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Abstract—Software-defined networking (SDN), which enables
flexible routing control based on communication content, has
been widely studied as a countermeasure against possible attacks
on the data plane by compromised SDN switches and hosts. We
previously proposed a byte consistency verification method that
uses information such as transfer volume collected from SDN
switches to detect anomalous communications, even when the
communications are encrypted. In addition, we improved the
anomaly detection performance of this method by implementing
high-precision time synchronization and an SDN switch function
for each host. In this study, we extend the scope of information
collection to each host (in addition to SDN switches) and
propose a data plane anomaly detection method that monitors
the communication volume of each process at each host. We
also propose a method that automatically adjusts the threshold,
which can be set individually for each node, used for detection.
Furthermore, we implement and evaluate the proposed method
on a network testbed. The results confirm that it can be used to
improve anomaly detection accuracy.

Index Terms—Software-defined networking; Data plane verifi-
cation; Byte consistency verification; Anomaly detection.

I. INTRODUCTION

This paper is an extended version of our study presented
at the Twentieth International Conference on Networking
and Services (ICNS 2024) [1]. Network equipment that uses
software-defined networking (SDN) and network functions
virtualization (NFV) technology has recently been introduced
into carrier and data center networks; further widespread use
is expected [2]. Unlike conventional router devices, which
have fixed settings, SDN enables flexible routing control using
various types of information, such as the content of transmitted
data, information on sending and receiving terminals, and
networks passed through. The SDN switches that make up an
SDN network cooperate according to control information from
the SDN controller, enabling fine control of communication on
a flow-by-flow basis.

In the operation of SDN, it is important to ensure com-
patibility with security-related technologies. Encrypted com-
munication is becoming a mainstream measure against infor-
mation leaks, with Google reporting that 95% of its total
communication traffic was encrypted as of November 2023
[3]. While encrypted communication can ensure end-to-end
security, it makes it difficult for network operators to use intru-
sion detection and prevention systems, which provide security
by checking the payload of exchanged packets. In addition,
network administrators must also be aware of countermeasures
against SDN switches and silent failures. SDN networks are
often realized using software switches, making them possibly
more vulnerable than networks consisting of conventional
hardware switches [4] [5] [6] [7]. Specifically, SDN controllers
may not be able to detect SDN switches that are compromised
or defective. To solve these security issues, byte integrity
verification has been proposed, where anomalies are detected
by collecting and processing communication status data from
a group of SDN switches.

We previously proposed a method for increasing the gran-
ularity of anomalies that can be detected in SDN commu-
nications by using high-precision time synchronization via
IEEE1588 PTPv2 [8] to ensure the time resolution of collected
communication status data and by handling transfer volume
information in units of flows [9]. Furthermore, to solve the
problem of conventional byte consistency verification, where
the accuracy of information collected from a terminal SDN
switch cannot be verified, we developed a method for ex-
panding the range of devices that can detect anomalies by
incorporating a reporting function similar to that of SDN
switches in the host connected to a terminal SDN switch [10].
The results of our previous research indicate that the quality
and variety of data that can be collected from SDN switches
and hosts are useful for improving the anomaly detection
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performance of SDN.
In this paper, we confirm the applicability of byte consis-

tency verification for anomaly detection in SDN networks by
collecting communication status data for each host. In our
approach, statistical data on the communication status, which
can be obtained using commands provided by the host operat-
ing system (Linux), are formatted to be compatible with SDN
networks. They can be used by SDN controllers and nodes that
perform byte integrity verification. We implement this method
on a network testbed to obtain per-process communication
volume information measured at each host and confirm that it
is applicable to anomaly detection in SDN networks.

In addition, a conventional anomaly detection method (see
Section II) depends on the knowledge and experience of the
administrator because the threshold values need to be set
manually. Since conventional methods use the same thresh-
old value for the entire network, they cannot detect minute
anomalies or identify the location of anomalies. To address
these issues, we propose and implement a method for detecting
anomalous switches that automatically sets the threshold value
for each node individually. The improvement in anomaly
detection accuracy is determined through experiments using
a testbed.

The rest of this paper organized as follows. Section II
describes related techniques and existing research. Section
III explains the proposed network verification scheme, which
deals with the process-level communication volume of hosts.
Section IV describes the dynamic adjustment of thresholds.
Section V describes an experiment in which the proposed
method was implemented on a testbed. Section VI discusses
considerations based on the results of evaluation experiments.
Finally, Section VII presents the concluding remarks.

II. RELATED WORK

In this section, we review related technology and existing
research.

A. Software-Defined Networking

SDN allows network devices to be centrally controlled
through software. In a conventional network, shown in Fig-
ure 1, the network administrator configures each router for
routing control. The router forwards packets according to its
configuration. In contrast, in an SDN network, forwarding
control instructions can be issued to all SDN switches by
configuring the SDN controller. The SDN switches perform
packet forwarding based on these instructions. Therefore, SDN
allows dynamic control based on the operation status of each
SDN switch. Flexible control in SDN is achieved by separating
the data plane, which handles data forwarding functions, and
the control plane, which handles control functions [11].

OpenFlow [12] is widely used for implementing SDN.
There are several OpenFlow controller implementations, such
as Floodlight [13]. Although SDN allows for flexible control
of the network, several security issues have been reported [4]
[14]. For example, there are known attacks in which malicious
switches attack the data plane or mislead the SDN controller

about the network topology. Methods have been developed to
solve these problems [5] [6].

B. Data Plane Security in SDN

If an SDN network is compromised, unintended packets
may be discarded or generated and routes may be changed. To
prevent such problems, verification techniques can be used to
protect the data plane. SPHINX verifies compromised switches
using byte consistency verification [5]. This method detects
anomalies by having each switch collect and compare transfer
volume information.

Figure 2 shows the operation of byte consistency verification
by SPHINX. A report of the forwarding volume information
from each switch is received. Based on the received infor-
mation, the method calculates a moving average (

∑
) of the

transfer volume information for each SDN switch and a value
(
∑

avg) obtained by averaging the moving average for each
SDN switch over all SDN switches. Then, the method checks
whether the average value deviates from the moving average
value of each SDN switch by the inequality in Equation 1
using a predetermined value of threshold τ .

1

τ
<

∑∑
avg

< τ (1)

If threshold τ is excessively small, false positives (FPs) are
likely to occur; if it is excessively large, false negatives (FNs)
are likely to occur. The appropriate value of τ depends on
the network configuration and type of switches used. It is
thus necessary to set an appropriate value for each network.
Since SPHINX performs byte integrity verification using net-
work switch forwarding volume information, it cannot verify
whether an edge switch is malicious and it does not support
flow aggregation. Various other SDN data plane security
measures have been proposed [14].

C. WhiteRabbit

As described in Section II-B, for SPHINX, detection accu-
racy is affected by variations in the timing of obtaining statistic
information from switches. To address this issue, WhiteRab-
bit reduces the deterioration of verification accuracy due to
acquisition timing deviations by using IEEE1588 PTPv2 for
high-precision time synchronization and scheduling the timing
of the acquisition of transfer volume information [9]. However,
WhiteRabbit, like SPHINX, does not verify edge switches and
does not support flow aggregation.

D. Edge Switch Validation with In-host Switches

As mentioned in Sections II-B and II-C, byte consistency
verification using only SDN switch information cannot verify
edge switches. To solve this problem, we previously proposed
a method for obtaining the communication volume of each
host [10]. This method builds a switch inside the host to
obtain the host’s communication volume and behaves like any
other SDN switch, allowing byte integrity verification between
the edge switch and the host. However, the method requires
the threshold τ in Equation 1 to be larger than that for the
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Fig. 2. Byte consistency verification by SPHINX.

conventional method, which may make it miss minute network
anomalies or attacks that take place in a very small amount
of time.

III. PROPOSED METHOD

To overcome the issues described in Section II, in this
section, we describe a network verification scheme that deals
with the process-level communication volume of hosts. Figure
3 shows an overview of the proposed method. As shown,
host information is collected by implementing an in-host
information collection function on hosts in a conventional
SDN network. In addition, we deploy a host information
collection server to compare the SDN controller’s collection
of each SDN switch’s forwarding volume information. This
allows the verification system to perform host-information-
aware verification. This system improves the accuracy of
detecting abnormal networks by classifying communication
volume using detailed host information, which cannot be
obtained using the conventional method.

This system requires the implementation of the following
two functions.

1) A function for each host to send its collected data
(process-level traffic information) to the host information
collection server.

2) A function for the SDN controller to send the traffic
information of each switch to the host information
collection server.

In addition, the host information collection server needs to
know which host sent the data and compare the data with
the transfer volume information of each switch. Furthermore,
each host needs to implement a function to collect its own
process-level traffic and send the collected information to the
server.

A. Host Information Collection Server

The host information collection server monitors the traffic
information of all hosts that have executed the intra-host
information transmission agent and alerts the user according
to the conditions based on the statistics of the traffic infor-
mation. The host information collection server collects per-
process communication volume information from each host,
compares it with the transfer volume information of each
switch collected by the SDN controller, and sends an alert
to the network administrator if any abnormality is found.

B. Host Information Collection Agent

The host information collection agent, which is imple-
mented on each host, executes the ss (socket statistics)
command provided by the Linux operating system as an
external command to obtain the cumulative number of received
packets as statistical information for each process. Then, the
agent sends the acquired information to the host information
collection server. By repeating these processes periodically,
the host information collection agent collects transfer volume
information for each host.

IV. AUTOMATIC ADJUSTMENT OF THRESHOLD

In this section, we describe a method that automatically sets
threshold τ for byte consistency verification and allows the
threshold to be fine-tuned for each node, thereby improving
the granularity of anomaly detection. As described in Section
III, in our scheme, the SDN controller collects transfer volume
information from the host switches and from each SDN switch.
The anomaly detection system uses this information to detect
anomalies. Conventional anomaly detection methods such as
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Fig. 3. Overview of proposed method.

SPHINX require manual setting of threshold values used for
detection at the discretion of the administrator. In contrast, we
automate the setting of threshold values used for detection so
that they can be adjusted without relying on the knowledge and
experience of the network administrator. This also allows the
setting of individual thresholds for nodes, which is not possible
with the conventional method. Setting an appropriate threshold
for each node enables the detection of minute anomalies and
the identification of switches with anomalies that are missed
with the conventional method.

A. Calculation Method

The first step in the thresholding calculation is to determine
the reference threshold value, as shown in Equation 2. Figure
4 shows an example of switch placement. As shown, when
traffic flows from left to right, the switch closest to the origin
is defined as FormerSwitch (FSW) and the switch closest
to the end is denoted as LatterSwitch (LSW) .

Reference Threshold =
FSW ′s transfer volume

LSW ′s transfer volume
(2)

Then, as shown in Figure 5, the upper and lower threshold
limits (tolerance rate) are set and the reference threshold is
given as the range ± x %. By giving the threshold as a range,
the sensitivity of anomaly detection can be adjusted and FPs
can be prevented.

B. Individual Threshold Setting for Nodes

Figure 6 shows the method used to set individual threshold
values for nodes. Using the calculation method described in
Section 3.2, threshold values τ1–τ4 are set between nodes

host Latter
Switch

Former
Switch

host

Fig. 4. Example of switch placement.
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Fig. 5. Threshold tolerance.

SW1 and SW2, SW2 and SW3, SW3 and SW4, and SW4
and SW5, respectively. By setting individual threshold values
in this way, it is possible to identify which threshold value
was used to detect an anomaly and thus the switch to which
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that threshold value was assigned can be identified as the
anomalous switch. In the example shown in Figure 6, the
anomaly is detected at threshold value τ4, which means that
SW4 is anomalous.

V. EXPERIMENT

A. Environment

To verify and evaluate the operation of the host information
collection function based on this method, we implemented an
experimental network on DeterLab, a network testbed operated
by the University of Southern California Information Sciences
Institute and the University of Utah [15].

We used a total of 12 nodes on DeterLab, each with an SDN
controller, a verification component, SDN switches (7 nodes),
and hosts (4 nodes). As shown in Figure 7, the network for
this experiment had a tree network topology with Depth = 2
and Fanout = 2, where Depth indicates the depth of the
hierarchy from the root node and Fanout indicates how many
nodes are connected in one branch.

Table I shows the specifications of the MicroCloud on
DeterLab used in this experiment. All 12 nodes in this ex-
periment used equipment with the same specifications. We

TABLE I
SPECIFICATIONS OF MICROCLOUD NODES IN DETERLAB USED IN

EXPERIMENT.

Type Specifications

CPU
Intel(R) Xeon(R) E3-1260L Quad-Core Processor Running

at 2.4 GHz

Memory 16 GB

Storage 250 GB SATA Western Digital RE4 Disk Drive

OS Ubuntu 16.04 LST

used Floodlight v1.2 [18] as an SDN controller. We also
implemented an OpenFlow proxy, stopcock, between the group
of switches and the controller as the verification component for
route verification. ofsoftswitch13 EXT340 [19] was used as
the SDN switches. Since this experimental network consisted
of actual equipment rather than simulators or emulators, the
evaluation environment was close to that in actual operation.

B. Evaluation of Detection Accuracy

In this section, we describe an experiment conducted to
determine the anomaly detection accuracy for the proposed
method and the conventional method SPHINX. In this eval-
uation experiment, we investigated the effectiveness of the
thresholds automatically set by the proposed method and
the effect of partial threshold setting on anomaly detection
accuracy.

We used the FN rate for malicious traffic and the FP rate
for benign traffic as evaluation metrics. We measured TCP
communications over a five-hop path using iperf and compared
the anomaly detection accuracy of the proposed method with
that of SPHINX based on the amount of forwarded data sent
from each switch to the SDN controller.

1) False Negative Rate: We set up a link with a loss rate
between SW0 and SW1 and discarded packets on this link, as



56International Journal on Advances in Networks and Services, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/networks_and_services/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Tolerance[±%]

0.0

0.2

0.4

0.6

0.8

1.0
Fa

lse
 n

eg
at

iv
e 

ra
te

Proposed=0.5%

Proposed=1.0%

Proposed=1.5%

Proposed=2.0%

SPHINX=0.5%

SPHINX=1.0%

SPHINX=1.5%

SPHINX=2.0%

Fig. 8. FN rate comparison between SPHINX and proposed method.

shown in Figure 7. The link loss rates in this experiment were
0.5%, 1.0%, 1.5%, and 2.0%.

Figure 8 shows a comparison of the FN rate between the
proposed method and SPHINX. The vertical axis indicates the
FN rate and the horizontal axis indicates the tolerance rate x
%, which is a ± x % variation of the reference threshold
obtained in Equation 2 in Section IV-A. An FN rate that is
sufficiently low in the range where the tolerance is greater
than 0% indicates that there is no detection failure (i.e., that
anomalies were detected). For SPHINX, the FN rate increased
rapidly when the link loss rate was 0.5%, with the tolerance
rate increasing from 0%. This indicates that SPHINX was
unable to detect an anomaly when the link loss rate was 0.5%.
In contrast, for the proposed method, when the link loss rate
was 0.5%, the FN rate remained at 0 up to a tolerance rate of ±
0.1%, confirming that our method could detect anomalies. The
results for a link loss rate of 2.0% indicate that the tolerance
rate x at which the FN rates for SPHINX and the proposed
method begin to increase is 0.7% and 0.9%, respectively.

2) False Positive Rate: We measured the FP rate after
generating traffic flows, as done in the evaluation of the FN
rate. Figure 9 compares the FP rates for SPHINX and the
proposed method. As shown, the tolerance rate at which the
FP rate becomes zero is 0.6% for SPHINX and 0.4% for the
proposed method.

C. Effect of Threshold Calculation Method

To evaluate the effectiveness of the threshold calculation
method presented in Section IV-A, we evaluated the FN
and FP rates using another threshold calculation method that
automatically sets the threshold. The calculation method is
shown in Equation 3.

Reference Threshold =
Ingress SW ′s transfer volume

Egress SW ′s transfer volume
(3)
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Fig. 9. FP rate comparison between SPHINX and proposed method.

1) False Negative Rate: As done above, the link loss rate
was set to 0.5%, 1.0%, 1.5%, and 2.0%. Figure 10 shows a
comparison of the FN rate between the proposed threshold
calculation method, shown in Equation 2, and the calculation
method in Equation 3. For a link loss rate of 0.5%, minute
anomalies were detected only when the proposed method was
used. It can also be seen that the proposed method has a larger
tolerance rate x at which the FN rate begins to increase when
the link loss rate is 2.0%.

2) False Positive Rate: The FP rate was measured after
traffic flows were generated for the evaluation experiment.
Figure 11 shows a comparison of the FP rate between the
proposed threshold calculation method, shown in Equation 2,
and the calculation method in Equation 3. The acceptable rate
at which the FP rate becomes zero is 0.4% for the proposed
method and 0.8% for the calculation method in Equation 3.

VI. CONSIDERATIONS AND DISCUSSION

A. Comparison of SPHINX and Proposed Method

When there is a link with a loss rate, the FN rate increases
rapidly for SPHINX, with the tolerance rate increasing from
0% when the link loss rate is 0.5%. This result indicates that
SPHINX is unable to detect an anomaly when the link loss rate
is 0.5%. In contrast, for the proposed method, when the link
loss rate is 0.5%, the FN rate remains at 0 up to a tolerance
rate of ± 0.1%. This indicates that the proposed method can
detect minute anomalies that SPHINX cannot.

In the experiment with a link loss rate of 2.0%, the tolerance
rate x at which the FN rates for SPHINX and the proposed
method begin to increase was 0.7% and 0.9%, respectively.
This confirms that the proposed threshold setting method is
superior to that of SPHINX.

For benign traffic, the tolerance rate at which the FP rate
becomes 0 is 0.6% for SPHINX and 0.4% for the proposed
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and alternative method in Equation 3.

method. The FP rate is thus not considered to be significantly
different between SPHINX and the proposed method. As can
be seen in Figures 8 and 9, the acceptable rate of no false
detection and no missed detection for the proposed method
is 0.4% to 0.9%. Link loss rates of 1.5% and 2.0% within
this range can be correctly detected without false detection or
missed detection.

These results show that there is a trade-off between the
FN rate and the FP rate. The improved FN rate for the
proposed method despite similar FP rates between SPHINX
and the proposed method can be attributed to the improvement
in anomaly detection accuracy by the automatic setting of
individual thresholds.

B. Discussion of Threshold Calculation Methods

As described in Section V-C, to evaluate the validity of the
threshold calculation scheme of the proposed method, the FN
and FP rates obtained for an alternative calculation method
were compared. Regarding the FN rate, it was confirmed that
the alternative calculation method was unable to detect small
link loss rates (i.e., small anomalies). In addition, the threshold
tolerance X was larger for the proposed method for all link
loss rates. Regarding the FP rate, the proposed method had
an FP rate of 0.4% and the alternative method had an FP rate
of 0.8%. These results confirm the validity of the proposed
threshold calculation method.

VII. CONCLUSION

This study proposed a method for collecting forwarding
volume information for each host in an SDN network to
improve network verification accuracy.

The threshold values used for detection are automatically set
so that they can be adjusted without relying on the knowledge
and experience of the network administrator. This allows the
setting of individual thresholds for nodes, which is not possible
with the conventional method. Setting an appropriate threshold
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Fig. 11. FP rate comparison between proposed threshold calculation method
and alternative method in Equation 3.

for each node enables the detection of minute anomalies and
the identification of switches with anomalies that are missed
with the conventional method.

We evaluated the effectiveness of the automatically set
thresholds and the impact of the threshold range. The results
confirm that the proposed method improves the FN rate and
maintains the FP rate compared to those for SPHINX. The
improvement in the FN rate and maintenance of the FP rate
confirm the effectiveness of the proposed threshold calculation
method and demonstrate that applying individual thresholds
improves anomaly detection accuracy.
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