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Abstract—This paper tackles a Virtual Machine (VM) migra-
tion control problem to maximize the progress (accuracy) of in-
formation processing tasks in multi-stage information processing
systems. The conventional methods for this problem are effective
only for specific situations, such as when the system load is high.
In this paper, in order to adaptively achieve high accuracy in
various situations, we propose a VM migration method using a
Deep Reinforcement Learning (DRL) algorithm. It is difficult to
directly apply a DRL algorithm to the VM migration control
problem because the size of the solution space of the problem
dynamically changes according to the number of VMs staying
in the system while the size of the agent’s action space is fixed
in DRL algorithms. To cope with this difficulty, the proposed
method divides the VM migration control problem into two
problems: the problem of determining only the VM distribution
(i.e., the proportion of the number of VMs deployed on each
edge server) and the problem of determining the locations of
all the VMs so that it follows the determined VM distribution.
The former problem is solved by a DRL algorithm, and the
latter by a heuristic method. This approach makes it possible to
apply a DRL algorithm to the VM migration control problem
because the VM distribution is expressed by a vector with a fixed
number of dimensions and can be directly outputted by the agent.
The simulation results confirm that our proposed method can
adaptively achieve quasi-optimal accuracy in various situations
with different link delays, types of the information processing
tasks and the number of VMs.

Keywords-Multi-stage information processing system; VM mi-
gration control; Deep reinforcement learning; Deep Deterministic
Policy Gradient (DDPG)

I. INTRODUCTION

This paper is an extended and improved version of an earlier
paper presented at the IARIA International Conference on
Networks (ICN 2024) [1] in Barcelona, Spain.

In recent years, ultra-real-time services, such as Cross
Reality (XR) and automated driving, are expected to appear.
In these services, information processing tasks requested by
clients need to be executed immediately (e.g., on the order
of milliseconds) and the progress (accuracy) of the processing
results should be as high as possible.

A multi-stage information processing system [2] [3] is one
of the promising candidates for the edge computing infrastruc-
tures for ultra-real-time services. In the system, information
processing tasks requested by clients are executed in parallel
by an edge server and a data center. The edge server prioritizes
responsiveness over accuracy; it returns the highly responsive
but low accurate processing results to the clients while the
data center prioritizes accuracy over responsiveness; it return
the highly accurate but low responsive processing results to
the clients. When operating ultra-real-time services in a multi-
stage information processing system, it is important to maxi-
mize the accuracy of information processing tasks executed by
the edge servers while satisfying the responsiveness requested
by clients.

Previous researches on multi-stage information processing
systems focused on improving the accuracy of information
processing tasks executed by edge servers through Virtual Ma-
chine (VM) migration control [2] [3]. VM migration control
dynamically migrates VMs, which execute the information
processing tasks requested by clients on edge servers, among
multiple edge servers, which leads to effective use of CPU
resources on edge servers, appropriate adjustment of CPU
times allocated to the tasks and reduction of the communi-
cation delay between clients and VMs, thereby improving the
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accuracy of the tasks. In the previous researches, as heuristic
methods for VM migration control, VM sweeping method [3],
VM number averaging method [3], early-blooming type pri-
ority processing method [2], and late-blooming type priority
processing method [2] were proposed and their effectiveness
were confirmed. These methods are, however, effective only in
specific situations, such as when the system load is high and
the type of information processing tasks is the late-blooming
type. Since the system load and the type of information
processing tasks change dynamically, VM migration control
that can adaptively achieve high accuracy in a wide variety of
situations is needed.

In this paper, in order to adaptively achieve high accuracy
in a variety of situations, we propose a VM migration method
using a Deep Reinforcement Learning (DRL) algorithm. DRL
algorithms are expected to adaptively achieve a quasi-optimal
performance in a variety of situations through interactions
between a learning agent and a dynamically changing envi-
ronment. On the other hand, it is difficult to directly apply a
DRL algorithm to the VM migration control problem because,
in the problem, the size of the solution space dynamically
changes according to the dynamic changes in the number
of VMs staying in the system while the size of the agent’s
action space is fixed in DRL algorithms, and consequently
it is difficult for the agent to directly output an solution for
the problem. To cope with this difficulty, in this paper, we
divide the VM migration control problem into two problems:
the problem of determining only the VM distribution (i.e.,
the proportion of the number of VMs deployed on each edge
server) and the problem of determining the locations of all
the VMs so that it follows the determined VM distribution.
The former problem is solved by a DRL algorithm, and the
latter by a heuristic method. This approach makes it possible
to apply a DRL algorithm with a fixed action space size to the
VM migration control problem because the VM distribution
is expressed by a vector with a fixed number of dimensions
and can be directly outputted by the agent.

The rest of this paper is organized as follows. Section II
introduces related work on VM migration control. Section III
describes the multi-stage information processing system and
the VM migration control problem. In Section IV, we propose
a VM migration method using a DRL algorithm. In Section
V, we evaluate the effectiveness of our proposed method with
computer simulations. In Section VI, we summarize the paper.

II. RELATED WORK

The previous researches in [4]–[11] tackle VM migration
control problems in server migration services, and propose
heuristic methods [4] [6], mathematical programming meth-
ods [5], [7]–[9], [11], and Q-learning methods [10]. These
methods, however, aim at improving the communication qual-
ity between clients and VMs and reducing network power
consumption, and do not consider the accuracy of information
processing tasks.

The previous researches in [2] [3] tackle VM migration con-
trol problems in multi-stage information processing systems,
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Figure 1. Multi-stage information processing systems.
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Figure 2. Flow of information processing in a multi-stage information
processing system.

and propose the heuristic methods; VM sweeping method [3],
VM number averaging method [3], early-blooming type pri-
ority processing method [2], and late-blooming type priority
processing method [2]. These methods are, however, effective
only in specific situations. For example, the VM sweeping
method is shown to be effective only in situations where the
system load is high and the type of information processing
tasks is the late-blooming type. Since the system load and the
type of information processing tasks change dynamically, VM
migration control that can adaptively achieve high accuracy in
a wide variety of situations is needed.

The previous researches in [12] [13] tackle VM migration
control problems in mobile edge computing, and propose VM
migration methods using Deep Q-Network (DQN) [14], which
is a kind of DRL algorithms. These methods, however, can
only be applied to VM migration control problems with a
single VM because the size of an agent’s action space is
fixed in DQN, and cannot be applied to VM migration control
problems with multiple VMs.

III. MULTI-STAGE INFORMATION PROCESSING SYSTEMS

As shown in Figure 1, a multi-stage information processing
system consists of edge servers located proximate (e.g., base
stations) to clients and data centers located distant from them.
The system provides clients with both highly responsive and
highly accurate processing results by executing information
processing tasks in parallel at the edge servers and the data
centers.
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Figure 3. Relationship between CPU time allocated to a task and accuracy
of the task.
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Figure 4. VM migration control in a multi-stage information processing
system.

Figure 2 shows the flow of information processing in a
multi-stage information processing system. A client requests
both an edge server and a data center to process its task
in parallel. When the response time permitted by the client
approaches, the edge server terminates its processing to meet
the permitted response time and returns the highly responsive
processing result to the client. The data center, on the other
hand, accomplishes its processing and returns the highly
accurate processing result to the client.

In this paper, we adopt the accuracy model (i.e., the rela-
tionship between the CPU time (tCPU ) allocated to a task and
the accuracy (f(tCPU )) of the task) in [3]. Figure 3 shows
the accuracy model. In the model, the accuracy of the task is
calculated as follows.

f(tCPU ) = (
tCPU
Tcomp

)

log(0.5)

log(HALFtime
Tcomp

) (1)

where Tcomp represents the time for the task to be completed
(i.e., accuracy reaches 1.0) and HALF time represents the time
for the task to reach accuracy of 0.5. Tasks are classified based
on their HALF time. The tasks with HALF time shorter than
0.5 Tcomp are classified into early-blooming type, those with
HALF time of 0.5 Tcomp are classified into linear type, and
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Figure 5. Size of solution space in VM migration control problem.

those with HALF time longer than 0.5 Tcomp are classified
into late-blooming type.

In this paper, we tackle a VM migration control problem
among multiple edge servers for maximizing the accuracy
of information processing tasks executed by edge servers
while satisfying the responsiveness requested by the clients
(Figure 4). The objective of the problem is to maximize the
sum of accuracies of all the information processing tasks. VM
migration enables effective use of CPU resources on edge
servers, appropriate adjustment of CPU times allocated to
the tasks and reduction of the communication delay between
clients and VMs, thereby improving the accuracy of the tasks.
On the other hand, VM migration stops the execution of the
tasks during the VM migration time, which may decrease the
accuracy of the tasks. We need to carefully determine the
locations of the VMs with consideration of the pros and cons
of VM migration.

IV. PROPOSED METHOD

In this paper, in order to adaptively achieve high accuracy
in a variety of situations, we propose a VM migration method
using a Deep Reinforcement Learning (DRL) algorithm. In
reinforcement learning, an agent learns policy (i.e., how to map
a situation to an action) from interactions with an environment
in discrete timesteps. At each timestep t, the agent observes
state st of the environment, takes action at and receives reward
rt. The objective of the agent is to acquire the policy that max-
imizes the discounted cumulative reward Rt =

∑T
i=t γ

i−tri
where γ ∈ [0, 1] is the discount rate. We believe that DRL
is promising for VM migration control because the agent can
adaptively learn an appropriate policy in accordance with the
dynamically changing environment.

With regard to applying a DRL algorithm to a VM migration
control problem in multi-state information processing systems,
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Figure 6. Outline of our proposed method.
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Figure 7. Interaction between the DDPG agent and the environment.

it should be noted that the size of the solution space (i.e.,
the total number of all possible solutions) of the problem
dynamically changes according to the dynamic changes in the
number of VMs staying in the system. As shown in Figure 5,
the size of the solution space is EK where E is the number
of edge servers and K is the number of VMs, and the size of
the solution space EK dynamically changes according to the
number of VMs K. On the other hand, the size of the agent’s
action space in DRL algorithms is fixed. For example, an agent
in Deep Deterministic Policy Gradient (DDPG) [15] outputs
a vector with a fixed number of dimensions. Therefore, it is
difficult for an agent to directly output an solution for the VM
migration control problem.

To cope with the dynamic change in the size of solution
space, we divide the VM migration control problem into two
problems (Figure 6): the problem of determining only the
VM distribution (i.e., the proportion of the number of VMs

deployed on each edge server) and the problem of determining
the locations of all the VMs so that it follows the determined
VM distribution. The former problem is solved by a DRL
algorithm, and the latter problem is solved by a heuristic
method. This approach makes it possible to apply a DRL
algorithm with a fixed action space size to the VM migration
control problem because the VM distribution is expressed by a
vector with a fixed number of dimensions and can be directly
outputted by an agent.

We adopt DDPG [15] as a DRL algorithm. DDPG approx-
imates both a policy function µ(s|θ) (Actor) and an action-
value function Q(s, a|ϕ) (Critic) with deep neural networks.
Actor µ(s|θ) maps a given state to an action to be taken. Critic
Q(s, a|ϕ) maps a given state-action pair to the expected value
of the discounted cumulative reward if the action is taken
under the state. During the training phase, Critic Q(s, a|ϕ)
and Actor µ(s|θ) are updated using experiences, which are
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expressed with the tuple (st, at, rt, st+1), obtained in interac-
tions with the environment. As for Critic Q(s, a|ϕ), weights
ϕ of Q(s, a|ϕ) are updated with a gradient decent method so
that the following loss L is minimized:

L = E
[
(yt −Q(s, a|ϕ))2

]
(2)

where yt = rt + γQ(st+1, µ(st+1|θ)|ϕ). As for Actor µ(s|θ),
weights θ of µ(s|θ) are updated with a gradient ascent method
so that the performance (J) of the actor (i.e., expected value
of the discounted cumulative reward) is maximized. In the
gradient ascent method, the policy gradient ∇θJ is calculated
by applying the chain rule to J with respect to weights θ as
follows.

∇θJ ≈ E
[
∇θQ(s, a|ϕ)

]
= E

[
∇aQ(s, µ(s|θ)|ϕ)∇θµ(s|θ)

]
(3)

In DDPG, Actor can output the VM distribution (i.e., the
proportion of the number of VMs deployed on each edge
server) as an action because it can operate over continuous
action space. As well as DQN [14], DDPG adopts experience
replay and target network techniques in order to train Actor
and Critic in a stable and robust way.

Figure 7 depicts an interaction between a DDPG agent
and an environment, which corresponds to the VM migration
control problem. When applying a DRL algorithm to the VM
migration control problem, we need to define action, state,
and reward in accordance with the problem. Action at of the
agent is defined as the VM distribution (i.e., the proportion
of the number of VMs deployed on each edge server), and is
expressed with the following equation.

at = (p1, p2, . . . , pE) (4)

where pi is the proportion of the number of VMs deployed
on edge server i. State st of the environment is defined as the
numbers of VMs deployed on edge servers for observing the
load of each edge server, and is expressed with the following
equation.

st = (d1, d2, . . . , dE) (5)

where di is the number of VMs deployed on edge server i.
Reward rt is defined as the total increase in accuracy of all
the tasks during the period from the last VM migration control
to the current one.

Algorithm 1 in Figure 8 shows the procedure of our pro-
posed method. In line 1, we generate Actor µ(s|θ) and Critic
Q(s, a|ϕ), and randomly initialize weights θ and ϕ. In lines
2 and 3, we generate the target networks of Actor and Critic,
initialize their weights with those of Actor and Critic, and
initialize replay buffer R, which stores a set of experiences for
experience replay. The procedures in lines 4 to 17 and those
in lines 7 to 16 are repeated for each episode and for each
timestep of the episode, respectively. In lines 8 to 11, the agent
selects action at (i.e., VM distribution), determines locations
of all the VMs by the heuristic, observes reward rt and next
state st+1, and stores the obtained experience (st, at, rt, st+1)

Algorithm 1 Procedure of our proposed method

1: Randomly initialize weights θ of Actor µ(s|θ) and weights
ϕ of Critic Q(s, a|ϕ)

2: Initialize weights of Actor’s target network µ′(s|θ′) and
Critic’s target network Q′(s, a|ϕ′): θ′ ← θ，ϕ′ ← ϕ

3: Initialize replay buffer R
4: for episode = 1, M do
5: Initialize a random noise N for action exploration
6: Observe initial state s1 from the environment
7: for t = 1, T do
8: Select VM distribution at = µ(st|θ) +Nt as action
9: Determine locations of all the VMs by the heuristic

method among the VM locations that follow the
determined VM distribution at, and migrates the
VMs

10: Observe reward rt and the next state st+1

11: Store experience (st, at, rt, st+1) in R
12: Sample a random minibatch of N experiences

(si, ai, ri, si+1) from R
13: Learning of Critic:

Calculate target value yi:
yi = ri + γQ′(si+1, µ

′(si+1|θ′)|ϕ′)
Update weights ϕ with a gradient descent method so
that loss L = 1

N

∑
i(yi−Q(si, ai|ϕ))2 is minimized

14: Learning of Actor:
Calculate policy gradient ∇θJ :
∇θJ ∝ 1

N

∑
i∇aQ(si, µ(si|θ)|ϕ)∇θµ(si|θ)

Update weights θ with a gradient ascent method so
that performance of Actor J is maximized

15: Update weights of target networks:
θ′ ← τθ + (1− τ)θ′

ϕ′ ← τϕ+ (1− τ)ϕ′

16: end for
17: end for

Figure 8. Procedure of our proposed method.

to the replay buffer. Please note that a random noise N is
added to the output by Actor for action exploration. In lines 12
to 15, we train Actor, Critic and target networks. In line 13, we
update weights ϕ of Critic Q(s, a|ϕ) with a gradient descent
method. Please note that we use target networks Q′(s, a|ϕ′)
and µ′(s|θ′) instead of Critic Q(s, a|ϕ) and Actor µ(s|θ) for
calculating target value yi. In line 14, we update weights θ of
Actor µ(s|θ) with a gradient ascent method. In line 15, we
update weights of target networks.

After determining the VM distribution, we determine the
locations of all the VMs by a heuristic method so that it
follows the determined VM distribution. In this paper, we
adopt a minimum client-VM delay method as the heuristic
method. The minimum client-VM delay method selects the
VM location with the minimum sum of the delays between
clients and VMs in a brute force manner among the VM
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locations that follow the VM distribution determined by the
DDPG agent.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed method with
computer simulations. Section V.A explains the simulation
model. Section V.B shows the evaluation results.

A. Simulation Model

We developed the VM migration control simulator and
the DDPG agent with OpenAI Gym [16] and Keras-rl [17],
respectively. Table I summarizes the parameter settings as to
the DDPG agent. We adopt the same parameter values as
those used by the DDPG agent in Keras-rl [17] because the
previous research [15] reports that a DDPG agent with the
same parameter setting successfully solved various physics
tasks.

The left side of Figure 9 shows the network model. The
network consist of four edge servers, which are connected
in a full mesh manner. An edge server equally allocates its
CPU time to all the VMs located on it. A VM is individually
generated for each client, that is, the number of VMs is equal
to the number of clients. We set the response time permitted by
a client to 110 [ms] and the completion time of an information
processing task (Tcomp) to 110 [ms].

In order to evaluate whether our proposed method can
adaptively cope with various situations, we change 1) link
delay, 2) task type, and 3) total number of clients as follows.

1) link delay
We assume that the delays of all the links are identical.
We set the delay of each link to one of the following
values: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 [ms].

2) task type
We assume that task type (i.e., HALF time) of all the
information processing tasks are identical. We set HALF
time of each task to either (1) 11 [ms] (= 0.1 ×Tcomp)
assuming the task type is the early-blooming type, (2)
55 [ms] (= 0.5 ×Tcomp) assuming the task type is the
linear type, or (3) 99 [ms] (= 0.9 ×Tcomp) assuming the
task type is the late-blooming type.

3) total number of clients
We set the total number of clients that join the system
(and the corresponding VMs) to either four or eight.

During an episode of the simulation, the following events
occur (right side of Figure 9). When an episode starts, four
or eight clients join the system in turn at time 0.1 [ms] with
the interval of 0.1 [ms]. The locations of all the clients are
fixed at edge server 1 during the episode. The initial locations
of all the VMs are set to edge server 1. At time 3 [ms], we
perform the first VM migration control. Then, at time 103
[ms], we perform the second VM migration control. Lastly,
all the clients leave the system in turn at time 110.1 [ms] with
the interval of 0.1 [ms]. The first VM migration control aims
at determining the locations of the VMs during the episode
and the second VM migration control aims at obtaining the
reward and the experience for training the DDPG agent.

TABLE I
PARAMETER SETTINGS

Parameter Value
Number of training episodes (M ) 10,000

Discount rate (γ) 0.99
Number of hidden layers Actor：2，Critic：5

Number of neurons in a hidden layer Actor：256, 256，
Critic：16, 32, 32, 256, 256

Activation function of hidden layers Actor：relu，Critic：relu
Learning rate (α) Actor：0.001，Critic：0.002

Noise process for action exploration (N ) Ornstein-Uhlenbeck process
Size of replay buffer 10,000
Minibatch size (N ) 64

Weights of updated parameters
when updating the weights of

target networks (τ )
0.005
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Figure 9. Network model and events in an episode.

We compare our proposed method with the following meth-
ods.

• VM sweeping method [3]
It classifies all the edge servers into a congested edge
server and working edge servers. On each of the working
edge servers, a single VM with higher accuracy increase
rate is individually deployed so that the VM can occupy
the CPU time on the edge server. On the congested edge
server, the remaining VMs are aggregated.

• VM number averaging method [3]
It equally distributes all the VMs to all the edge servers
for load balancing.

• Non-migration method
It fixes all the VMs at their initial edge server (i.e., edge
server 1).

• Minimum client-VM delay method
It locates each of the VMs on the edge server most
proximate to its client.

B. Evaluation Results

Figure 10 shows the average accuracy as a function of
link delay for all the VM migration methods when the task
type is the early-blooming type (HALF time = 11 [ms]) and
the total number of clients (and the corresponding VMs) is
four. The average accuracy of our proposed method (DDPG
+ Minimum client-VM delay method) is plotted with 95%
confidence interval of 50 trials because it varies trial-by-trial
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Figure 10. Average accuracy as a function of link delay (HALF time: 11
[ms], Total number of clients: 4).
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Figure 11. Average accuracy as a function of link delay (HALF time: 55
[ms], Total number of clients: 4).

depending on the initial weights of Actor and Critic, and the
noises for action exploration.

Both non-migration method and minimum client-VM delay
method show the constant accuracy of about 0.65 regardless of
the link delay. This is because these methods always fix all the
VMs at their initial edge server (edge server 1) regardless of
the link delay. Both VM sweeping method and VM number
averaging method achieve the maximum accuracy of about
0.98 when the link delay is 1 [ms], and the accuracy decreases
as the link delay increases. This is explained as follows. These
methods always distribute the VMs to all the edge servers so
that a VM is individually located at an edge server regardless
of the link delay. As the link delay increases, the VM migration
time and the communication delay between the client and the
VM increases, and consequently the CPU time allocated to
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Figure 12. Average accuracy as a function of link delay (HALF time: 99
[ms], Total number of clients: 4).

the task decreases after completing the VM migration.
We compare the performances of non-migration method,

minimum client-VM delay method, VM sweeping method, and
VM number averaging method. When the link delay is shorter
than or equal to 40 [ms], VM sweeping method and VM
number averaging method achieve 12 to 50% higher accuracy
than non-migration method and minimum client-VM delay
method. Therefore, in this case, it is desirable to distribute
all the VMs to different edge servers. When the link delay
is longer than or equal to 50 [ms], non-migration method
and minimum client-VM delay method achieve 17 to 70 %
higher accuracy than VM sweeping method and VM number
averaging method. Therefore, in this case, it is desirable to fix
all the VMs at their initial edge server.

We focus on the performance of our proposed method.
When the link delay is shorter than or equal to 40 [ms], our
proposed method 1) achieves 10 to 49% higher accuracy than
non-migration method and minimum client-VM delay method,
and 2) achieves almost as high accuracy (at most 2% lower
accuracy) as VM sweeping method and VM number averaging
method, by successfully learning the policy that distributes all
the VMs to all the edge servers similarly to VM sweeping
method and VM number averaging method in most trials.
When the link delay is longer than or equal to 50 [ms], our
proposed method 1) achieves 9 to 68% higher accuracy than
VM sweeping method and VM number averaging method,
and 2) achieves almost as high accuracy (at most 6% lower
accuracy) as non-migration method and minimum client-VM
delay method, by successfully learning the policy that fixes all
the VMs at their initial edge servers similarly to non-migration
method and minimum client-VM delay method in most trials.

Figure 11 shows the average accuracy as a function of link
delay for all the VM migration methods when the task type
is changed to the linear type (HALF time = 55 [ms]) and the
total number of clients is four. All of the conventional methods
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select the same VM locations as those in Figure 10 because
they determine VM locations without considering the task
type; non-migration method and minimum client-VM delay
method fix all the VMs at their initial locations while VM
sweeping method and VM number averaging method distribute
all the VMs to all the edge servers.

When the link delay is shorter than or equal to 50 [ms], VM
sweeping method and VM number averaging method achieve
14 to 289% higher accuracy than non-migration method and
minimum client-VM delay method because distributing the
VMs to all the edge servers leads to more efficient use of
CPU resources of all the edge servers thanks to short VM
migration time. When the link delay is longer than or equal
to 60 [ms], all the conventional methods shows the identical
accuracy because only the VMs fixed at the initial edge server
can execute the tasks due to long VM migration time, and
those VMs achieve the identical accuracy in total regardless
of their numbers for the linear model.

Our proposed method achieves almost as high accuracy (at
most 16% lower accuracy) as VM sweeping method and VM
number averaging method when the link delay is shorter than
or equal to 50 [ms]. In most trials, our proposed method
successfully learns the policy that distributes all the VMs to all
the edge servers similarly to VM sweeping method and VM
number averaging method. In addition, our proposed method
achieves almost as high accuracy (at most 9% lower accuracy)
as all the conventional methods when the link delay is longer
than or equal to 60 [ms]. Although our proposed method learns
various policies that determine different VM locations, most
policies deploy at least one VM on the initial edge server,
which leads to achieving the comparable accuracy as all the
conventional methods.

Figure 12 shows the average accuracy as a function of link
delay for all the VM migration methods when the task type
is changed to the late-blooming type (HALF time = 99 [ms])
and the total number of clients is four. All of the conventional
methods select the same VM locations as those in Figures 10
and 11.

Both non-migration method and minimum client-VM delay
method show the accuracy close to zero regardless of link
delay. This is because these methods fix all of the four VMs
at the initial edge server and each of the VM is assigned only
one fourth of the CPU time of the edge server, which is not
enough for the late-blooming tasks to increase the accuracy.
Both VM sweeping method and VM number averaging method
achieve the accuracy of 0.70 when the link delay is 1 [ms],
and the accuracy decreases as the link delay increases because
the accuracies achieved by the three VMs distributed to edge
servers 2, 3 and 4 decrease due to longer VM migration time.
Our proposed method achieves almost as high accuracy (at
most 18% lower accuracy) as VM sweeping method and VM
number averaging method by successfully learning the policy
that distributes all the VMs to all the edge servers similarly
to VM sweeping method and VM number averaging method
in most trials.

The average accuracy as a function of link delay for all the

VM migration methods when the total number of clients is
changed to eight are depicted in Figures 13, 14 and 15. Please
note that VM sweeping method selects VM locations different
from those by VM number averaging method; VM sweeping
method distributes a single VM to each of edge servers 2, 3
and 4 and fixes the remaining five VMs at the initial edge
server while VM number averaging method distributes two
VMs to each of edge servers 2, 3 and 4 and fixes the remaining
two VMs at the initial edge server. Non-migration method and
minimum client-VM delay method fix all the VMs at their
initial edge server.

In Figure 13 where the task type is the early-blooming type
(HALF time = 11 [ms]), when the link delay is shorter than
or equal to 20 [ms], VM number averaging method achieves
higher accuracy than VM sweeping method because the VMs
distributed to edge servers 2, 3 and 4 in the former method gain
higher accuracy than the VMs fixed at the initial edge server
in the latter method. For example, when the link delay is 1
[ms], all the VMs gain accuracy of about 0.80 in VM number
averaging method while the five VMs fixed at the initial edge
server gain only accuracy of about 0.61 and the three VMs
distributed to edge servers 2, 3 and 4 gain accuracy of about
0.98 in VM sweeping method. When the link delay is longer
than or equal to 40 [ms], VM sweeping method conversely
achieves higher accuracy than VM number averaging method.
This is explained as follows. As the link delay gets longer,
the accuracy gained by the VMs distributed to edge servers
2, 3 and 4 decrease and the accuracy is dominated by those
gained by the VMs fixed at the initial edge server. Because
VM number averaging method fixes more VMs than VM
number averaging method, the former method achieves higher
accuracy than the latter.

Our proposed method achieves almost as high accuracy (at
most 2% lower accuracy) as the best conventional methods
by successfully learning the same policies as 1) VM number
averaging method when the link delay is shorter than or equal
to 30 [ms], 2) VM sweeping method when the link delay is 40
[ms], and 3) non-migration method and minimum client-VM
delay method when the link delay is longer than or equal to
50 [ms], in most trials.

In Figure 14 where the task type is the linear type (HALF
time = 55 [ms]), our proposed method also achieves almost as
high accuracy (at most 14% lower accuracy) as the best con-
ventional methods by successfully learning the same policies
as them in most trials.

In Figure 15 where the task type is the late-blooming type
(HALF time = 99 [ms]), VM sweeping method achieves higher
accuracy than other conventional methods when the link delay
is shorter than or equal to 10 [ms]. This is because only
the VM that is individually deployed at an edge server and
occupies the CPU time on it can obtain high accuracy for
the late-blooming type tasks. In VM sweeping method, each
of the three VMs distributed to edge servers 2, 3 and 4 can
occupy the CPU time while in other conventional methods,
no VM occupies the CPU time. In VM sweeping method, the
accuracy decreases as the link delay increases due to longer
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Figure 13. Average accuracy as a function of link delay (HALF time: 11
[ms], Total number of clients: 8).
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Figure 14. Average accuracy as a function of link delay (HALF time: 55
[ms], Total number of clients: 8).

VM migration time.
When the link delay is 1 [ms], our proposed method

achieves almost as high accuracy (about 23% lower accuracy)
as VM sweeping method by learning the policies that individ-
ually deploy a single VM on three of all the four edge servers
in most trials. When the link delay is longer than or equal
to 10 [ms], our proposed method achieves higher accuracy of
about 0.12 by learning the policies that fix only a single VM
at the initial edge server and making it occupy the CPU time
of it without the VM migration time while all the conventional
methods show the accuracy close to zero.

VI. CONCLUSIONS

In this paper, we proposed a VM migration method using a
DRL algorithm in order to adaptively achieve high accuracy
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Figure 15. Average accuracy as a function of link delay (HALF time: 99
[ms], Total number of clients: 8).

of information processing tasks in various situations for multi-
stage information processing systems. Our proposed method
divides the VM migration control problem into two problems:
the problem of determining only the VM distribution and the
problem of determining the locations of all the VMs so that it
follows the determined VM distribution. Our proposed method
solves the former problem by a DRL algorithm and the latter
problem by the minimum client-VM delay method. In order
to evaluate whether our proposed method can adaptively cope
with various situations, we performed simulation evaluations
with different 1) link delays, 2) types of the tasks and 3)
the number of VMs. The simulation results confirm that
our proposed method can adaptively achieve quasi-optimal
accuracy in those situations.
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