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Abstract—Intelligent sensor devices together with data stream
management systems allow the automatic recording and process-
ing of huge data volumes to guide any kind of process control
or business decision. However, a crucial problem is posed by
data quality deficiencies due to imprecise sensors, environmental
influences, transfer failures, etc. If not handled carefully, they
misguide decisions and lead to inappropriate reactions. In this
paper, we present the quality-driven optimization of stream
processing that improves the resulting quality of data and service.
After an introduction to data quality management in data
streams, we define the targeted optimization problem comprising
the optimization objectives and parameters that configure the
required stream processing operators. Based on the generic op-
timization framework, we discuss and evaluate the optimization
execution in batch and continuous mode. Further, we shed light
on the crucial definition of the stream partition length used for
the optimization that significantly influences the optimization
performance. Finally, we provide a detailed validation of the
proposed optimization strategies as well as the scalability of the
overall approach not only at artificial data streams, but also using
the real-world example of contact lens production monitoring.
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Optimization; Heuristic Optimization

I. INTRODUCTION

Data stream management systems have been developed to
process continuous data flows of high data rate and volume.
For example, turnover values or sales volume may be streamed
from distributed affiliations to the central controlling depart-
ment to derive management strategies. Further, data streams
are recorded in sensors networks to control manufacturing
processes or maintenance activities. In this paper we illustrate
the quality control in contact lens manufacturing, where lens
thickness and axial difference are measured to derive a quality
indicator for the production line.

In most applications data stream systems encounter re-
stricted resources, such as limited memory capacity, data
transfer capability and computational power. To meet these
constraints, data stream volume has to be reduced by pro-
cessing the streamed information. Data reduction always goes
along with a loss of information. Data processing results
such as aggregations can only be approximated, so that an-
swers are incorrect or incomplete with respect to the true
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outcome. Moreover, most data stream sources suffer from
limited data quality in multiple dimensions from the beginning.
The correctness is decreased for example by restricted sensor
precisions, by typos in text elements, or by RFID readers
failing to scan an item properly. The completeness of a data
stream is reduced whenever a true world event is missed due
to sensor or system malfunction. Information and decisions
derived from such falsified sensor data are likely to be faulty,
too. Therefore, data quality problems have to be handled
carefully.

Data quality information, that describe data quality de-
ficiencies due to data sources and/or data processing, can
be recorded and transfered in the data stream, e.g., by the
quality propagation model (QPM) presented in [1]. It provides
a comprehensive framework for data quality management in
streaming environments. Only then, data quality information
are provided to the user to enable the comprehensive evalu-
ation of imprecise and/or incomplete data stream processing
results. Faulty information can be detected to prevent from
incorrect decisions. Furthermore, quality information may
identify processed data stream results as too insecure to derive
any suitable decision. In that case, the data quality has to be
improved to re-enable the confident decision-making.

This paper details and extends the quality-driven opti-
mization of sensor data stream processing to improve the
resulting data quality, while complying to the given system
constraints, that we first published in [2]. Based on data
quality information provided in the stream, the data stream
operators are configured to maximize the quality outcome
to meet user-defined quality requirements. The online tun-
ing is performed continuously in parallel to the traditional
data stream processing. The optimal operator configuration is
adapted to varying data stream characteristics and changing
user-defined requirements on resulting data quality.

For the field of data quality improvement and optimization
our contributions are as follows.

o We present the definition of streaming data quality and
discuss the conflicts between the embraced data quality
dimensions. Further, we identify candidates for the data
quality improvement out of a comprehensive set of data
stream operators. We discuss derived parameters and their
impact on the data quality-driven improvement of the
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stream processing in Section II.

o In Section III, we propose the optimization framework
that adapts the stream processing for data quality im-
provement. We discuss the optimization execution in
batch and continuous mode that supports the determi-
nation of the applied stream partition length. Further,
we present the data quality improvement task as multi-
objective optimization problem and range it in the tradi-
tional operations research classification.

o« We discuss the specific components of the heuristic
optimization algorithm Quality-driven evolution strategy
(QES) to solve the data quality optimization problem in
Section IV.

« We present a comprehensive evaluation of the presented
algorithm in Section V. We analyze the practicability
of the proposed optimization framework, validate the
influences of different optimization strategies, compare
the performance of QES to further optimization heuristics
and evaluate the capability at the example of the contact
lens production control.

We complete this paper with a discussion of related work
in the field of data stream quality, quality improvement and
optimization in Section VI and concluding remarks in Sec-
tion VIL

II. PROBLEM ANALYSIS

In this section, we first define the data quality in data
streams to derive objectives for the data-quality driven op-
timization, which are then discussed in detail. Afterwards, the
candidates for data quality improvement are described. First,
the sampling rate configuration is illustrated, followed by the
interpolation configuration. Then, the configuration impact of
group size for aggregation, frequency analysis and filtering as
well as of data quality window size is depicted.

A. Data Quality in Data Streams

A data stream comprises a continuous stream of m tuples
7, consisting of n attribute values A;(1 < ¢ < n) and the
represented time interval [tp,t.]. To allow for the efficient
management of data quality in data streams, we adopt the data
quality window approach introduced in [1]. DQ information
is not forwarded for each single data item, but aggregated
over w; data items independent for each stream attribute A;.
The stream is partitioned into x; consecutive, non-overlapping
jumping data quality windows w(k) (1 < k < k;), each of
which is identified by its starting point twy, its end point
twe, the window size w; and the corresponding attribute
A; as illustrated in Figure 1. Beyond the data stream items
x(j)(twp < j < tw,), the window contains |@Q| data quality
information ¢,,, each obtained by averaging the tuple-wise DQ
information over the window.

Furthermore, the executed data processing steps have to be
tracked in the quality propagation model (QPM) to not lose
data quality information. When data streams are aggregated or
joined, their data quality information have to be summarized,
too. Only then, the data quality path through the processing can
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be monitored and data quality deficiencies introduced during
data stream processing are captured.

Timestamp ...| 210 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |...
CenterThickness| ... |0.412( 0.403|0.409| 0.398| 0.392|0.415| 0.394| 0.410| 0.387/0.403| ...

Accuracy 0.004 0.0039] ...

Confidence . 0.00053587 0,00081967] ...
Completeness | ... 0.9 0.8| ...
AmountOfData 1] 1]

t,=210 t=214 w=5 4,=215 (=219 w=5
Fig. 1. Data stream sample

The probably best-known/most referenced, comprehensive
and balanced definition of data quality was presented 1996 by
Wang et al. [3]. They distinguish four data quality categories of
15 data quality dimensions incorporating data quality aspects
of raw data, data sets as well as user requirements. We
define data quality in data streams based on their findings on
intrinsic (accuracy, believability, objectivity, reputation) and
contextual data quality dimensions (value-added, relevancy,
timeliness, completeness, amount of data). Due to high data
stream volume and rate, a manual evaluation of data quality is
not possible, so that subjective dimensions of representation
and accessibility cannot be measured to describe data streams.

While the accuracy describes the systematic error of data
stream values resulting from deficiencies in data sources,
the believability in context of data streams can be equated
with the confidence describing random errors produced by
unforeseeable influences (e.g., environmental affects in sensor
networks). Objectivity and reputation of automatic data stream
sources can be assumed as guaranteed and do not have
to be monitored. As value-added and relevancy are aspects
subjective to the respective user, the contextual dimensions
reduce to timeliness or up-to-dateness, completeness defining
the rate of originally measured stream items compared to
interpolated ones and the amount of data d of raw data items
represented by an aggregation result.

Definition: The data quality Q) of a data stream D is defined
by the set of five data quality dimensions: accuracy a, confi-
dence €, completeness ¢, amount of data d and timeliness u.

As stated in the introduction, the data quality-driven opti-
mization configures the data stream processing to maximize
the above defined stream data quality while guaranteeing the
compliance to the restricted system resources. As metric for
the resource load, we use the data stream volume V. The
less volume is needed, the better the constraints are met.
Hence, the minimization of the data volume is admitted to
the optimization goals. Finally, from the user’s point of view a
high data volume also has positive effects. The more details are
given in the data stream, the better decisions can be derived.
To measure this data granularity, we select the timeframe T
represented by one data stream tuple. While raw data depict
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one point in time, the result of a data stream aggregation
represents a larger time interval. The wider the timeframe,
the lower is the granularity. To support the detailed evaluation
of streaming data the granularity has to be maximized.

Operator Parameter a € ¢ d u V T
Projection —
Selection —
Join —
Aggregation  GroupSize [ + - -
Sampling Rate 754 - - + +
Frequ. an. GroupSize [ + - -
Filter GroupSize [
Algebra —
Threshold —

WindowSize w + - ()

Accuracy a Completeness ¢ Stream volume V'

Confidence € Amount of data d Granularity T'
Timeliness u
TABLE I
OPTIMIZATION CANDIDATES FOR QUALITY IMPROVEMENT

Table I summarizes the optimization objectives composed of
data quality dimensions, data stream volume, and granularity.
To identify candidates for the data quality improvement, we
analyze the operator repository of the QPM consisting of tra-
ditional data stream operators like join and selection, operators
of the signal analysis, which are often applied to sensor data
streams, and operators of the numerical algebra like addition or
division as well as the threshold control. Besides the operator
configurations, we present the size of the jumping data quality
windows w as interesting parameter. Table I shows the impact
of a parameter increase: the quality values are either increased
(+) or decreased (-).

B. Objectives

This section defines the fitness functions for each objec-
tive of the data quality-driven optimization. As the accuracy
describes defects or imprecisions of data stream sources, it
cannot be improved by any operator configuration. This data
quality can be removed from the list of optimization objectives.

The objectives determined above span different value do-
mains. For example, the window completeness constitutes
values in the range 0 < ¢,, < 1, while the absolute statistical
error in the dimension confidence is unlimited 0 < €, < oo.
To allow the quantitative comparison of different objectives,
we normalize the objective functions to the range [0, 1].

1) Confidence: The confidence illustrates the statistical
error € due to random environmental interferences (e.g., vibra-
tions, shocks) defining the interval [v—¢; v+ €] around the data
stream value v containing the true value with the confidence
probability p. € is defined by the (1 — p/2)-quantile o and the
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data variancec? of each data quality window w. For example,
for p = 99% the initial confidence of a data quality window
including the lens thickness measurements

{0.396mm, 0.428mm, 0.412mm, 0.379mm, 0.403mm} (1)

is set to €, = a - 0 = 2.58 - 0,000286mm = 0,0007224mm.

The average statistical error over all data stream attributes
has to be minimized to maximize the data quality confidence.
The objective function is normalized by division with the
maximal statistical confidence error ¢,,,, in the stream. The
objective f. is defined as follows.

n

Zﬂiiew @)

n-e
max 4 k=1

fe + min

2) Completeness: The completeness addresses the problem
of missing values due to stream source failures or malfunc-
tions. Multiple estimation or interpolation strategies exist to
deal with missing values in ETL processes and data cleansing
[4]. We apply the linear interpolation as compromise between
the quality of value estimation and computational capacity.
The data quality dimension completeness c is accordingly
stated as the ratio of originally measured, not interpolated
values compared to the size of the analyzed data quality
window.

For example, the sensor for axial difference misses the lens
at timestamp ¢ =’ 237'. To nevertheless derive the quality
indicator, the missing value is computed as follows.

ax('237") = % - (az('236") + ax('238")) 3)
To note the sensor failure, the completeness of the data quality
window ['230',/239'] is set to ¢,, = 0.9.

To conform with the objective above, the objective of max-
imal completeness is transformed to the minimizing problem
fe, which minimizes the ratio of interpolated data items. Here,
no normalization is required as the domain [0, 1] is already
provided by the completeness definition.

fe @ min Zﬁzlfcw “)

=1 k=1

3) Amount of Data: The amount of data determines the set
of raw data x used to derive a data stream tuple y = f(z). The
higher the amount of data, the more reliable is the processed
information. To eliminate outliers to derive statistically stable
information of the production line quality, the quality indicator
is averaged over a certain set of contact lenses. Thereby, the
aggregation group size ! = 20 leading to d = 20 produces
more reliable results than [ = 2(d = 2).

To transform the objective of maximal amount of data to
a minimization problem, we calculate the difference to the
highest possible amount of data d = m, that comprises the
complete data stream. The maximum m serves at the same
time as normalization weight.
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n Ki

n.lmz LS m—du(k) )

fa @ min —
. Kj
=1 k=1

4) Timeliness: The timeliness is defined as difference be-
tween tuple timestamp ¢(5)(1 < j < m) and current system
time clock. For example, the timeliness of ax('13 : 26 : 54’)
at '13 : 28 : 10’ is u = 76s. To maximize the data quality
dimension timeliness, the average tuple age normalized by the
maximum age U,,q; has to be minimized.

. 1 o
fu: min e — Z u(fg) (6)
Jj=1
1 1 —
= —— . |clock — — t(g 7
clock — tpin coe m Z ARG

Jj=1

5) Data Stream Volume: The data stream volume V' defines
the number of transfered data values in n stream attributes over
m data tuples. Besides, the transfered data quality information
have to be incorporated. The additional volume is computed
based on the number of transfered data quality dimensions @Q;
per attribute A; and the average data quality window size @;.

n

mon+1)+ > Qi ®)

i=1

V:

The average volume of a data stream tuple of the contact
lens stream described with |@Q;] = 4 dimensions and an
average data quality window size of w; = 20 results in
V =(4+1)4+1/20-4 = 5.2. To normalize the stream volume
to the data range [0, 1], we refer to the maximal stream length
Mmaz = Tmaz/T - ™ determined by the current stream rate r
and the maximal manageable rate 7,,4,(€.8., Trmaz = 1/ms).
The maximal data volume further depends on the maximal
data quality window size w = 1, such that

n
Vmam = Mmaz (n + ]-) + Munaz - Z |Q1| (9)
i=1
To minimize the costs for data stream transfer and processing,
the normalized data stream volume has to be minimized.

|4

1
Vmam ( 0)

fv + min
6) Granularity: The data stream granularity 7" is measured
as the average timeframe [t, —t;] of all data stream tuples. For
example, the timeframe of the averaged quality indicator with
I = 20 constitutes in 7" = 20s. For raw data items describing
one point in time, the granularity equals 0, as t. = t;. To
maximize the granularity, the average timeframe normalized
by its maximum 7,,,, has to be minimized.

fr : min
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A Sampling
<> Num. Op.

/7 Selection

scrap =

(] Aggregation th + sum(ax)

> Join
D Data Source

thy = 1/4 (thy,+th,,
+ thegt the,)

Fig. 2.

Processing tree

C. Configuration Parameters

The analysis of typical data stream operators identified
sampling, aggregation and frequency analysis as configuration
candidates for the data quality-driven optimization. This sec-
tion first defines the dimension of the optimization problem
domain. Afterwards, the impact of the configuration parame-
ters of the identified candidates are discussed.

Figure 2 shows the processing graph of the contact lens
application. The goal is to monitor the overall production
quality, i.e., the fraction of contact lenses that have to be
removed from the production line as scrap, to predict the next
maintenance date. Therefore, four thickness measurements th,
at the lens edge are summarized and added to the weighted
center thickness th.. All sensor streams are sampled up
rsq > 1 or down rg, < 1 to reduce the overall data volume
and adjust the data stream rates in case of missing data tuples.
Then, the axial difference stream ax is aggregated to sum up
potential errors. The measurements are combined to determine
the scrap indicator scrap. If scrap < 0.5 the contact lens does
not fulfill the required quality levels and has to be removed
from the production. To produce stable monitoring results,
individual scrap indicators are averaged in sliding windows.
Finally, the drift of the scrap fraction, i.e the drift of the
lens production quality, can be used to guide the maintenance
planning of the production line.

To optimize the resulting data quality, all sampling rates
and group sizes can be modified. For example, the contact
lens scenario comprises |sam| = 8 sampling operators and
lagg] = 3 aggregations. If applied in the data stream pro-
cessing, also the group size of performed frequency anal-
yses fre can be optimized. The size of the data quality
windows constitutes the last optimization parameter, that can
be determined independently for each data source s € S.
The contact lens quality requires |S| = 6 sensors, adding 6
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parameters to the optimization problem. The overall problem
optimizes dim = |sam|+ |agg|+ | fre| +|S| parameters, e.g.,
dim = 84+ 3+ 0+ 6 = 17, defining the dimension of the
problem domain.

1) Sampling Rate: The down-sampling reduces the data
stream volume by randomly skipping a given set of data items
defined by the sampling rate r5, < 1. The information loss
provoked by down-sampling represents a statistical error and
has to be captured in the dimension confidence. Reconsider the
data quality window presented above in Equation 1 with the
true average avg = 0.4mm sampled with ry, = 0.5. The sam-
ple average ranges from avg = 0.386mm to avg = 0.414mm
corresponding to a of e = 0,0143mm.

Definition: The statistical error due to down-sampling can
be estimated based on the confidence interval defined by
Haas in [5], such that

a-o(w
e =20
VW Tsq
where o?(w) states the variance of data stream values in
the respective DQ window and « describes the confidence
probability p as the (1 — p/2)-quantile.

(12)

Low sampling rates skip large data stream parts resulting
in a high statistical error due to higher information loss. The
confidence error rises with decreased sampling rate. On the
contrary, low down-sampling rates reduce the data stream vol-
ume. The objectives of minimized confidence € and minimized
stream volume V conflict with each other. As timeliness and
data stream volume are aligned due to higher processing times
for large tuple numbers, the objectives of minimal timeliness
u and minimal confidence € conflict with each other in the
same manner.

The up-sampling (rs, > 1) inserts data items into the data
stream. For example, a linear data interpolation is executed
with the rate r;, = 2, which doubles the data stream length.
Hence, the up-sampling increases the fraction of interpolated
data and has to be tracked by updating the DQ dimension
completeness.

Definition: During up-sampling, the window completeness
Cy is divided by the sampling rate rs, > 1, such that the
completeness is stated as ¢, = ¢y, [Tsa-

The higher the up-sampling rate, the more data items are
generated. The lower is the resulting completeness and the
higher the data stream volume. Hence, high up-sampling rates
have a negative impact both on completeness c and data stream
volume V.

As described above, the relation of stream rates has to
remain constant for each processing tree level. For example,
the up-sampling in data stream th. increases the down-
sampling rate for thei_4. The up-sampling has an indirect
positive impact on the statistical error in the data quality di-
mension confidence. The objective of maximized completeness
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¢ achieved by low sampling rates r,, contradicts with the
minimization of the confidence € resulting from high rg,.

2) Group Size: First and foremost, the group size [ consti-
tutes a parameter in the definition of data processing queries.
For example during the calculation of the turnover, it is
essential whether the sales volumes of one day (I = 1d) or
one month (I = 30d) are summed up. However, during the
processing of high-volume data streams situations can arise,
where the group size must not be defined strictly.

The group size of aggregation and frequency analysis'
share the same impact on the optimization objectives, as they
summarize stream tuples to a smaller data volume. The larger
their group size is defined, the more the data stream volume
is reduced.

The more tuples are aggregated or serve as basis for fre-
quency analysis, the larger is the amount of data of outcoming
results. As the aggregation reduces the data volume, maximal
amount of data goes along with minimal data stream volume.
However, the summarization of information has a negative
impact on the data stream granularity, as one processing result
represents the timeframe spanned by all incoming data tuples
in the respective group. The larger the group size, the larger is
the resulting timeframe. During the configuration of the group
size [ positive effects on data stream volume V' and amount
of data d oppose negative effects on the granularity 7.

The objective conflict can be resolved by configuring the
data stream rate with the help of sampling and/or interpolation.
During group sizes increase, the same stream rate increase
leads to consistent amount of data. However, the consistency
of optimal stream volume V', amount of data d and granularity
T interferes with the objectives of minimized confidence € and
maximized completeness ¢ as declared above.

3) Window Size: The definition of the size of data quality
windows constitutes a compromise between fine granularity
and high volume of transfered data quality information.

The wider the data quality window, the lower is the overhead
for the data quality transfer and, thus, the lower is the overall
stream volume. On the contrary, the larger the data quality
window is defined, the more tuple-wise DQ information have
to be aggregated in one window-wise quality value balancing
out meaningful data quality peaks.

Therefore, we add the window size w itself as optimization
parameter. The objective function f,, defining the averaged
window size @; over all data quality windows and stream
attributes normalized with the maximal possible window size
w = m has to be minimized.

. 1

fo : min n-m;% (13)

As more data quality information have to be transfered and

processed, the objective of low window sizes w contradicts

with minimal data stream volume V' and maximal timeliness
U.

IThe frequency analysis computes amplitude and phase of all stream
inherent frequency bands.
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€ c d u |4 T w
€ - Tsa Tsa Tsas l Tsas l
c Tsa - Tsa Tsa Tsa, l Tsas l
d Tsa - Tsas l
U | Tsq Tsa - l w
V Tsa, l Tsa, l - l w
T | rsayl  Tsayl Tsa,l l l -
w w w -

TABLE II

OBJECTIVE CONFLICTS

Table II summarizes the conflicts between the optimization
objectives. The cells indicate the configuration parameter
leading to the respective conflict.

III. QUALITY-DRIVEN OPTIMIZATION

In this section, we present the framework architecture for
DQ-driven optimization consisting of satisfiability checks and
optimization component. To solve the defined problem, we
propose the quality-driven evolution strategy.

A. Optimization Framework

The data quality-driven optimization is executed contin-
uously to tune the data stream processing during system
runtime. As soon as an optimal parameter set is found and
deployed, it has to be checked against the currently processed
data stream. The online tuning allows the seamless adaptation
to varying stream rates, measurement values and data quality
requirements.

First, the system evaluates by means of static information
like maximal sensor stream rate or sensor precision, if the user-
defined quality requirements can be accomplished or conflicts
exclude a realization of all sub-objectives. In the latter case,
the conflict is reported to the user. To check the satisfiability
of DQ requirements, no access to streaming data is needed.

Heuristic optimization algorithms approximate the optimal
problem solution by iteratively improving the achieved fitness.
Different solution individuals have to be applied, evaluated and
compared.

As the optimization must not interfere with the ongoing data
stream processing, it is separated on an independent system
component as illustrated in Figure 3. To execute the optimiza-
tion in parallel with the traditional data stream processing,
the processing path with all its operators is copied in the
optimization component. In each iteration of the optimization
algorithm the evaluated solution individual determines the
specific path configuration of sampling and interpolation rates
as well as group and window sizes.

Each solution is evaluated by directing a representative data
stream partition through the configured processing path. We
propose two approaches for the partition selection in Section
III-C. As soon as the partition is completely processed, the
average data quality result for each dimension, the average
granularity and the used data stream volume are computed
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2 User-defined Quality
Requirements
Satisfiability Check

I

DQ-Driven Optimization

Optimization Algorithm
next solution fitness =
loas |, w f(e,c,d,u,V,T,0)

Copy of Data Stream

o] Processing
woptl rsa,oplv Iopt
Data Data Quality | i - Data
Sources Initialization FeeP Data Stream Processing f== Slnk
Fig. 3. Optimization process

and returned to the optimization algorithm to calculate the
fitness of the tested configuration. If the user-defined quality
requirements are not met, the fitness guides the determination
of the next solution individual to iteratively improve the
achieved fitness.

As soon as the requirements are accomplished, the optimiza-
tion problem is solved. The new parameter setting is applied
to the original processing path. The sampling operators are up-
dated with the optimized sampling rates 7, op¢. The frequency
analyses and aggregations are updated with the determined
group sizes l,p,¢. Finally, the data quality initialization at the
sensor nodes is re-configured with the new window sizes wop.
After deploying the found parameter set, the next optimization
run is performed to adapt the processing to dynamic streams
characteristics.

The logical distinction between optimization and processing
enables also the physical separation, for example on a distinct
server node. Thus, the optimization task has no negative
impact on the performance of the traditional data stream
processing.

B. Satisfiability Check

Four quality checks have to be performed to prevent from
optimizing against unsatisfiable user-requirements as shown in
Algorithm 1.

First, the desired confidence error is evaluated. The best
possible confidence is achieved, when no down-sampling is
performed. Only initial statistical errors of the sensors reduce
the confidence. Thus, the requested confidence objective €,¢4
must not be smaller than the square root of all initial confi-
dence errors €g, (line 1).

Second, only completeness deficiencies due to up-sampling
can be reduced by DQ-driven optimization. The completeness
objective ¢, must not exceed the average initial completeness
cs, provided by the sensors (line 2).

The conflicting objectives of minimal data stream volume
V', minimal window size w and maximal amount of data d
are compared based on the resulting stream length m. As
the amount of data cannot exceed the stream length, it must
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hold that d,., < m. By applying Equation 8, we derive the
satisfiability check shown in line 3.

Finally, the conflict between amount of data d and gran-
ularity 7' is controlled based on the maximal stream rate
Tmaz introduced in Section II-B in line 4. For example, the
required amount of data of d,., = 100 and the maximal rate
of ree = 1/ms leads to the minimal achievable granularity
of Thin = 100ms.

Algorithm 1: Satisfiability Check

Input: €,¢q, Creq, Vreq user-defined requirements
Output: sat=FALSE satisfiability

. / S| 9
1 if €req > ZL:|1 GSi
1 S
2 /\Creq < IEl ZL:|1 Cs;

17
ANdyeq < T
req > 7L+1+Ei:1 WTleq |Qil

/\Treq > =
then
sat = TRUE;

C. Batch vs. Continuous Optimization

The stream partition for optimization constitute a data
stream window of ( data tuples. It may either be selected
in batch-mode at the beginning of each optimization run and
used in each iteration without changes. At the other hand, the
window can be updated for each iteration with current tuples
to reflect the dynamic progression of the data stream and allow
the continuous optimization.

a) Optimization run i lteration k k+1  k+2

runi+1 b) runi+1

| | I I T | | | | -
|/) K\ IM i T I 1T
j+

j j+100 4 4 Data stream

Fig. 4. Batch & continuous optimization

The batch-mode selects a constant stream partition of the
last ¢ tuples for one complete optimization run as shown
in Figure 4a. The parameter  depicts the trade-off between
representative partition length and duration of one optimization
run. Besides, the length is restricted by limited memory
capacity in most streaming environments. It only represents
a small, static data stream window.

In contrast, the continuous optimization approach follows
the dynamic stream behavior by selecting a new stream parti-
tion for each iteration of the applied optimization algorithm.
As shown in Figure 4b, a larger stream fraction is used.
However, the continuous mode exchanges the base data for
optimization in each iteration. A good solution derived from
the fitness in iteration k on partition k£ may perform poor if
applied to base data k 4 1 in iteration k + 1. The fitness will
not increase monotonically, but may diverge. To guarantee the
algorithm termination, additional criteria like allowed duration
or number of fitness evaluations have to be defined.
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The static optimization in batch-mode guarantees the con-
verging of the fitness function and, thus, the accomplishment
of user-defined quality requirements. However, the computed
optimal solution only holds for the processed short stream
partition, so that a permanent control with subsequent opti-
mization runs is necessary. The continuous approach allows
the inclusion of dynamic data stream alterations during the
optimization process. Thereby, divergences of the fitness func-
tion may arise that must be encountered by supplementary
terminations rules.

D. Optimization Classification

The operations research combines mathematics and formal
science to find and define methods and algorithms to arrive at
optimal or near optimal solutions to complex problems. Op-
timization problems are classified according to their domain,
their objective function and respective problem constraints. In
this section, we will range the optimization problem of data
quality-driven stream processing in this classification scheme.

The problem analysis revealed seven objectives, which
partly conflict with each other and define a multi-objective
optimization problem. There exist various strategies to solve
these problems. On the one hand, the Pareto optimization
allows the finding of a set of optimal compromises, that
dominate all other possible solutions. That is, the improvement
of one sub-objective is only possible with a decline of one or
more of the other sub-objectives. In Section IV we define the
multi-objective quality-driven evolution strategy (MO-QES),
which optimizes the Pareto front in the problem search domain
by solving the objective f,yiti-

Definition: The multi-objective fitness function [
R¥*™ +— R defines the fitness of a solution individual as
the Pareto-dominance of the achieved sub-objective f;(i €
{e,¢,d,u, V,T,6}).

On the other hand, sub-objectives can be summarized in
one optimization function fg;ngie, Which will be minimized
or maximized by the single-objective quality-driven evolution
strategy (SO-QES). Cost weights defined for each objective
determine the order and importance of optimization. However,
the user-defined weighing may restrict the search space result-
ing in minor optimization solutions. Multiple optimization runs
are required to determine optimal cost weights.

Definition: The single-objective fitness function fgingie
R*™ s R calculates the overall fitness of a solution
individual as weighted sum of the obtained sub-objectives,

such as
>

i€{e,c,d,u,V,T,5}

fsingle = (& fz (14)

The data quality dimensions completeness, amount of data
and timeliness are defined using linear computation functions,
so that f., fy and f, pose linear optimization problems.
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The same holds for the data quality window size f, and
the granularity f7. Due to the square root definition of the
statistical error computation, the objective function f, gives a
non-linear optimization problem. A second non-linear problem
is posed by fy/, which minimizes the stream volume based on
the window size w.

While the parameters ! and w as well as fitness of the sub-
objectives fq, fu, fv, fr and f, allow only discrete values,
the domains of the parameters r, and the objective functions
fe and f. propose continuous optimization problems.

Moreover, the search space is restricted by side conditions.
To guarantee join partners, the data stream rates in one tree
level have to stay in constant relation to each other. For
example, the duplication of 7, (see Figure 2) requires i.a.
the duplication of r,,. Either, the rate of the sampling operator
Tsa,az Das to be doubled, or the group size [,, has to be
halved. Thus, the dependence of sampling rates and group
sizes defines side constraints for each processing tree level,
such that

Vlevel l Y ry,r; €l:ir;=rj. (15)

As in multi-objective optimization problems the most com-
plex sub-objective defines the complexity of the overall prob-
lem, the quality-driven optimization is defined as follows.

Definition: The quality-driven process optimization consti-
tutes a multi-objective, non-linear, continuous optimization
problem with side conditions.

There exists no deterministic algorithm to solve optimiza-
tion problems of this complexity in reasonable time. However,
the stream processing optimization shall be executed on-the-
fly without interrupting the data flow. It is essential to provide
good solutions in an acceptable timeframe. Further, the optimal
solution is not required in most cases. Rather, the user or data
consuming application defines data quality levels, which have
to be met. Heuristic algorithms offer an appropriate answer
to such optimization problems. They provide fast results by
approximating the optimal solution.

Heuristic optimization algorithms range from simple ap-
proaches like the Monte-Carlo-Search over more sophisticated
strategies such as Hill Climbing and Simulated Annealing to
complex Evolutionary Algorithms. Evolutionary Algorithms
comprise genetic algorithms working on binary data and the
evolution strategy supporting real parameters and objectives.
As only the evolution strategy can solve real-valued multi-
objective as well as single-objective problems, we apply this
heuristic to solve the DQ-driven optimization.

IV. EVOLUTION STRATEGY

The evolution strategy constitutes a stochastic, population-
based search heuristic inspired by the principles of natural
evolution. It can be applied to arbitrary optimization problems
and requires nothing but the objective function(s) of the
optimization problem to guide its search. A population of
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possible solutions is iteratively recombined and mutated to
select the best population individual as approximated global
optima.

To improve the data quality via configuration of the data
processing, we have to adapt the generic algorithm structure
of the evolution strategy to the defined quality-driven optimiza-
tion problem. In this section, we present the specification of
the quality-driven evolution strategy (QES) including specific
functions for recombination, mutation and selection.

Algorithm 2: QES
Input: domain of possible inputs,
DQ user-defined requirements
Output: P population of optimal solutions

1t=0;

2 initialize(P(t), domain);

3 while DQ.notAchieved() do

4 P.(t) = recombine(P(t));

5 mutate(P,(t));

6 P(t+ 1) = selectNextGeneration(P,(t), P(t));
7 t=t+1;

8 end

Algorithm 2 shows the overall structure of QES. The first
population P(0) is randomly initialized in line 2 to cover
the complete search domain. The first step of the repeated
iteration process recombines the solution individuals of the
current population P(t) in line 4 to build new solution
candidates P.(t). They are randomly mutated to allow new
solutions to enter the population in line 5. Finally, they are
evaluated with the help of the objective function fyingie OF
fmuiti» respectively, to select the best individuals of P.(t) to
build the next generation P(¢ + 1) in line 6. The quality-
driven evolution strategy terminates, when all user-defined data
quality requirements are met (line 3). Other termination criteria
are the allowed number of performed solution evaluations or
the planned execution time.

The recombination is designed to hand down and combine
positive traits of different solutions individuals. First, parent
solutions are chosen randomly from the current generation.
Then, the dim parameter configurations of parent pairs are
combined. The children’s parameters are determined by aver-
aging each of the parents’ parameters. As group and window
sizes only allow integer values, they are rounded up.

Algorithm 3 illustrates the mutation of the recombined
solution candidates. Due to different value domains, specific
mutation steps sizes are applied to each parameter type:
sampling and interpolation rates A7, s, in line 4, group
size Al (line 6) and window size Aw (line 8). To ease
the application of the QES and to allow for the automatic
adaptation, the specific step sizes are considered as additional
optimization parameters. The parameter vector is extended by
three variables: dim’ = dim + 3. The step sizes themselves
are mutated by as shown in line 10.

The mutation is executed individually for each solution of
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Algorithm 3: mutate()
Input: P current population
Output: P, mutated population
1 forall a € P do

2 index = random(1, dim + 3);

3 oldV alue = a.getParameterAt(tndex);

4 if type(index) = sampling || interpolation then
5 newValue = oldValue & Argq i ;

6 else if rype(index) = groupSize then

7 newValue = oldV alue £ Al;

8 else if type(index) = windowSize then

9 newValue = oldV alue + Aw;

10 else

11 newValue = oldValue £+ 0.1 - oldV alue ;
12 a.setParameterAt(index, newV alue);

13 end

the current population. The parameter to mutate is selected
randomly from the configuration set (line 1 & 2) and mutated
according to the respective step size (lines 3-10). The new
solution individual b is created by exchanging the mutated
parameter in the current solution a (line 11).

The last algorithm step, the selection, evaluates the new
solution candidates to form the next population generation.
The quality-driven evolution strategy follows the (u + A)-
approach, that produces a monotonically nondecreasing fitness
curve. One population consists of i elements, which are used
to produce A candidates. The fitness of all parent and child
solutions is calculated with the help of the objective function.
The p fittest solution individuals build the new generation as
starting point for the next algorithm iteration.

The single-objective quality-driven evolution strategy (SO-
QES) uses the cost-weighted objective function fg;y,g1c. The
optimization problem defined in f,,;+; is solved by the multi-
objective evolution strategy (MO-QES). The comparison of
optimization results allows conclusions on the impact of differ-
ent cost settings. Furthermore, the following section evaluates
the performance of the two optimization approaches.

V. EVALUATION

In this evaluation, we examine data quality-driven optimiza-
tion of the data stream processing at real-world data streams
to empirically answer the following questions.

1) Which impact has the cost weighing on the optimal

configuration of the data stream processing?

2) What are the benefits

optimization?

3) How do single- and multi-objective optimization

compete with each other?

of batch and continuous

4) Do the presented algorithms scale for the complex data
stream processing with high sensor numbers?

We have implemented the quality-driven optimization de-

scribed in this paper using the data stream management
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system PIPES [6] and the Java-based optimization framework
JavaEva [7].

A. Experimental Setting

We ran our experiments on a dual-core 2x2GHz Centrino
Duo processor with 2GB of main memory, running Microsoft
Windows XP Professional 2002. All Java-based systems were
executed using JRE Version 6.

We use an artificial dataset to analyze the effects of the
optimization modes and test the performance of the designed
algorithms. Therefore, we generated data streams subject to
the standard normal distribution (¢4 = 0,0 = 1) with randomly
varying stream rates in the range of 1/ms < r < 100/ms.
We simulated queries over 2 to 128 of such generated streams
joined in pairs of two. Each data stream is sampled in each
query tree level to find one-to-one-join partners; aggregations
are spread randomly.

Further, we applied the real-world dataset of contact lens
manufacturing available at [8] to analyze the impact of cost
weights and to examine the practicability of the presented
algorithm. It consists of measurements of the thickness of
lens center and edge and the axial difference. As described in
Section II-C, the production quality is monitored to predict the
optimal maintenance planning for re-calibrating the production
line.

For both datasets, we assumed a systematic error of op-
timistic 1%, while the statistical measurement error was de-
rived from the measurements’ variance using the confidence
probability p = 99%. To simulate sensor failures in the
artificial dataset, we randomly skipped 2% of the data tuples.
To initialize the lens data completeness, we identified missing
measurements by comparing the recorded timestamps to the
planned sensor rates.

B. Impact of Weights

This section answers the first of the above questions at
the sample objectives of maximal completeness and minimal
confidence (compare Table I). Figure 5 shows the Pareto
front of the multi-objective optimization. Minimal statistical
confidence errors produced by high sampling rates are only
achieved at the expense of high values of incompleteness and
vice versa. The optimal compromises represented by the Pareto
front can be re-produced by the single-objective optimization
using sophisticated weighing.

Points A,B and C in Figure 5 show exemplary single-
objective results. The higher the weight was determined, the
better the proposed optimal configuration suits the respective
sub-objective. If the cost for incomplete data tuples exceeds
the confidence weight, low sampling and interpolation rates are
proposed (point C). High costs for statistical errors in the DQ
dimensions confidence (point A) lead to high sampling rates
resulting in less data loss. Similar cost weights result in a well-
balanced compromise between completeness and confidence
as given in point B.

Figure 6 illustrates the Pareto front and cost impact of the
conflicting objectives maximal amount of data and maximal
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granularity. High amount of data leads long timeframes rep-
resented by each tuples, i.e., low granularity. The higher the
cost weight for the amount of data exceeds the cost for fine
granularity, the higher is the average group size in the proposed
optimization solution and vice versa (compare weights of
points A, B and C in Figure 6).

Finally, we evaluated the conflicting objectives of minimal
data stream volume and minimal data quality window size.
Similar to the above evaluations, higher weighing of the stream
volume results in low window sizes and vice versa.

C. Comparison of Optimization Modes

This section answers the second question. First, we check
the termination probability of the continuous optimization,
which selects a new data stream partition as basis for each
optimization iteration. Therefore, we applied the artificial data
set described above to the single-objective optimization. We
kept the intra-partition-variance (¢ = 1), but introduced an
inter-partition-variance ¢ by modifying the mean p for each
partition.
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Figure 7 shows the termination probability of the single- and
multi-objective optimization for an increasing inter-partition-
variance. For & < 1, the continuous optimization is likely to
terminate successfully. The termination probability decreases
for 1 < & < 3 and converges to 0 for & > 3. The termination
probability is independent from the applied partition length.

To compare the quality of the optimization results provided
by batch and continuous mode, we apply the computed
optimization results, i.e., the operator configurations, to the
ongoing stream and compare the achieved overall quality.
Figure 8 shows the normalized fitness for an increasing inter-
partition-variance. The batch mode allows good results for
low variances & < 0.5. The continuous mode adapts better
to changing situations and thus provides appropriate fitness
values also for a higher inter-partition-variance. However, the
increasing termination probability limits the application of the
continuous mode to the bound & < 2. Here, a small DQ
improvement is only possible by using batch mode again.
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D. Performance Tests

In this section, we show the scalability of the presented
algorithms by means of the artificial data set and complex
query structure defined in Section V-A. As no inter-partition-
variance was introduced, the evaluation tests were performed
in batch-mode. We first analyze the performance of the
proposed algorithms with regard to increasing numbers of
data sources (sensors), applied aggregations and frequency
analyses, respectively. As the number of sampling operators
is defined by the executed joins and, thus, by the number of
sensors, an individual scalability test for that operator class
is not required. Then, we evaluate the impact of the length
of the data stream partition used for optimization. Finally, we
compare the optimization time required by the single- and
multi-objective optimization strategy to improve the overall
quality.

The Monte-Carlo-Search (MC) performs a random search
over the problem domain and serves as reference value defin-
ing the lower performance bound [9]. The single-objective
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optimization is executed with randomly chosen weights (SO-
R) as well as optimal weights (SO-O), which determine a
well-balanced objective compromise. As the iteration duration
of the single-objective optimization does not depend on the
weights, these performance test results of SO-R and SO-O
have been summarized to SO. Finally, the multi-objective
optimization (MO) approximates the Pareto front of all optimal
compromises.

Figure 9 illustrates the impact of the sensor number on the
time required for one iteration of the respective optimization
algorithm executed with a partition length of 1000 tuples.
The more complex the algorithm, the longer takes one iter-
ation. The performance difference between single- and multi-
objective optimization is caused by the complex Pareto front
computation. For all tested algorithms, the iteration duration
increases linearly with the sensor number.

Figure 10 shows the scalability for increasing numbers of
aggregations and frequency analyses. Again, the time required
for one iteration rises linearly.

Figure 11 shows the iteration duration (in seconds) for 16
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sensors and 10 aggregations for increasing partition lengths (in
data tuples). The processing time rises nearly linearly for small
to medium partition lengths of 100 to 1000 stream tuples. Only
for very large stream partitions, the iteration duration exhibits
an exponential character.

Figure 12 compares the overall time performance of single-
and multi-objective optimization with respect to the achieved
quality improvement for 16 sensor data sources and 10
randomly inserted aggregations. The quality improvement is
expressed as percentage value (Gpefore — qafter)/qbefore- The
Monte-Carlo-Search performs worth followed by the randomly
initiated single-objective optimization (SO-R), requiring 5.2
and 2.9 seconds, respectively, for a DQ improvement of 10%.
The single-objective optimization executed with well-balanced
weights (SO-O) performs best (1.6s for 10%). However, the
definition of these weights requires multiple optimization runs
and has to be adapted as soon as stream characteristics or user
requirements change. The multi-objective optimization (MO)
is a little slower (1.9s) due to the complex computation of the
Pareto front. However, the result comprises the complete set of
all optimal compromises and no pre-processing to determine
optimal weights is necessary.

The evaluation showed, that the designed quality-driven
optimization provides good scalability with regard the applied
stream partition length as well as increasing complexity of the
data stream processing. Data quality and quality of service
could be improved within few seconds. Further, we deduce
that the single-objective optimization in batch mode is the best
choice for constant user requirements and steady data streams.
If streaming data values present high fluctuations or user re-
quirements are often adjusted, the multi-objective optimization
constitutes the better option. Here, the inter-partition-variance
has to be analyzed to estimate the termination probability.
While the continuous mode provides better results for medium
variances, the batch mode has to be applied for highly varying
data streams to prevent from divergent fitness functions.
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E. Lens Production Optimization

To approve the suitability of the designed algorithms, we
refer to the application scenario of scrap monitoring for pre-
dictive maintenance in the contact lens production introduced
in Section II-C. Due to numerical errors and missing sensor
measurements, the predicted maintenance date deviates from
the optimal point in time. The maintenance is scheduled either
too early (the calculated quality drift exceeds the true value),
or too late (the drift of the computed quality indicator is too
low).

To improve the reliability of the determined maintenance
planing, we aim to optimize the underlying data stream
processing. The first optimization parameters are the sampling
rates on the data streams of the lens thicknesses and axial dif-
ference. The group sizes of the axial difference summation and
sliding average aggregation of the quality identifier determine
the compromise of detailed information and outlier balancing.
The last optimization criteria is given by the group size of
the drift calculation that provides statistically stable short- or
long-term variations.

We start the optimization process with arbitrary settings of
the optimization parameters. Figure 13 illustrates the scrap
indicator of the contact lenses and the derived drift of the
production quality. To guarantee correct maintenance activities
so that no lens under the scrap threshold of 0.5 remain
in the production line, the drift is monitored against the
drift threshold of -0,005. As the calculated drift suffers from
measurement errors and uncertainties due to sensor failures,
the lowest possible bound of the drift must be taken into ac-
count. Therefore, the absolute measurement error (the sum of
systematic and statistical error) is illustrated as error bars of the
drift function. The arrow indicates the resulting maintenance
time at t = 19. However, due to the high measurement error
before the optimization, this maintenance date is too early
considering the actual scrap indicator, that falls below 0.5 at
t = 64.

Figure 14 shows the same situation after 10 iteration of the
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multi-objective optimization of the data stream processing has
been executed. The absolute measurement errors have been
decreased significantly, such that the ”‘lost” production time

could be reduced by starting the maintenance only at ¢ = 39.

1,0
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O average numerical error
B overall data quality

num. error / overall data quality

init MC SO-R S0-0 MO

Fig. 15. Improvement of overall DQ & num. error

Figure 15 shows the overall data quality and the numerical
error after 100 iterations for each of the presented optimization
heuristics, averaged over 10 optimization runs. Already the
simple random Monte-Carlo-Search halves the numerical error
defining the uncertain range of the quality drift. The ran-
domly initiated single-objective optimization (SO-R) further
decreases the error by 30%. The best results are obtained by
SO-0O and MO. SO-O achieves an overall error reduction of
73%. MO provides a set of optimal compromise solutions: as
all sub-objectives shall be improved, Figure 15 illustrates the
error reduction (74%) for the well-balanced compromise of
weights: ¢, = 0.06,c. = 0.26,cq = 0.2,cp = 0.11,¢cy =
0.2,c, = 0.11 (compare point B in Figure 5 and 6).

After the data quality-driven optimization, the numerical er-
rors are decreased leading to a narrower uncertainty range. The
determined maintenance planning approximates the optimal
point in time with higher confidence. Premature maintenance,
that unnecessarily interrupts the contact lens production, as
well as too late activities, that risk loss of sales due to low
production quality, are both prevented.

VI. RELATED WORK

In this section, we will discuss related work in the fields of
data quality management and optimization methods, especially
focusing on multi-objective optimization. This paper gave
an extended view over the quality-driven optimization of
sensor data stream processing, that we first published in [2].
Besides detailed definitions of the objective functions as well
as optimization parameters, we added the discussion of the
batch and continuous optimization strategy as well as the
crucial definition of the stream partition length used for the
optimization. Further, the evaluation was deepened to show
the influences of different optimization techniques as well as
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the scalability of the overall approach not only at artificial data
streams, but also using the real-world example of contact lens
production monitoring.

Traditional approaches of query optimization in database
and data stream systems aim at minimal processing time and
maximal data throughput. The quality of service is improved
to provide fast processing results to the user. In this paper,
we address the opposite problem: we improve the quality of
data. We maximize the data quality of processing results under
consideration of restricted system resources, so that the quality
of service remains in acceptable ranges.

Multiple publications underline benefits of the data quality
management in data warehouses and databases [10][11]. To
define the term data quality, different sets of data quality
dimensions are discussed i.a. in [12] and [3]. While there
are different approaches to structure data quality metadata in
databases [13][14], [1] presents the first data quality model
suitable for data streaming environments using so called
jumping data quality windows.

Data quality improvement in the context of data warehouse
and information systems is achieved by data cleaning [15][16].
For example, the Total Data Quality Management (TDQM)
provides tools to analyze the data quality in information sys-
tems and suggests data cleansing techniques for DQ improve-
ment [17]. However, prior work in this domain suffers from
the major drawback, that either an active participation of users
or domain experts in data quality improvement is necessary
or the presented approaches refer to a (set of) reference data
source(s) providing better or optimal data quality. It is obvious
that in case of sensor data, the manual subsequent data quality
correction for each measurement item is not feasible, and a
high-quality reference for comparison is not present.

Instead, the data and data quality processing has to be
configured to reduce the error amplification. Based on the
classification of the quality-driven optimization problem, we
identified the heuristic evolution strategy as appropriate tool
to approximate the optimal problem solution in an acceptable
timeframe. For the evaluation of different implementations of
the evolution strategy we rely on the comprehensive study
and experimental analysis provided in prior work and focus
on the SPEA as a well-studied algorithm with high rankings
in multiple test cases [18][19].

The application to multi-objective optimization problems is
described in [20]. Empirical studies showed the practicabil-
ity and superiority of the multi-objective evolution strategy
(MOES) [21][22]. [23] discusses the benefits of parallel execu-
tion of evolutionary algorithms, which would further improve
the performance of the quality-driven evolution strategy.

VII. CONCLUSION

In this paper, we presented the quality-driven optimization
of sensor stream processing. On the one hand, the data quality
of processing results, expressed by the DQ dimensions accu-
racy, confidence, completeness, amount of data and timeliness,
were improved. On the other hand, the quality of service was
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increased by minimizing the data stream volume to comply
with resource constraints in data streaming environments.

To identify candidates for the data quality improvement, we
analyzed the operator repository of the quality propagation
model presented in [1] and extracted sampling rate and group
size as configuration parameters. Furthermore, the size of
jumping data quality windows was detected as promising
parameter for the data quality optimization. Based on these
insights, we defined the multi-objective, non-linear, continuous
optimization problem with side conditions.

To solve the problem of quality-driven optimization, we
presented the generic optimization framework that can be
instantiated with any optimization algorithm. Optimization
time and quality were improved by satisfiability checks and
two optimization modes for changing stream characteristics.
Evolutionary algorithms represent the most promising op-
timization strategies for the defined complex optimization
problem. Thus, we developed the quality-driven evolution
strategy QES as sample instantiation of the generic framework.

Finally, we evaluated the proposed optimization strategy
with the help of artificial data streams as well as real-world
data from the contact lens production control. We showed,
that QES solves the optimization problem in a reasonable
timeframe and provides good scalability for complex data
stream processing queries. The maintenance prediction for
contact lens production could be determined more precisely
by improving the data quality of the calculated maintenance
date.
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