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Abstract—Cognitive Radio (CR) emerges as a solution for
efficient spectrum utilization in response to the growing demand
for connected devices driven by 5G and beyond. In this context,
numerous devices share network resources, leading to high energy
consumption. It is therefore essential to develop strategies that
reduce this consumption and extend the operational lifetime
of Cognitive Radio Networks (CRNs). This article proposes an
algorithm that combines sensor exclusion with the dynamic
selection of Cluster Heads (CHs), aiming to reduce energy
consumption while balancing detection capability and network
longevity. Simulation results for different numbers of Secondary
Users (SUs) show that the proposed algorithm maintains a high
detection probability with negligible false-alarm probability, while
significantly increasing the network lifetime when compared with
classical and cluster-based cooperative sensing schemes. In the
evaluated scenarios, the proposed solution increases the CRN
lifetime from approximately 3×104 to about 6×104 sensing cycles,
which corresponds to an average network lifetime gain close to
100% relative to the classical method, without compromising
sensing performance.
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I. INTRODUCTION

In recent years, the rapid growth of wireless communication
systems has increased the scarcity of the Radio Frequency (RF)
spectrum. This occurs mainly due to the fixed allocation policy,
which grants exclusive spectrum usage rights to a network of
licensed users, known as Primary Users (PUs). The demand for
new telecommunication services drives research and technolo-
gies such as the Fifth Generation of mobile communication
networks (5G), the Internet of Things (IoT) and, in the future,
the Sixth Generation of mobile communication networks (6G).
However, to enable most wireless communication services, it
is essential to overcome spectrum limitations, since multiple
frequency bands are required to support the growing number of
transmitters and receivers expected in 5G, 6G and IoT networks.
In this context, the concept of spectrum sensing through CR
emerges as a promising alternative to provide more efficient
spectrum access [1].

From a practical standpoint, CRNs must simultaneously
satisfy regulatory constraints on detection probability (Pd)
while operating with battery-powered Secondary Users (SUs)
[2]. High reporting overhead, unbalanced energy consumption
among SUs and heterogeneous propagation conditions (e.g.,
shadowing and fading) often lead to premature network death

and performance instability, especially in dense IoT and 5G/6G
scenarios [3] [4]. These aspects make the joint design of
Cooperative Spectrum Sensing (CSS) and energy-management
mechanisms a difficult task. Therefore, there is a clear need for
CSS strategies that extend network lifetime without violating
minimum detection requirements, thus improving the reliability
and operational cost of spectrum-sharing services [5].

From a scientific and engineering perspective, the main
problem addressed in this proposal is how to jointly design
sensor-selection and CH management policies in CRNs so as
to minimize energy consumption while preserving cooperative
detection performance. Prolonging the lifetime of the secondary
network is particularly relevant for large-scale applications
such as environmental monitoring, smart-grid supervision, and
massive IoT connectivity, where battery replacement is costly
or even infeasible. In this context, this proposal investigates
a cluster-based CSS scheme that introduces temporary and
permanent exclusion of low-performance sensors together with
dynamic CH selection based on spatial position [6] [7].

The central research questions are:
• (i) To what extent can sensor exclusion and dynamic CH

selection increase the lifetime of a secondary network when
compared with classical and cluster-based CSS schemes?

• (ii) What is the impact of these mechanisms on the probability
of detection and on the false-alarm probability for different
numbers of SUs?

Accordingly, the purpose of this article is to quantify the
energy–reliability trade-off provided by the proposed algo-
rithm and to compare its performance with established CSS
approaches through numerical simulations.

A. Contributions and Structure of the Article

This article proposes a sensor exclusion algorithm combined
with dynamic CH selection, aiming to reduce the energy
consumption of the secondary network and, thus, increase its
lifetime without compromising the system’s detection capability.
The main contributions of this proposal are as follows:
• Temporary exclusion of low-performance sensors, which can

be reintegrated if their performance improves, and permanent
exclusion applied after a defined number of consecutive
inactivity periods.

• Dynamic CH selection, defined as the sensor closest to the
Center of Mass (CM).



37International Journal on Advances in Networks and Services, vol 18 no 3&4, year 2025, http://www.iariajournals.org/networks_and_services/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The proposed algorithm is evaluated through simulations
in MATLAB, considering a CRN with a static set of SUs and
having the secondary network lifetime as the main focus. An
important limitation of this study is that SU mobility was not
considered in the analysis and is therefore left as a perspective
for future work.

The remainder of this article is organized as follows.
Section II presents the related work. Section III describes
the system model. Section IV discusses the cluster-based
cooperative spectrum sensing scheme. Section V details the
signal and channel modeling. Section VII introduces the
proposed algorithm. Section VIII presents the analysis and
results. Finally, Section IX concludes the paper.

II. RELATED WORK

Cluster-based CSS has been widely explored as a strategy
to reduce energy consumption in CRNs. Due to the various
contributions presented in this proposal, we conducted a
literature review on works related to sensor selection techniques,
CH election, fusion algorithms, and communication schemes,
each presenting specific benefits and limitations. Below is a
review highlighting the main contribution of each work. Table I
summarizes the analyzed studies.

In [8], a hybrid information fusion scheme is proposed. This
model employs the Pietra–Ricci (PRIDe) detector for data
fusion at the CH level and decision fusion at the Fusion Center
(FC) level. This technique improves the robustness of decision-
making and can minimize the impact of CH energy depletion.
However, simulations indicate that, in dense networks, this
approach may not yield significant energy savings, as the high
cost of intra-cluster communication and between CHs and the
FC compromises some of the gains achieved.

In [9], a model for sensor alternation between active and idle
modes was developed, aiming to distribute energy consumption
more evenly. As an alternative to minimize overhead and better
balance consumption, the use of pairs of sensors operating
synchronously, alternating between active and idle states, is
proposed. Although this approach offers this advantage, the
constant alternation between states may introduce latency,
particularly in scenarios that require a high detection rate
and fast response.

In [10], a distributed CH election method based on the
residual energy of the nodes is proposed. In this approach,
in each round, the node with the highest energy within the
cluster is selected as the CH, responsible for transmitting the
data to the FC. This method reduces the need for frequent
alternation between sensors and improves the energy efficiency
of communication. However, the continuous selection of the
same CH nodes tends to cause premature depletion of these
nodes, compromising the network’s stability over time.

In [11], a weighted linear fusion scheme in CRSNs is
proposed, assigning weights to the nodes based on the Signal-
to-Noise Ratio (SNR) and historical detection accuracy. The
technique has proven effective in increasing the Pd and reducing
the error rate by better exploiting the differences between the
nodes.

In [12], a selection method based on the remaining energy of
sensors is presented, prioritizing those with higher energy levels
for spectrum sensing. This model allows for more dynamic
energy balancing between sensors, preventing the premature
depletion of a specific subset. However, this approach tends
to cause overload in dense networks, as sensors with more
energy may be frequently activated, increasing communication
consumption and reducing detection accuracy.

In [13], the use of multiple sequential reporting channels is
proposed to reduce delays and improve decision accuracy at
the FC. This strategy optimizes the sensing time of nodes and
reduces transmission latency, achieving superior performance
compared to conventional methods in terms of both accuracy
and delay. In [14], a centralized routing protocol with clustering
for mobile nodes in Wireless Sensor Networks (WSNs) is
proposed, optimizing cluster formation based on energy and
mobility.

In [15], the selection of sensors with higher SNR and residual
energy is proposed for CSS. This approach significantly reduces
energy consumption by enabling only an optimized subset of
sensors to participate in sensing, while others remain in energy-
saving mode. However, the lack of a sensor rotation mechanism
may result in uneven wear of selected nodes, thus reducing
the network’s lifespan.

In [16], a comprehensive review of energy-efficient CSS
techniques is presented, classifying methods according to
various criteria and highlighting the potential for integrating
dynamic sensor selection, adaptive clustering, and intelligent
information fusion. In [17], a dynamic clustering algorithm
for large-scale Mobile Sensor Networks (MSNs) is developed,
considering residual energy and transmission delays, making
the system more adaptable to mobility and uneven energy
consumption.

In all the studies analyzed, clustering is used as the initial
technique for energy savings. However, in [18], clustering
is not applied. Instead, a CSS scheme without clustering is
proposed, specifically adapted for CRSNs. The distinguishing
feature of the model is the use of real data correlations
collected by the sensors (e.g., temperature and humidity) to
more efficiently select nodes participating in the detection
process. This approach reduces the number of active nodes in
sensing, allowing others to remain in idle mode, thus leading
to greater energy savings and lower latency. However, the
effectiveness of this solution depends on the accuracy of
correlation estimation and the SNR scenario, which may require
additional adjustments in dense networks.

Thus, the literature encompasses multiple strategies — from
node selection and CH rotation to hybrid fusion schemes
and mobile protocols — but still presents gaps in integrative
approaches that reconcile energy efficiency, detection robust-
ness, and support for dynamic environments. This proposal
contributes by suggesting an algorithm that combines temporary
and permanent sensor exclusion with dynamic CH selection,
thereby extending the network’s lifespan without compromising
the reliability of CSS.
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TABLE I. ANALYSIS OF RELATED WORK

Reference Year
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Main Contribution

[8] 2023 ✓ ✓ ✓ ✓ Hybrid fusion scheme using Pietra–Ricci (PRIDe) detector
at the CHs and decision at the FC.

[9] 2021 ✓ ✓ ✓ Clustering model with active/idle alternation for paired
nodes.

[10] 2021 ✓ ✓ ✓ Distributed clustering algorithm for CH election based on
residual energy.

[11] 2021 ✓ ✓ ✓ ✓ Weighted linear fusion with weights based on SNR and
historical accuracy.

[12] 2020 ✓ ✓ Sensor selection method based on residual energy.
[13] 2020 ✓ ✓ ✓ ✓ Proposal for multiple sequential reporting channels to

reduce latency and increase accuracy at the FC.
[14] 2019 ✓ ✓ Centralized routing protocol with efficient clustering for

mobile nodes in WSNs.
[15] 2019 ✓ ✓ ✓ Sensor node selection for CSS based on energy and SNR.
[16] 2016 ✓ ✓ ✓ ✓ Review and classification of energy-efficient CSS tech-

niques.
[17] 2013 ✓ ✓ Dynamic clustering algorithm in large-scale mobile sensor

networks based on residual energy and transmission delays.
[18] 2013 ✓ ✓ Explores the correlation of real data collected by sensors

to select participating nodes in the sensing process.

III. SYSTEM MODEL

This section describes the cognitive radio network considered
in this work, detailing the spatial distribution of SUs, the
formation of clusters, and the role of CHs and the FC. We first
present how SUs and the primary transmitter are positioned
in the coverage area, including the definition of shadowed
regions and their impact on sensing performance. Then, we
introduce the clustering model adopted to organize the SUs
into groups and to support cooperative spectrum sensing and
energy-management mechanisms.

A. Spatial distribution of SUs

The SUs are devices that operate in CRNs, using radio
spectrum dynamically and without a license. In other words,
SUs take advantage of spectrum gaps that are not used by PUs,
without interfering with the operations of these licensed users.
The positions of the SUs are determined by two-dimensional
coordinates (x, y), randomly distributed within the coverage
area of the primary network. This coverage area has a radius
r around the FC, located at coordinate (0, 0). The Primary
Network Transmitter (PUtx) is positioned at coordinates
(−r, r), with the coverage area radius defined as r = 1000m.
Additionally, shadowed areas are defined to evaluate the impact
of the received signal on SUs located in these regions. Due
to attenuation caused by obstacles, these sensors are more
susceptible to detection failures and are consequently penalized
more frequently.

This penalty results in periods of inactivity during which
the sensors cease to participate in the sensing process and
enter energy-saving mode. However, they can still transmit
data if the channel is detected as free and, if their performance
improves, they may be reintegrated into the network. On the
other hand, sensors with successive cycles of inactivity are
permanently excluded to prevent compromising the decisions
of the cluster and, consequently, the FC.

Figure 1 illustrates the execution of the k-means clustering
process. As shown in Fig. 1, the process was carried out with
mT = 20 and cmax = 3, generated in MATLAB. The colors
of the points distinguish the clusters and their respective SUs,
while the shadowed areas are represented by dashed circles.
The centroids resulting from the clustering are marked with
crosses. The PUtx, FC, and CHs are also highlighted, along
with the circular coverage area of the primary network.

The secondary network consists of three main components:
the FC, which makes global decisions; the SUs, which perform
spectrum sensing; and a subset of SUs that act as CHs,
coordinating the cluster decisions.

B. Clustering model

For cluster formation, the K-Means clustering algorithm
was used due to its simplicity, ease of implementation, and
computational efficiency. This algorithm aims to partition the
SUs into k clusters, where each SU corresponds to the cluster
whose centroid is the closest [19].
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Figure 1. Spatial distribution of SUs, shadowed regions, and cluster formation
using the K-Means algorithm.

The process begins with the random selection of k initial
centroids, which are iteratively adjusted until the cluster
positions stabilize or no longer change significantly. This
method allows the partitioning of SUs based on their two-
dimensional positions (x, y). The necessary information for
the clustering process includes the total number of SUs (mT )
and the maximum number of clusters (cmax).

IV. CLUSTER-BASED COOPERATIVE SPECTRUM SENSING

In cluster-based CSS, all SUs equipped with spectrum
sensing capability actively participate in the spectrum detection
process by collecting samples of the primary signal within their
respective operating regions. Moreover, each SU is capable
of processing this information and making a local decision
regarding the presence or absence of the PU. Instead of
reporting directly to the FC, the SUs forward their local
decisions to the CH, which is responsible for aggregating
the detection decisions within its cluster.

The CH considers the decisions of the nodes belonging to
its cluster and its own decision to determine the final decision
of the cluster and transmits this decision to the FC. The FC
processes the decisions of multiple CHs and makes the final
decision on spectrum occupancy, determining whether the
channel is available or if there is an active primary user in
the network. All sensors have direct communication capability
with the FC and, for this reason, can assume the role of CH
when selected.

Figure 2 shows the architecture of a cluster-based CSS,
highlighting the different decision reporting channels. The SUs
transmit their local decisions to the corresponding CH via
reporting channels, represented by dashed lines. Then, the
CHs forward the cluster decisions to the FC using channels
indicated by solid arrows, ensuring data consolidation for
the final decision-making. Additionally, the sensing channel,
represented by a zigzag arrow, illustrates the reception of the
primary signal by the SUs.

Figure 2. Architecture of a CSS based on cluster.

A. Binary hyphotesis test

Spectrum sensing can be mathematically modeled as a binary
hypothesis test, where the objective is to decide between two
possible conditions of the radio frequency (RF) spectrum:
• H0 (Null Hypothesis): The spectrum does not contain a

primary signal, e.g., the band is unoccupied. In this case,
the received signal consists only of noise.

• H1 (Alternative Hypothesis): The spectrum contains an active
primary signal, indicating that the band is occupied. Thus,
the received signal is composed of the sum of the PU signal
and noise.

This decision is made by comparing a test statistic T with a
pre-established decision threshold γ. The criterion for choosing
the hypothesis follows the following rule:

T > γ ⇒ H1, (1)

T ≤ γ ⇒ H0, (2)

If the statistic T exceeds the threshold γ, it is concluded that
a primary signal is present in the sensed band (H1). Otherwise,
it is decided that there is no active transmission in the band
(H0). Mathematically, the hypotheses can be expressed as:

y(t) =

{
n(t), under H0,

h(t)x(t) + n(t), under H1,
(3)

where:
• y(t): Signal received by the SU.
• n(t): Additive white Gaussian thermal noise (AWGN).
• h(t): Gain or attenuation factor of the transmission

channel.
• x(t): Signal transmitted by the Primary Transmitter.

The test statistic T is derived from the processing of the
signal y(t) received by the SU, and its construction varies
according to the chosen sensing technique. Different methods
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for creating this statistic give rise to various types of detectors,
with Energy Detection (ED) being the most widely used due
to its low implementation complexity.

B. Energy Detection

ED differentiates the presence or absence of the primary
signal based on the energy of the samples collected during
a sensing interval. This technique is widely used due to its
simplicity and effectiveness, especially when there is no prior
knowledge of the transmission signal characteristics [10].

The test statistic of the ED for the j-th SU is:

Tj =
1

n

n∑
i=1

|yj,i|2 , (4)

where n is the number of samples at the j-th SU, and |yj,i|
represents the magnitude of the i-th sample at the j-th SU. In
CSS with decision fusion, local decisions (at the SUs) are made
by comparing Tj with the corresponding decision threshold.

The performance of spectral sensing is commonly measured
using two main metrics: the probability of false alarm (Pfa)
and the Pd, mathematically defined by (5) and (6):

Pd = Pr
[
T > γ | H1

]
, (5)

and Pfa is defined as:

Pfa = Pr
[
T > γ | H0

]
, (6)

where H1 and H0 represent the hypotheses of the presence
and absence of the signal transmitted by PUs, respectively.

A low Pfa is desirable, as it maximizes efficient spectrum
utilization, allowing the secondary network to exploit commu-
nication opportunities when the spectrum is truly unoccupied.
Conversely, a high Pd is crucial to ensure the protection of the
primary network, minimizing the risk of interference caused
by the secondary network.

V. SIGNAL AND CHANNEL MODELING

Consider a CSS with mT SUs, each collecting n complex
samples of the signal transmitted by the PU in each sensing
interval. The samples collected by the SUs can be organized
as in [8].

The Gaussian distribution was adopted for the transmitted
signal x, as it simplifies mathematical analysis. Moreover, the
choice of the Gaussian distribution facilitates the evaluation
of detection performance, proving to be an effective and
reasonable approach for signal modeling in various practical
communication scenarios.

The elements of h are complex samples of zero-mean
Gaussian variables, independent and identically distributed
(i.i.d.), modeling a flat Rayleigh fading channel between the
PU and each SU. The Rayleigh channel was chosen to represent
a scenario without a direct line of sight between the transmitter
and receiver, characterizing an environment dominated by
multipath propagation and reflections.

The samples in x are complex Gaussian random variables
with zero mean and variance Ptx,PU, where Ptx,PU represents

the transmission power of the PU. Thus, the power of the
primary signal received by the j-th SU (Prx,SUj

) is given by
the log-normal prediction model, as described by (7):

Prx,SUj
(dBm) = Ptx,PU(dBm)− 10α log10

(
dPU,j

)
, (7)

where dPU,j is the distance from the PU to the j-th SU, and α
is the path loss exponent. Higher values of α indicate greater
signal attenuation. The shadowing effect was considered by
adjusting the value of α, resulting in greater attenuations in
the power received by the SUs in these regions.

VI. ENERGY CONSUMPTION MODELING

The energy of the SUs decreases as they participate in
the sensing process. SUs that reach energy levels below the
threshold are deactivated to preserve the reliability of the
network and maintain the balance of energy load.

Initially, the SUs perform sensing simultaneously during the
period τs. Subsequently, they transmit their decisions to the
corresponding CH within the period τr,SU. The CH then makes
the cluster decision and forwards it to the FC within the period
τr,CH.

Energy consumption in the sensing process is directly
related to the fusion method adopted. In decision fusion,
energy consumption is higher than in data fusion because
the processing of the received signal involves additional
steps beyond simply collecting samples. However, in the
reporting step, the local decision can be represented by just
1 bit, significantly reducing energy consumption compared to
transmitting multiple bits per sample in data fusion. Given this
advantage in the reporting step, the decision fusion approach
was adopted in this work. It is assumed that the reporting
channel is error-free, ensuring accurate communication between
the SUs and the CH, as well as between the CH and the FC,
for sensing decisions.

SUs whose energy falls below a certain threshold are
permanently excluded from sensing, being classified as inactive
or “dead.” Since any SU can assume the role of CH, the energy
threshold (λ) was calculated as the minimum energy required
to perform sensing and report the decision to the FC. This
value considers the distance between the SU and the FC to be
equal to the coverage area radius (r), as shown in the equation
below:

λ = (Ps + Prx,FC rα) , (8)

where Ps is the power used for spectrum sensing, and Prx,FC
corresponds to the receiver sensitivity of the FC, representing
the minimum acceptable received power level.

The residual energy, in joules, of the j-th SU in the secondary
network during a sensing cycle can be calculated by:

E(j)
r = E(j) −

(
Ps τs + P

(i,j)
tx,SU τr,SU + P

(j)
tx,CH τr,CH

)
, (9)

where E
(j)
r represents the residual energy of the j-th SU during

the sensing process, and E(j) refers to the energy available
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in the j-th SU, which is initially uniform across all SUs. Ps

is the power for spectral sensing, P
(i,j)
tx,SU is the power used

by the j-th SU to transmit its decision to the i-th CH, and
P

(j)
tx,CH is the power of the signal transmitted by the j-th CH

to communicate the cluster decision to the FC, calculated in
(10) and (11). If the reporting occurs from SU to CH, the term
P

(j)
tx,CHτr,CH = 0. On the other hand, if the reporting is from

CH to FC, the term P
(i,j)
tx,SUτr,SU = 0.

Applying the distance path loss model, the values of P (i,j)
tx,SU

and P
(j)
tx,CH are calculated as follows:

P
(i,j)
tx,SU = Prx,CH dα

CHij
, (10)

and

P
(j)
tx,CH = Prx,FC dα

FCj
, (11)

where dCHij represents the distance from the j-th SU to the
i-th CH, and dFCj

is the distance from the j-th CH to the FC.
Prx,FC and Prx,CH are the sensitivities of the FC’s and CHs’
receivers (minimum admissible levels of received power), and
α is the path loss exponent.

At each sensing cycle, the energy of the active SUs is reduced
as described in [12]. Active SUs are those that have not been
excluded, either temporarily or permanently, and have sufficient
energy to continue participating in the sensing process.

VII. PROPOSED ALGORITHM

An algorithm is presented that integrates temporary and
permanent sensor exclusion with the dynamic selection of CHs.
The components of the algorithm are detailed individually, as
described below:

A. SUs Exclusion Algorithm

The exclusion of SUs is determined based on the individual
performance of each one, continuously evaluated during the
sensing cycles. This performance is monitored by the system’s
global decision, made by the FC, which penalizes SUs that
make detection errors. This approach ensures that only SUs
with satisfactory performance remain active in the sensing
process.

In the considered model, each SU makes a local decision
about the channel status (free or occupied) and sends it to
the CH, which in turn aggregates the decisions of its SUs
and forwards the cluster’s final decision to the FC. The FC
then makes the final decision that prevails for the network,
referred to here as the global decision. Since the true spectrum
status is unknown, the SUs do not have access to their actual
sensing performance. However, the FC is able to compare each
SU’s local decision with its global decision. If the spectrum
is considered idle, the SUs compete for spectrum access
using appropriate multiple access techniques; otherwise, a new
sensing cycle is initiated.

To better understand how decisions are made, the following
terms are used:

• TX (Transmission Medium State): Represents the true state
of the spectrum. TX = 0 indicates that the medium is free
(idle, not occupied by the PU), while TX = 1 indicates that
the medium is occupied by the PU.

• GD (Global Decision): Decision made by the FC based on
the local decisions reported by the CHs. GD = 0 indicates
that the system decided under hypothesis H0 (spectrum idle),
while GD = 1 indicates hypothesis H1 (spectrum occupied).

• LD (Local Decision): Individual decision of each SU about
the spectrum state, based on its local sensing. LD = 0
indicates that the SU judged the spectrum as idle, and
LD = 1 indicates that the SU considered the spectrum
to be occupied.
An SU’s failure in the sensing process is referred to as a

local failure, while the FC’s failure is referred to as a global
failure. Furthermore, failures are classified as either verifiable
or non-verifiable. If there is a transmission by the SU, which
occurs when GD = 0, the success or failure of the decision
can be verified, since it is assumed that an acknowledgment
message from the receiver will indicate whether the message
was correctly received, characterizing a successful decision,
or if it was received incorrectly or not at all, resulting in
a negative acknowledgment or absence of acknowledgment,
which characterizes a failed decision.

If there is no transmission by the SU, which occurs when
GD = 1, both the SU and the FC are unable to determine
whether their decisions were actually correct or incorrect. Thus,
if LD = 1 and GD = 1, the SU’s decision matches the FC’s
decision, and the outcome of the decision process is undefined.
Similarly, if LD = 0 and GD = 1, since the true channel state
is unknown, this situation is again considered undefined. If the
SU fails in its decision, whether verifiable or non-verifiable, a
penalty is assigned, which will be used in the SU exclusion
algorithm. Sensors with verifiable failures receive more severe
penalties, with a weight of 2, while those with non-verifiable
failures are penalized less severely, with a weight of 1. Table II
summarizes all possible scenarios.

The penalty weight of the j-th SU, denoted by fj (fj = 1
or 2), is reset at each cycle and varies according to the type
of failure committed in the current cycle, as described above.
If fj ≠ 0, a backoff time is assigned to the SU, given by (12),
which determines the number of cycles during which the sensor
will be temporarily excluded from the sensing process.

The backoff is defined to prevent unnecessary energy
consumption by SUs with low detection performance. However,
these inactive SUs can still participate in the data transmission
process if the channel is detected as idle (GD = 0). The type
of failure determines the penalty value, which directly affects
the backoff time. The backoff time is calculated as follows:

backoffj =
(
2fj − 1

)
, (12)

where backoffj is the number of sensing cycles during which
the sensor will not participate in the sensing process.

The proposed algorithm also considers the possibility of
permanently excluding the SU from the decision process. For



42International Journal on Advances in Networks and Services, vol 18 no 3&4, year 2025, http://www.iariajournals.org/networks_and_services/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. POSSIBLE SCENARIOS OF SUCCESS AND FAILURE IN THE SENSING PROCESS

TX LD GD Result Action taken
0 0 0 Verified Local and Global Success None
0 0 1 Undefined None
0 1 0 Verified Local Failure SU is penalized with weight 2
0 1 1 Undefined None
1 0 0 Verified Local and Global Failure SU is penalized with weight 2
1 0 1 Unverified Local Failure SU is penalized with weight 1
1 1 0 Verified Local Success and Global Failure None
1 1 1 Undefined None

this purpose, a consecutive backoff occurrences counter (β) is
defined, which is incremented by 1 each time the SU enters a
backoff. After the backoff, when the sensor is reintegrated into
the sensing process, if the SU successfully detects the signal,
β is reset to zero. Otherwise, β is incremented by 1 again.
When β reaches a predefined limit, the SU is considered dead
or permanently excluded from the spectrum sensing process.

B. Dynamic CH selection algorithm

After grouping the SUs, k clusters are formed, each with
a centroid representing the cluster’s CM. The CH is selected
as the SU closest to the CM, considering that all SUs have
the same initial energy. However, after a certain number of
cycles, the CM is recalculated, now weighted by the residual
energy of the SUs in the cluster. This new centroid reflects
the current energy distribution of the SUs, and the SU closest
to the centroid, with the highest available residual energy, is
selected as the new CH. The CM is calculated as follows:

Xcm =

m∑
j=1

E(j)
r xj

m∑
j=1

E(j)
r

, (13)

Ycm =

m∑
j=1

E(j)
r yj

m∑
j=1

E(j)
r

, (14)

where m is the total number of sensors in the cluster, E(j)
r

represents the residual energy of the j-th sensor, and xj

and yj represent the x and y coordinates of the j-th sensor,
respectively.

The energy consumption of SUs directly impacts the position
of the CM, as after a certain number of cycles, some sensors
may be deactivated (considered dead) when their residual
energy falls below the desired threshold. To maintain an
efficient energy balance within the cluster, the current CH
is replaced by an eligible SU that meets the minimum energy
requirements. This process is continuously repeated until no
qualified SUs remain to take on the role of CH, ensuring that

sensors with available energy continue to actively participate
in the system. The following pseudocode outlines the main
steps of this dynamic CH selection process.

TABLE III. PSEUDO-CODE 1: DYNAMIC CH SELECTION
ALGORITHM

1 If cycle == cycleCH then
2 For the i-th cluster in the set, up to i = cmax do
3 Obtain the m SUs of cluster i
4 Identify the live SUs among the m SUs in cluster

i

5 Obtain the coordinates of the live SUs
6 Obtain the residual energy of the live SUs
7 Compute the CM weighted, based on 13 and 14

(new centroid)
8 Select the new CH as the SU closest to the new

centroid with the highest residual energy available in
the cluster

9 If the CH has changed then
10 Update the CH coordinates and distances

(dCH , dFC)
11 End If
12 End For
13 cycleCH = cycleCH + 1000

14 End If

In this pseudocode, cycle is the sensing cycle number,
cycleCH represents the periodicity of the CH change process,
which is initially set to 1000 cycles. Live SUs are the sensors
with sufficient energy to participate in the sensing process.

VIII. ANALYSIS AND RESULTS

The results presented in this section were obtained through
computational simulations performed in MATLAB. Pseudo-
code 2 outlines the main steps of the code used to generate
these results. Different CSS approaches were compared, with
the following being evaluated:

• Classic CSS (without clustering): each SU operates inde-
pendently, can act as a CH, and reports its detection decision
directly to the FC [18].
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• Cluster-based CSS: the SUs are organized into clusters and
send their local decisions to the corresponding CHs, which
aggregate the cluster’s decisions and forward the consolidated
decision to the FC [10].

• CSS with the proposed algorithm: combines clustering
with a strategy for temporary and permanent SU exclusion
and dynamic CH selection, aiming to simultaneously improve
detection capability and the lifespan of the secondary
network.

The analyses consider a primary network composed of a
single primary transmitter and a secondary network operating
under different values of mT and maxback in the CSS. The
parameter maxback was defined as the maximum value that the
consecutive backoff occurrence counter β can reach before
the sensor is permanently excluded or considered dead in the
sensing process.

The analysis of the systems is primarily conducted based
on two metrics: system lifetime and Pd. The system lifetime
is defined as the elapsed time until all SUs in the network
become inoperative. To evaluate it, two complementary metrics
were used: the average number of active SUs, representing the
mean number of operational SUs (with sufficient energy for
the sensing process) throughout the simulation cycles; and the
average drop start, which corresponds to the cycle in which
the first SU failure occurs during system operation.

The test statistic for the hypotheses H0 and H1 of the
SUs was derived using the ED, with Pfa = 0.1 adopted in
all scenarios, and the corresponding Pd determined from the
sensing performance simulations. In all scenarios, decision
fusion was implemented using the majority voting (MAJ) logic.

In this pseudocode, E(j) represents the energy available at
the j-th SU, which is initially equal for all SUs. It is calculated
as the minimum power required to perform sensing and report
the decision to the FC, multiplied by the number of cycles
the secondary network can operate. The shadowed areas were
defined as indicated in Table V, considering regions where
signal propagation experiences additional attenuation due to
physical obstacles.

The energy parameters of the secondary network were
adjusted so that, when implementing the classic method, the
network lifetime is approximately 30,000 cycles for each SU
draw, with this draw being performed 100 times. During the
simulation, the metrics were collected, and the average of
the results was then plotted. Table VI presents the system
parameters used in the simulations.

In the simulation, the primary transmitter activity was
modeled using the function randi([0,1]), which follows a
Bernoulli distribution, alternating between active and inactive
states. The signal attenuation was adjusted according to the
path-loss exponent α, defined as:

• α = 2 in areas without shadowing (lower attenuation);
• α = 4 in areas with shadowing (higher attenuation).

Figure 3 shows the Pd performance of the SUs considering
different values of mT . In Fig. 3(a), for mT = 50, it can
be observed that the cluster-based systems and the proposed

TABLE IV. PSEUDO-CODE 2: STEPS ASSOCIATED IN MATLAB

1 Set the values of the system parameters
2 Define the simulation scenario (PU, FC and r)
3 Define the shading areas
4 Calculate the energy threshold λ

5 For each draw, do the following:
6 Generate mT SUs
7 Run the algorithm K-Means
8 Find the CH of each cluster
9 Calculate the distances

10 Calculate the reception power
11 While E(j) > λ, run the detection round:
12 Calculate yj for each SU
13 Calculate the test statistic
14 Find the local decision of the SUs (LDj)
15 Find the system’s global decision (GD)
16 Update the energy consumed
17 Penalize SUs
18 Find new CHs
19 Calculate the distances
20 Disable SUs
21 Define which SUs are still active
22 Calculate the current value of Pd

23 End of sensing round
24 Calculate the average of the metrics
25 End of draw round

TABLE V. SHADED AREAS

Area r X Y
1 150 -200 600
2 150 700 400
3 150 400 -400
4 150 0 -800
5 150 -600 -100

system exhibit a Pd below 0.9, while the classic system
maintains a Pd at or above 0.9. This behavior is related to
the fusion technique used at the FC: in the classic system,
all SU reports are considered, increasing detection accuracy.
In contrast, in the cluster-based and proposed systems, the
decision is based only on the reports sent by the CHs, which
reduces the accuracy of the decision-making process. This drop
compromises the system’s efficiency in the later stages.

In Fig. 3(b), corresponding to mT = 100, it can be observed
that all systems maintain a Pd above 0.9 during the first sensing
cycles, indicating high detection accuracy and reflecting the
robustness of the network and the reliability of the adopted
fusion technique. In the classic system, performance also
increases, approaching 1. In Fig. 3(c), with mT = 200, the
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TABLE VI. SYSTEM PARAMETERS

Parameters Values
mT 50, 100 or 200
cmax 5
r 1000 m

FC (0, 0)

PtxPU 1 W
n 60
α [2, 4]

Ps 1 µW
Pref 0.1

nsensing 30,000
cycleCH 1000
PrxCH −100 dBm
PrxFC −100 dBm

maxback 10, 15 or 20

cluster-based and proposed systems exhibit even higher Pd

values, close to 1, while the classic system remains stable
with Pd equal to 1. These results highlight that increasing the
number of SUs significantly contributes to improving system
accuracy. The increase in the number of sensors raises the
amount of available information, often redundant, strengthening
the decision-making process, since the greater the number of
reports transmitted, the higher the FC’s ability to accurately
identify the occupancy status of the band.

The performance in terms of Pfa is approximately zero in all
analyzed scenarios, due to the criteria adopted in the system
design.

The classic system showed higher Pd in all analyzed scenar-
ios due to the fusion technique applied at the FC, as previously
described. However, the proposed system demonstrates greater
stability, maintaining satisfactory performance even in the final
stages, when the SUs start being permanently deactivated. It is
worth noting that, in the Pd graph, the curves end at the point
where no more SUs are available in the network to perform
sensing.

Figure 4 illustrates the lifespan of the secondary network. It
can be observed in Fig. 4(a), (b), and (c) that the classic system
operates for just over 30,000 cycles. Since the SUs are randomly
positioned, some may be closer to the FC, resulting in lower
energy consumption when transmitting their decisions. This
variation causes certain SUs to take longer to be deactivated,
slightly extending the overall network lifespan.

In all the curves of Fig. 4, it can be observed that the
proposed system exhibits a longer lifespan compared to the
others. However, Fig. 4(a), with mT = 50, shows a more
significant relative gain compared to the curves in Fig. 4(b)
and (c), with mT = 100 and mT = 200, respectively. This
can also be attributed to the higher dispersion of the SUs in
scenarios with lower density, resulting in more varied energy
consumption patterns. As the number of SUs increases, they
tend to be positioned closer to each other, leading to more

Figure 3. Pd for cmax = 5, n = 60 samples per SU, with mT = 50, 100,
and 200 from top to bottom.

uniform energy consumption and, consequently, reducing the
impact of heterogeneity on the network’s lifespan.

For this reason, the curves for mT = 100 and mT = 200
exhibit similar behaviors, with a slight reduction in lifespan
observed in Fig. 4(c). Furthermore, it is important to highlight
that in Fig. 4(b), the CSS is cluster-based, which means
the network operation depends directly on the CHs. When
a CH ceases to operate, all nodes in the associated cluster
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are deactivated. In contrast, in Fig. 4(c), where the proposed
algorithm is applied, if a CH stops operating, another CH is
assigned to the cluster.

It can be inferred, therefore, that increasing the number of
SUs tends to stabilize the network’s lifespan, as the SUs begin
to operate under similar conditions. To ensure that the addition
of more SUs continues to provide significant durability gains,
it would be necessary to expand the network’s coverage area,
keeping the SUs relatively dispersed.

Although the classic system and the clustered system exhibit
approximately the same lifespan, in the classic system all SUs
send their decisions directly to the FC. In dense networks,
this can cause communication overload, compromising system
efficiency. On the other hand, the clustered system organizes the
SUs into smaller groups, which improves network scalability
and allows for the application of more efficient strategies for
energy management, thereby contributing to the extension of
the network’s lifespan.

The oscillation observed in the average number of active
SUs during the final cycles of the proposed algorithm results
from the dynamics between penalties for detection failures,
shutdown conditions due to low energy, and possible temporary
reactivations of the SUs. SUs are disabled when their residual
energy falls below a threshold λ and an additional parameter
β. The system alternates between deactivating SUs with
insufficient energy and reintegrating them when detection con-
ditions become favorable. This intermittent behavior, combined
with the use of an average-based metric, causes noticeable
fluctuations in the curve, especially when the number of
active SUs approaches the minimum threshold required for the
system’s continued operation.

Although the classic system exhibits higher Pd values, as
illustrated in Fig. 3, it can be observed in Fig. 4(a)–(c) that
the proposed system provides a significantly longer network
lifespan.

Figure 5 illustrates the lifespan of the fixed scenario with
variations in the maximum number of consecutive backoffs
(maxback). This parameter defines the limit for the consecutive
backoff occurrence counter β of each sensor; that is, when the
value of βj (the backoff occurrence counter of the j-th sensor)
reaches maxback, the respective sensor is permanently disabled
from the sensing process.

The highlighted points in Fig. 5 indicate the average onset
of SU deaths, i.e., the cycle in which the SUs begin to be
deactivated due to poor spectral sensing performance. As this
technique is exclusive to the proposed algorithm, the analysis
focuses only on the curves corresponding to this system.

The backoff mechanism, described in (12), consists of
assigning temporary inactivity periods to SUs with poor
detection performance, reducing energy consumption during
these intervals. SUs located in shadowed areas experience
higher signal attenuation due to the presence of obstacles,
which increases the likelihood of errors in spectral sensing. As
a result, these SUs tend to fail more frequently, remaining in
backoff for several consecutive cycles until, upon reaching the

Figure 4. Network lifespan for cmax = 5, n = 60 samples per SU, with
mT = 50 in graph (a), mT = 100 in graph (b), and mT = 200 in graph

(c).

maximum allowed number of backoffs, they are permanently
disabled from the sensing process.

The premature deactivation of SUs is directly related to
the value of maxback. In Fig. 5, with maxback = 10, SUs
in unfavorable regions are disabled more quickly, as they
accumulate consecutive backoffs in fewer cycles. When βj

reaches the limit, the SU is considered dead for the sensing
process, even if it still has available energy.
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In Fig. 5, with maxback = 15, the SUs take longer to be
permanently disabled. With maxback = 20, the SUs remain
active for an even longer period. This analysis shows that,
in the proposed system, the quality of spectrum sensing is
prioritized over residual energy. That is, a sensor may be
excluded from the sensing process even if it has sufficient
energy, if its detection performance is unsatisfactory.

Figure 5. Network lifetime for mT = 100, cmax = 5, n = 60 samples per
SU, with variable maxback.

IX. CONCLUSION

The proposed algorithm, which integrates temporary and
permanent sensor exclusion with dynamic CH selection,
provides significant gains in energy efficiency and in the
longevity of the secondary network in CRNs. In the evaluated
scenarios, the proposed solution increases the CRN lifetime
from approximately 3× 104 to about 6× 104 sensing cycles,
which corresponds to an average network lifetime gain close to
100% relative to the classical method, without compromising
sensing performance. Simulations demonstrated that, even in
scenarios with varying SU densities and backoff configurations,
the algorithm maintains a robust Pd while distributing energy
consumption evenly among the sensors. Compared to the clas-
sical and clustering-based systems, the proposed method stands
out for its performance stability, adaptability under adverse
conditions, and reduction of the impact of localized failures.
Thus, the algorithm contributes not only to the protection of
the primary network by ensuring reliable sensing decisions but
also to the operational sustainability of the secondary network,
making it an effective approach for implementing more resilient
and energy-efficient CRNs.
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