550 uA
tm Sensing measurement time 55 ms
where F, and N® denote the processor frequency and I Sensing sleep current 0.3 uA
the number of processor instructions to process one bit,
respectively.
The communication throughpu® results from the .
9P .com A. Experimental Setup
transfer of data packets over the wireless channel and is
given by: We base our experimental setup on the Crossbow IRIS
Reom = P x 8/ tfft (25) mote platform [33], which has a battery capacity of 2000

mA-h with two AA alkaline batteries. The IRIS mote
Wheretfft denotes the time to transmit one packet #jé’ platform integrates an Atmel ATmegal281 microcontroller

denotes the effective packet size excluding the packeteread[28]; an Atmel AT-86RF230 low power 2.4 GHz transceiver
overhead. [31], an MTS400 sensor board [29] with Sensirion SHT1x

temperature and humidity sensors [30]. Table Il shows the
sensor node hardware specific values, corresponding to the
IRIS mote platform, which are used by the application
The reliability metric measures the number of packetgnetrics estimation model [28][30][31][33].
transferred reliably (i.e., error free packet transmispio  In our experimental setup, we consider a WSN topology
over the wireless channel. Accurate reliability estimatio where each sensor node has two neighbors, although our
is challenging because of dynamic changes in the involvetbpology can be extended for any number of neighboring
factors, such as network topology, number of neighboringgensor nodes. The number of neighboring sensor nodes in
sensor nodes, wireless channel fading, sensor netwofictraf a topology determines the number of packets received by
etc. The two main factors that affect reliability are the a sensor node, which affects the expended communication
transceiver transmission pow&, and receiver sensitivity. energy. This expended communication energy affects the
For example, the AT86RF230 transceiver [31] has a receivdifetime of the sensor nodes in the WSN. Our work
sensitivity of -101 dBm with a corresponding packet errorassumes that the medium access control (MAC) layer
rate (PER)< 1% for an additive white Gaussian noise handles collisions and packet loss. The packet loss due to
(AWGN) channel with a physical service data unit (PSDU)any reason (e.g., low transmission power, collision, etc.)
equal to 20 bytes. Reliability can be estimated usings taken into account at a high level by our reliability
Friis free space transmission equation [32] for differentapplication metric. The accurate determination of the pack
P, values, distance between transmitting and receivindoss requires gathering of profiling statistics, which ig th
sensor nodes, and fading models (e.g., shadowing fadinigcus of our future work.
model). Reliability values can be assigned corresponding We analyze six tunable parameters: processor voltage
to P,, values such that the highe?,, values give higher 1V, processor frequencyF,, sensing frequencyFs,
reliability, however, more accurate reliability estinmati packet size P;, packet transmission intervaP;, and
requires profiling statistics for the number of packetstransceiver transmission powdt,.. In order to evaluate

C. Reliability Estimation

transmitted and the number of packets received. our methodology across small and large design spaces, we
consider two design space cardinalities (number of states

tunable parameters fdiS| = 729 areV, = {2.7, 3.3, 4
In this section, we describe our experimental setup andvolts), F,, = {4, 6, 8 (MHz) [28], F; = {1, 2, 3} (samples
results for our one-shot dynamic optimization methodologyper second) [30]P; = {41, 56, 64 (bytes),P;; = {60, 300,
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600} (seconds), and®, = {-17, -3, § (dBm) [31]. The
tunable parameters fdiS| = 31,104 areV,, = {1.8, 2.7,
3.3, 4, 4.5,5 (volts), F, = {2, 4, 6, 8, 12, 1§ (MHz) [28],
F, ={0.2,0.5, 1, 2, 3, 4 (samples per second) [30P;
{32, 41, 56, 64, 100, 137(bytes),P,; = {10, 30, 60, 300,

11, http://www.iariajournals.org/networks_and_services/

286

Table I
DESIRABLE MINIMUM L, DESIRABLE MAXIMUM U, ACCEPTABLE
MINIMUM &, AND ACCEPTABLE MAXIMUM (3 OBJECTIVE FUNCTION
PARAMETER VALUES FOR A SECURITYDEFENSE(DEFENSE) SYSTEM,
HEALTH CARE, AND AN AMBIENT CONDITIONS MONITORING
APPLICATION. ONE LIFETIME UNIT = 5 DAYS, ONE THROUGHPUT UNIT
= 20KBPS, ONE RELIABILITY UNIT = 0.05.

600, 1200 (seconds), and®,, = {-17, -3, 1, 3 (dBm) [31].
All state space tuples are feasible f¢f| = 729, whereas

A - ! | Notation Defense | Health Care | Ambient Monitoring
|S| = 31,104 contains 7,779 |nfea_S|bIe state space tuples T, 8 units 12 unis 6 units
(e.g., allV,, and F), pairs are not feasible). Our consideration 7 30 Units 32 Units 20 Units
of two different design space cardinalitigs| = 729 and o 1 units 2 units 3 units
|S| = 31,104) is important because this consideration helps 8 36 units 20 units 60 units
in investigating the impact of the design space cardinality Lt 20 units 19 units 15 unit
on dynamic optimization methodologies. Ut 34 units 36 units 29 units

We assign application specific values for the desirable at 0.5 units 0.4 units 0.05 units
minimum L, desirable maximun®/, acceptable minimum Bt 45 units 47 units 35 units
«, and acceptable maximuphobjective function parameter Ly 14 units 12 units 11 units
values for the application metrics (Section 11I-C). We spec Ur 19.8 units | 17 units 16 units
the objective function parameters as a multiple of base | °r 10 units 8 units 6 units
units for lifetime, throughput, and reliability, however Br 20 units 20 units 20 units
application metrics estimation model and one-shot dynamic
optimization methodology works equally well for any set Table IV

WEIGHT FACTORS FOR DIFFERENT APPLICATION DOMAINS FOR

of application requirements, weight factors, and assumpti
|S| = 729 AND |S| = 31, 104.

of base units. We assume that one lifetime unit is 5 days,
one throughput unit is 20 kbps, and one reliability unit

is 0.05 (reliability measures error-free packet transioiss - |S| =729 & |S|= 31,104
on a scale from 0 to 1). Table Ill depicts the application Application Domain wi wt wr
requirements for the application domains in terms of Security/Defense System 0.25 0.35 0.4
objective function parameter values and Table IV depiats th Health Care 0.25 0.35 0.4
associated weight factors used in our experiments. Weight Ambient Conditions Monitoring) 0.4 0.5 0.1

factors for a given application domain depend upon specific
application requirements. For example, a security/defens
application that requires prolonged operation requires
higher weight factor for the lifetime application metric
as compared to the other application metrics, whereas
different security/defense application that requirehgdhg
high resolution images requires a higher weight factor for L . .
> . as the initial parameter settings):
the throughput application metric as compared to the other
application metrics. o 7; assigns the first parameter value for each tunable
Since the objective function values corresponding to ~ Parameter,ieZ; =p;, Vi€ {1,2,...,N}.
different states depends upon the estimation of high-level ¢ Zz assigns the last parameter value for each tunable
metrics, we present an example throughput calculation to ~ Pparameter, i.eZ = p;,, Vi€ {1,2,...,N}.
explain this estimation process using our application icetr ¢ Zs assigns the middle parameter value for each tunable
estimation model (Section IV) and the IRIS mote platform ~ Parameter, i.eZs = [p;, /2|, Vi€ {1,2,..., N}.
hardware specifications (Table I1). We consider a stgte- » 1, assigns a random value for each tunable parameter,
(Voys Fpys Fsys Poys Priyy Prw,) = (2.7,4,1,41,60, —17) i.e., Iy = pi, :q=rand() %n, Vie {1,2,...,N}
where rand() denotes a function to generate a

for our example. (17) gives’™" = 41 x 8/(250 x 103) ,
1.312 ms. (23), (24), and (25) givéR.., = 1 x 24 = 24 random/pseduo-random integer and % denotes the
modulus operator.

bps, Rproc = 4 x 105/5 = 800 kbps, andR.., = 21 x
8/(1.312 x 1073) = 128.049 kbps, respectively R¢/f =
41 — 21 = 20 where we assumé,;, = 21 bytes). (22) gives
R = (0.4)(24) 4 (0.4)(800 x 10%) 4+ (0.2)(128.049 x 10%) =

olution quality, we compare the solution from the one-shot
initial parameter settingd’, with the solutions obtained
flom the following four potential initial parameter value
settings (although any feasible n-tuplec S can be taken

Although we analyzed our methodology for the IRIS
motes platform, three application domains, two design
spaces, and four potential initial parameter value sedfing
345.62 kbps where we assume,, w,,, andw. equal to 0.4, our one-shot dynamic optimization methodology and
0.4, and 0.2, respectively. application metrics estimation model are equally applieab

In order to evaluate our one-shot dynamic optimizationto any platform, application domain, and design space.
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B. Results —
L| Il One-Shot| B . . . i
-GDasc
[IsA

We implemented our one-shot dynamic optimiza
methodology in C++. To evaluate the effectivenes:s
our one-shot solution, we compare the one-shot solut
results with four alternative initial parameter arrangats
(Section V-A). We normalize the objective function val
corresponding to the operating states attained by
dynamic optimization methodology with respect to
optimal solution obtained using an exhaustive sei
We compare the relative complexity of our one-¢
dynamic optimization methodology with two other dynaic
optimization methodologies, which leverage greedy- andkigure 3. Objective function value normalized to the optirsalution
SA-based algorithms for design space exploration [34]for a varying number of states explored for the one-shotedyeand SA
Although for brevity we present results for only a subseta"go”tgrl‘zsl;,0‘r af;;"””ty’defe”se system whege= 0.25, w; = 0.35,
of the initial parameter value settings, application domsai e B
and design spaces, we observed that results for extensive

application domains, design spaces, and initial parametefyained objective function value) with two other dynamic
settings revealed similar trends. optimization methodologies, which leverage an SA-based

1) Percentage Improvements over other Initial Parametergng a greedy-based (denoted by &Dwhere asc stands
Settings: Table V depicts the percentage improvementstor ascending order of parameter exploration) exploratibn
attained by the one-shot parameter settifgsover other  the design space. We assign initial parameter value sstting
parameter settings for different application domains andor the greedy- and SA-based methodologie€asndZ,,
weight factors (Table 1V). We point out that different weigh respectively. Note that, for brevity, we present results fo
factors could result in different percentage improvementsz, andZz,, however, other initial parameter settings such as
however, we observed similar trends for other weight factor 7, andZ; would yield similar trends when combined with
Table V shows that the one-shot initial parameter Settinggreedy-based and SA-based design space exp|0rati0n_
can result in as high as a 155% improvement as compared Fig. 3 shows the objective function value normalized
to Other |n|t|a| Value Settings. We Observe that Soqu the Opt|ma| solution versus the number of states
arbitrary settings may give a comparable or even a bettegyplored for the one-shot, G and SA algorithms for
solution for a particular application domain, application 3 security/defense system fo§| = 729. The one-shot
metric weight factors, and design space cardinality, bukojution is within 1.8% of the optimal solution. The figure
that arbitrary setting would not scale to other applicationshows that GEC and SA explore 11 states (1.51% of the
domains, application metric weight factors, and desigrespa design space) and 10 states (1.37% of the design space),
cardinalities. For examplé; obtains a 12% better quality respectively, to attain an equivalent or better qualityioh
solution thanP, for the ambient conditions monitoring than the one-shot solution. Although, greedy- and SA-based
application for|S| = 31, 104, but yields a 10% lower quality methodologies explore few states to reach a comparable
solution for the security/defense and health care appicat sglution as that of our one-shot methodology, the one-
for [S| = 31,104, and a 57%, 31%, and 20% lower quality shot methodology is suitable when design space exploration
solution thanP, for the security/defense, health care, andijs not an option due to an extremely large design space
ambient conditions monitoring applications, respecyivielr  and/or extremely stringent computational, memory, and
|S| = 729. The percentage improvement attained By  timing constraints. These results indicate that othertratyi
over all application domains and design spaces is 33% oOfitial value settings (e.g.Z:, Zs, etc.) do not provide a
average. Our one-shot methodology is the first approach (tgood quality operating state and necessitate design space
the best of our knowledge) to leverage intelligent initial exploration by online algorithms (e.g., greedy) to provide
tunable parameter value settings for sensor nodes to @ovidjood quality operating state. We point out that if the greedy
a good quality operating state, as arbitrary initial par&me and SA-based methodologies leverage our one-shot initial
value settings typically result in a poor operating statetunable parameter value settings further improvements
Results reveal that on averad® gives a solution within  over the one-shot solution can produce a very good quality
8% of the optimal solution. (optimal or near-optimal) operating state [34].

2) Comparison with Greedy- and SA-based Dynamic Fig. 4 shows the objective function value normalized to
Optimization Methodologies: In order to investigate the optimal solution versus the number of states explored fo
the effectiveness of our one-shot methodology, wea security/defense system ftf| = 31,104. The one-shot
compare the one-shot solution’s quality (indicated by thesolution is within 8.6% of the optimal solution. The figure

5 6 7 8 9 1 50 100 400
Number of States Explored
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Table V
PERCENTAGE IMPROVEMENTS ATTAINED BYPg OVER OTHER INITIAL PARAMETER SETTINGS FORS| = 729 AND |S| = 31, 104.

- |S| =729 |S| = 31,104
Application Domain T, | I | Tz | T T, | I | Ts | Ta
Security/Defense System 155% | 10% | 57% | 29% | 148% | 0.3% | 10% | 92%
Health Care 78% | 7% | 31% | 11% | 73% | 0.3% | 10% | 45%
Ambient Conditions Monitoring| 52% 6% | 20% | 7% 15% 7% | -12% | 18%

T T

|| One-Shot| i || IMMOne-Shot| 4

| (EMcp**° ] | | mmcp™ i
CsA [CJsA

rmalized Objective Function
o o o o
> N o o~

Normalized Objective Function

1 2 3 4

11 50 100 400

5 6 7 8 9
1 2 3 4 5 6 7 8 9
Number of States Explored Number of States Explored

Figure 4. Objective function value normalized to the optirsalution Figure 5. Objective function value normalized to the optirmalution

for a varying number of states explored for the one-shotedyeand SA f .

. - or a varying number of states explored for the one-shotedyeand SA
algorithms for a security/defense system whefe= 0.25, w¢ = 0.35, algorithmys ?or a health care applir::ation wheog = 0.25, wt?r: 0.35,
wr = 0.4, |S| = 31,104. wy = 0.4, |S| = 729.

shows that GEP® converges to a lower quality solution tt
the one-shot solution after exploring 9 states (0.029¢
the design space) and SA explores 8 states (0.026% !
design space) to yield a better quality solution than the
shot solution. These results reveal that the greedy exjo
of parameters may not necessarily attain a better qt
solution than our one-shot solution.

Fig. 5 shows the objective function value normalize:
the optimal solution versus the number of states exp
for a health care application fofS| = 729. The one
shot solution is within 2.1% of the optimal solution. The
figure shows that Gf°converges to an almost equal quality Figure 6. Objective function value normalized to the optirsalution
solution as Compared to the one-shot solution after exmpri for a_varying number of states ex_plor'ed for the one-shotedyeand SA

. gorithms for a health care application whevge = 0.25, w; = 0.35,
11 states (1.5% of the design space) and SA explores lii — 0.4, |S| = 31, 104.
states (1.4% of the design space) to yield an almost equal
quality solution as compared to the one-shot solution. &hes
results indicate that further exploration of the desigreega  space) to yield a better quality solution than the one-shot
required to find an equivalent quality solution as comparedolution. These results confirm that the greedy exploration
to one-shot if the intelligent initial value settings leaged  of the parameters may not necessarily attain a better gualit
by one-shot are not used. solution than our one-shot solution.

Fig. 6 shows the objective function value normalized to Fig. 7 shows the objective function value normalized to
the optimal solution versus the number of states explorethe optimal solution versus the number of states explored
for a health care application f¢§| = 31,104. The one-shot for an ambient conditions monitoring application fi¢f| =
solution is within 1.6% of the optimal solution. The figure 729. The one-shot solution is within 7.7% of the optimal
shows that GB* converges to a lower quality solution than solution. The figure shows that G and SA converge to
the one-shot solution after exploring 9 states (0.029% ef than equivalent or better quality solution than the one-shot
design space) and SA explores 6 states (0.019% of the desigpolution after exploring 4 states (0.549% of the designapac

Normalized Objective Function

5 6 7 8 9
Number of States Explored
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e lightweight, we compared the data memory requirements
e 1 and execution time of our one-shot dynamic optimization
=== methodology with the greedy- and SA-based dynamic
] optimization methodologies.
i The data memory analysis revealed that our one-shot
methodology requires only 150, 188, 248, and 416 bytes for
, (number of tunable parametef$, number of application
. metrics m) equal to (3, 2), (3, 3), (6, 3), and (6, 6),
respectively. The greedy-based methodology requires 458,
R IR 1B I R R IR 528, 574, 870, and 886 bytes, whereas the SA-based
Number of States Explored methodology requires 514, 582, 624, 920, and 936 bytes of
storage for design space cardinalities of 8, 81, 729, 31,104
Figure 7.  Objective function value normalized to the optirsalution and 46,656, respectively. The data memory analysis shows
for a varying number of states explored for the one-shotedyeand SA .
algorithms for an ambient conditions monitoring applieatwherew; = that the SA-based methOdomgy has comparatlvely |arger
0.4, wy = 0.5, wyr = 0.1, | S| = 729. memory requirements than the greedy-based methodology.
Our analysis reveals that the data memory requirements
for our one-shot methodology increases linearly as the

ormalized Objective Function
© o 0o o o o

1 [Rgone-stor 1 number of tunable parameters and the number of application
o |Csa ~ f ~ ' i metrics increases. The data memory requirements for the

=)
T
I

greedy- and SA-based methodologies increase linearly as

the number of tunable parameters and tunable values (and

] thus the design space) increases. The data memory analysis

1 verifies that although the one-shot, greedy- and SA-based

] methodologies have low data memory requirements (on the

order of hundreds of bytes), the one-shot solution requires

204% and 458% less memory on average as compared to

the greedy- and SA-based methodologies, respectively.

We measured the execution time for our one-shot and the
Figure 8. Objective function value normalized to the optirsalution  greedy- and SA-based methodologies averaged over 10,000
for a varying number of states explored for the one-shotedyeand SA  yng (1o smooth any discrepancies in execution time due
algorithms for an ambient conditions monitoring applieatwherew; = .

0.4, we = 0.5, wy = 0.1, | S| = 31, 104. to operating system overheads) on an Intel Xeon CPU
running at 2.66 GHz [35] using the Linux/Uniki ne
command [36]. We scaled the execution time results to

and 10 states (1.37% of the design space), respectivelthe Atmel ATmegal281 microcontroller [28] running at 8

These results again confirm that the greedy- and SA-basddHz. Although microcontrollers have different instruatio

explorations can provide improved results over the one-shaset architectures and scaling does not provide 100% agcurac

solution, but require additional state exploration. for the microcontroller runtime, scaling enables relative

Fig. 8 shows the objective function value normalized tocomparisons and provides reasonable runtime estimates.
the optimal solution versus the number of states exploreResults showed that one-shot required 1.66 ms both for

o N

>

Normalized Objective Function
©

© o o o o o o o o
&

N

o i

3 4 11 50 100 400

5 6 7 8 9
Number of States Explored

for an ambient conditions monitoring application i =  |[S| = 729 and |S| = 31,104. GD**° explored 10 states
31,104. The one-shot solution is within 24.7% of the and required 0.887 ms and 1.33 ms on average to converge
optimal solution. The figure shows that both &band SA  to the solution for|S| = 729 and |S| = 31,104,

converge to an equivalent or better quality solution tharrespectively. SA took 2.76 ms and 2.88 ms to explore
the one-shot solution after exploring 3 states (0.01% othe first 10 states (to provide a fair comparison with
the design space). These results indicate that both greed®D®*9 for |S| = 729 and |S| = 31,104, respectively.
and SA-based methods can give good quality solutionhe execution time analysis revealed that our dynamic
after exploring a very small percentage of the design spaceptimization methodologies required execution times an th
and both greedy- and SA-based methods enable lightweiglorder of milliseconds, and the one-shot solution required
dynamic optimizations [34]. The results also indicate thatl8% less execution time on average as compared to
the one-shot solution provides a good quality solution whergreedy- and SA-based methodologies. The one-shot solution
further design space exploration is not possible due taequired 66% and 73% less execution time for the SA-
resource constraints. based methodology wheft| = 729 and |S| = 31,104.

3) Computational ComplexityTo verify that our one- These results indicate that the design space cardinality
shot dynamic optimization methodology (Section IIl) is affects the execution time linearly for greedy- and SA-base
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