International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

107

Implementation of VNF Descriptor Extensions

for the Lifecycle Management of VNF's

Emanuele Miucci, Giuseppe Monteleone, Giovanni Fausto Andreotti, Paolo Secondo Crosta

ITALTEL S.p.A.
Milan, Italy
e-mail: {emanuele.miucci, giuseppe.monteleone, fausto.andreotti, paolosecondo.crosta}@italtel.com

Abstract—This paper focuses on improvements in management
and orchestration within the Network Function Virtualization
(NFV) domain. The key benefits are related to automation in
the Virtual Network Function (VNF) lifecycle, adaptation to
different network traffic loads and new models for improving
network resilience. These could be achieved by introducing some
extensions of the NFV Information Model. In particular, we
propose the introduction in the VNF Descriptor (VNFD) of an
Information Element (IE) providing the dependencies between
Virtual Deployment Units (VDUs) that allows managing the VDUs
instantiation process in a more efficient way. We also suggest
an extension related to the execution of script(s) - including
the possibility to pass parameters - in response to particular
events detected by the VNF Manager (VNFM). Since each single
component of a VNF may need the execution of specific operations
based on its redundancy scheme, we propose a new Information
Element describing the high availability features. In addition, we
give an example of how to carry information about auto-scaling
rules directly in the VNFD defining a possible structure of the
autoScale IE. Finally, in order to support the validity of the
proposed approach, we provide two practical use cases related to
the instantiation and scaling lifecycle events of a VNF designed by
Italtel and providing Session Border Controller functionality. The
main output of the paper is the definition of four extensions to the
VNF Information Model - easy to fit into the ETSI specification
framework - which has been used to improve the operations
in the VNF lifecycle management, as demonstrated in a real
implementation scenario.

Keywords—Network Function Virtualization; Orchestration;

Lifecycle Management; VNF Descriptor; User-data; Auto-scaling
Rules.

I. INTRODUCTION

Network Function Virtualization (NFV), in addition to
Software Defined Networking (SDN), is a rapidly emerging
approach in the telecommunication field. By adopting NFV,
Communication Services Providers (CSP) expect to achieve
consistent cost reductions with respect to the current situation
in which network equipment consists of proprietary black
boxes, containing a bundle of proprietary Software (SW) and
customized Hardware (HW) provided by a single Telecom
Equipment Manufacturer. The adoption of the NFV concept
is just the starting point to introduce in the Telco world the
benefits that virtualization has brought in the Information Tech-
nology (IT) sector. Besides significant cost reductions, NFV
also raises great expectations on the possibility (a) to achieve
a never experienced network flexibility and service agility, (b)
to introduce automation in all lifecycle of Network Functions
(NFs) from deployment, installation and commissioning to

operational phases [1], (c) to adapt the network to different
traffic loads thanks to a novel cloud elasticity model, and (d)
to develop new models for improving network resilience [2].

In fact, the objective of NFV is to allow Service Operators
to achieve a high reduction in capital investments along
with greater operational agility by implementing challenging
architectural updates and deep changes in service models and
operating procedures [3].

Virtualization is not a new technology. What is new is
the way to use virtualization in Telco environments. NFV is
a paradigm able to switch from manual, complex and error
prone configuration processes to a new level of deployment
automation, increasing flexibility, agility and the possibility
to minimize complexity and errors. After the deployment,
when the function is in operation it is possible to perform
monitoring, scaling, healing, failover, continuous delivery and
infrastructure upgrades.

In the NFV architecture, specified by the European
Telecommunications Standards Institute (ETSI) NFV Industry
Specification Group (ISG) [4], three main domains are identi-
fied:

e Virtualized Network Functions (VNFs), as the soft-
ware implementation of network functions capable
of running over the Network Functions Virtualization
Infrastructure (NFVI).

e NFVI, including hardware resources (Compute, Stor-
age, Networking) and the virtualization layer that
provides Virtual resources (Virtual Compute, Virtual
Storage, Virtual Networking) supporting the execution
of the VNFs.

e NFV Management and Orchestration (MANO), which
covers the lifecycle management of VNFs and Net-
work Services (NS), managing the resources of NFVI
and focusing on all virtualization-specific management
tasks necessary in the NFV framework.

In this paper, we will focus on the Management and Or-
chestration domain. In particular, we propose some extensions
of the NFV Information Model, specifically referring to the
VNF Descriptor. These extensions can be used to increase
efficiency in the lifecycle management of Network Functions
and to improve the overall system reliability. Our experience as
VNF provider conducted us to identify some flaws in the NFV
Information Model and corresponding specific enhancements
that future implementations could benefit from. In order to
achieve this goal, we introduce some additional Information

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Elements (IEs) in the VNF Descriptors (VNFDs) that allow a
deeper control of VNFs.

The paper is organized as follows: Section II gives an
overview of the ETSI standard model for NFV, with regard to
the MANO architecture, including the lifecycle management
of Virtual Network Functions and a general description of
the NFV Information Model. Section III, the main part of
the paper, provides a rationale for the extensions to VNF
Descriptors, as well as some practical examples to support
the validity of the proposed approach. Section IV provides
insights and validation of the proposed extensions based on a
real deployment. Finally, Section V draws the conclusions.

II. ETSI NFV ARCHITECTURAL MODEL

The ETSI NFV architectural framework [5] [6] is shown
in Figure 1.

Network Management Systems

NFV Orchestrator

777777 Operations System Support (OSS) Os-Ma (NFVO)
Business System Support (BSS)

VNF Catalogues

VNF Instances

NS Catalogues

NFVI Resources. :
Data Repositories

Element Management Systems (EMS)

Virtual Network Functions (VNF,, VNF,, ..., VNF,)

'VNF Manager(s)

Ve-Vnfm (VNFM)

Vi-Vnfm

NFV Infrastructure (NFVI)
Virtualised
Nf-vi Infrastructure

Manager(s)

Physical Resources (Compute, Storage, Network) (vVim)

NFV Achitectural Layers NFV Management & Orchestration

Figure 1. ETSI NFV architectural model.

The functional blocks in the framework can be grouped
into three main entities:

1) NFV Architectural Layers,
2) NFV Management and Orchestration,
3) Network Management Systems.

These entities, as well their constituent functional blocks, are
connected together using a set of defined reference points. The
NFV Architectural Layers include the NFVI and VNFs. NFVI
is the combination of both hardware and software resources,
which make up the environment in which VNFs are deployed,
while VNFs are implementations of NFs that are deployed on
those virtual resources.

A. NFV-MANO Framework

The NFV MANO [7] consists of three functional blocks,
the Virtualized Infrastructure Manager (VIM), the VNF Man-
ager (VNFM) and the NFV Orchestrator (NFVO), and four
data repositories (NS Catalogues, VNF Catalogues, VNF In-
stances and NFVI Resources). Each of them performs well-
defined functions, in particular:

1) VIM: It manages and controls NFVI physical and virtual
resources in a single infrastructure domain. This implies that
an NFV architecture may contain more than one VIM, with
each of them managing or controlling NFVI resources from
a given infrastructure provider. In principle, a VIM may be
specialized in handling a certain type of NFVI resource (e.g.,
compute-only or storage only), or could manage multiple types
of NFVI resources (e.g., nodes in the NFVI).

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

108

2) VNFM: Each VNF instance lifecycle is associated to a
VNFM. The VNFM is responsible for the management of the
lifecycle of VNFs. A VNFM may manage a single or multiple
VNF instances of the same or different types. It is also possible
that a single VNFM handles all the active VNF instances for
a certain domain.

3) NFVO: It is aimed at combining more than one virtual-
ized network function to create end-to-end network services.
To this end, the NFVO functionality can be divided into two
broad categories: (a) resource orchestration, and (b) service or-
chestration. Resource orchestration is used to provide services
that support accessing NFVI resources in an abstract manner
regardless of the type of VIMs, as well as governance of VNF
instances sharing resources of the NFVI infrastructure. Service
orchestration deals with the creation of end-to-end services by
composing different VNFs, and the topology management of
the network services instances.

4) Data Repositories: These are databases that keep dif-
ferent types of information in the NFV MANO. Four types of
repositories can be considered: (a) the NS Catalogue is a set
of pre-defined templates, which define how network services
may be created and how their lifecycle is managed, as well as
the functions needed for the service and their connectivity; (b)
the VNF Catalogue is a set of templates, which describe the
deployment and operational characteristics of available VNFs;
(c) the NFVI Resources repository holds information about
available/allocated NFVI resources, and (d) the VNF Instances
repository holds information about all function and service
instances throughout their lifetime.

B. VNF Lifecycle Management

NFV is based on the principle of separating network
functions from the hardware where they run on by using virtual
hardware abstraction. The virtualization of network functions
will change their lifecycle management by introducing automa-
tion and flexibility. Lifecycle management of VNFs is possible
after a preliminary operation, the so-called VNF Package on-
boarding. After that, by accessing to a VNF Catalogue it is
possible to create one or more VNF instances of a VNF. A
VNF instance corresponds to a run-time instance of the VNF
software, i.e., all the VNF components are instantiated and the
internal and external network connectivity configured.

During its lifecycle a VNF instance can be in one of the
following states:

e instantiable, i.e., the on-boarded process for the VNF
has been correctly performed,

e instantiated, i.e., not configured, configured & not in
service, configured & in service,

e terminated.

The lifecycle is controlled by a set of operations, described
in the following list:

e VNF Instantiation,

e VNF instance Scaling (horizontal/vertical),
e VNF instance Update or Upgrade,

e VNF instance Healing,

e VNF instance Termination.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is worth mentioning that a subset of lifecycle manage-
ment (LCM) operations, as VNF Instantiation and Termination,
are always available for every single VNF instance.

Some other operations, such as VNF Scaling, are per-
formed if required by the Deployment Flavour of the VNF
instance. Some procedures related to VNF lifecycle manage-
ment provide both manual and automatic mechanisms. Scaling,
for instance, can be manually requested or automatically per-
formed when triggered upon the occurrence of specific events
defined as criteria for matching rules and actions for scaling.
All the operations during the lifecycle are handled by specific
workflows that are built on the basis of the tasks to perform
and the associated parameters (i.e., in case of instantiation,
the VNF ID, the Deployment Flavour, etc.). A workflow has
a starting point and different tasks that can be performed
sequentially or in parallel, in order to perform all the necessary
activities.

A VNFD is used for defining workflows for the automation
of specific phases. For instance, by modelling the VNFD using
a description language it is possible to describe the VNF
with a service template in terms of components (e.g., Virtual
Deployment Units or VDUs), relationships (dependencies,
connections) and management processes. The management
processes can be defined as plans describing how a VNF
instance is instantiated and/or terminated considering that the
VNF is a complex application composed by different nodes.

C. VNF Information Model

In this subsection, we provide a brief description of the
IEs used to carry the necessary information to manage a VNF.
In fact, one of the ways the IEs can be used is as part of
descriptors in a catalogue or template context.

The IEs to be handled by the NFV MANO, including the
ones contained in the VNFD, need to guarantee the flexible
deployment and portability of VNF instances on multi-vendor
and diverse NFVI environments, e.g., with diverse computing
resource generations, diverse virtual network technologies, etc.
To achieve this goal, hardware resources need to be properly
abstracted and VNF requirements must be described in terms
of such abstractions.

With reference to Figure 1, the Vi-Vnfm reference point [8]
enables the interaction between the VNFM and the VIM, pro-
viding the methods to operate cloud resources on the NFVI, in
particular computing, storage and networking resources. After
the upload of the VNF Package, the VNFM under operator’s
request or by a request coming from the Or-Vnfm reference
point [9] can start to perform the lifecycle management of a
VNF via the Ve-Vnfm reference point [10].

The VNF Package contains all files and artefacts needed
to perform the lifecycle management for the associated VNF:
e descriptor (VNFD),
e metadata, scripts and other proprietary artefacts,
e optionally, SW images of the VNF Components (VN-
FCs).

Recently the Solutions working group of ETSI NFV has
approved the ETSI GS NFV-SOL 004 document [11], in which
are specified further practical details about the structure and
format of the VNF Package.

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

109

The VNFD is a template, which describes a VNF in terms
of its deployment and operational behaviour requirements.
It is primarily used by the VNFM in the process of VNF
instantiation and lifecycle management of a VNF instance.
The information provided in the VNFD is also used by
the NFVO to manage and orchestrate network services and
virtualised resources on the NFVI. The VNFD also contains
connectivity, interface and Key Performance Indicators (KPIs)
requirements that may be used by NFV MANO functional
blocks to establish appropriate virtual links within the NFVI
between its VNFC instances, or between a VNF instance and
the endpoint interface of the others NFs. The VNFD contains
all the information needed for the lifecycle management, such
as:

e Dbasic information for VNF identification;
e internal virtual links description;

e VDUs description: these data are used to deploy the
VNFCs on the NFVI (generally as Virtual Machines -
VMs). For each type of VDU, it is defined the flavour
of the corresponding VM, the SW image for the VM
and the number of VMs to activate. Configuration
scripts are also provided for the lifecycle management
phases and triggered during the instantiation or by
specific events;

e meters or measurements. In fact, when the VNF is
in operation, measurements can be collected from the
VNF itself and/or from the infrastructure, e.g., the
number of session attempts per second; the contem-
porary active sessions; CPU, RAM, disk usage, etc.

e scaling policies. In general, they are based on the
values of the measured parameters and can be used, for
example, to add an instance of a VNFC when specific
conditions are matched.

e alarms and associated actions. Criteria may be defined
in terms of rules to check on the measurements, e.g.,
the value of a meter is greater than a specific threshold
for a specified period of time; etc. When a rule is
matched, specific actions can be performed, such as
the activation of an healing policy, etc.

The ETSI GS NFV-IFA 011 [12] is the reference speci-
fication that provides requirements for the structure and the
format of a VNF Package. In particular, it describes how
the VNF properties and the associated resource requirements
are mapped in an interoperable template, i.e, the already
mentioned VNFD.

Its focus is on VNF Packaging, meta-model descriptors and
package integrity and security considerations. This specifica-
tion gives a holistic end-to-end view of the package lifecycle
from design to runtime, thus capturing development as well as
operational views. This is the result of the analysis performed
by the working group aimed to use and potentially refine
end-to-end VNF Package lifecycle management operations
based on use cases and related actors and NFV Architectural
Framework functional blocks impacted. This specification has
been recently revised in order to correct errors, ambiguities,
misalignments, thus applying some editorial modifications
(i.e., corrections of category F and D as described in ETSI
TWPs Annex L). However, this edition does not add or modify
features, nor does it extend the scope of the former version we
dealt with hereafter.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the following, we describe the extensions - in terms of
newly added and/or newly defined IEs - of this specification,
along with some related examples of use in order to show the
benefits introduced in the lifecycle management of VNFs.

III. ETSI NFV INFORMATION MODEL EXTENSIONS

The aim of this section is to provide a detailed descrip-
tion, the rationales, the relationships and the benefits of each
proposed extension of the VNF Information Model.

Generally, a VNF is composed by one or more VNFCs.
The VNF is described by means of its VNFD, that includes
IEs for the description of the VDUs.

As an example, we describe hereafter a real implementation
of a decomposed VNF. We refer to a virtualized Session Border
Controller (SBC) implemented by Italtel that we will use in
the description of the following use cases. This VNF provides
its functionalities thanks to five different interworking VNFCs,
as depicted in Figure 2:

e a front-end load balancer (FELB) that receives net-
work traffic and distributes it to the other components;
e an operation and maintenance module (OAM);

e a control plane component managing the signalling
traffic (SIG) that externalizes the states;

e a states database (States DB) for storing the informa-
tion of the active signalling sessions;

e a border gateway (BGW) function engaged when au-
dio or media transcoding is required for the incoming
traffic.

s a
management

States
DB

signalling

bearer

media LB

Virtualization Layer

Figure 2. SBC logical components.

These components can be organized and managed to imple-
ment protection mechanisms in order to guarantee redundancy
and to support high availability requirements.

TABLE I. OVERVIEW OF INFORMATION MODEL EXTENSIONS

ETSI GS NFV-IFA 011 Specification Extensions

dependencies IE in the VNFD (vnfd).
metadataScript IE in the VDU section (vnfd:vdu).
highAvailability IE in the VDU section (vnfd:vdu).
autoScale IE in the VNFD (vnfd).

The implementation of this decomposed VNF suggested
the Information Model extensions to the ETSI GS NFV-IFA
011 [12] reference document - dependencies, MetadataScript,
highAvailability and autoScale 1Es -, summarized in Table

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

110

I, with the relationships within the descriptor at the VNFD
(vnfd) or VDU (vnfd:vdu) level. In the following, we provide
a specific description for each of them.

A. Dependencies

In this subsection, we provide the description of the
dependencies and VduDependencies 1Es. It is possible to
make use of these extensions whenever it is necessary to
express dependencies among the VDUs during the instantiation
process. In fact, sometimes it is necessary to coordinate the
process of instantiation with information that is available -
at platform level (e.g., IP addresses) or application level - at
specific times. As originally proposed in the ETSI MANO
specification [7], we believe it is needed to include in the
VNFD an IE providing the dependencies between VDUs since
it describes constraints that affect the structure of a VNF.

Table II shows the structure of the dependencies 1E that
has to be added to the VNFD standard description [12].

TABLE II. DEPENDENCIES INFORMATION ELEMENT

Attribute of the dependencies VNFD IE

Attribute Description
dependencies Qualifier M
Cardinality | 0..N
Content VduDependencies
Description | Describes dependencies between VDUs.

Defined in terms of source and target
VDU, i.e., target VDU “depends on”
source VDU. In other words, sources
VDU shall exist before target VDU can
be instantiated / deployed.

The VduDependencies IE provides indications on the order
in which VDUs associated to the same VNFD have to be
instantiated. The contents of a VduDependencies type shall
comply with the format provided in Table III.

TABLE III. VDUDEPENDENCIES INFORMATION ELEMENT

Attributes of the VduDependencies 1E

Attribute Description
vdu-id Qualifier M
Cardinality | 1..N
Content Identifier
Description | The listed VDUs shall be instantiated
before the VDUs listed in the target pa-
rameter.
depends-on Qualifier M

Cardinality | 0..N
Content 0..N

The listed VDUs shall be instantiated af-
ter the VDU listed in the source param-
eter have been completely instantiated.

Description

In Figure 3, it is shown a sequence diagram based on a real
implementation of the Italtel VNF SBC. It is worth to mention
that in this case, all the VNFCs should be instantiated after the
OAM component, since it has a central role coordinating the
communications with the VNF Manager on behalf of all the
other VNFCs.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

m Operation and Maintenance

e BGW | Virtual Transcading Unit
FE/LB (Security, Media Handling)
L— >SS —>| External states of instances

SIP, Diameter, H.248, etc.

Figure 3. SBC components instantiation sequence diagram.

In Figure 4, the dependencies explained above have been
expressed by using the JavaScript Object Notation (JSON)
[13].

"dependencies": [{
"vdu-id": "felb",
"depends—-on": "oam"
b A
"vdu-id": "sig",
"depends-on": "oam"
b A
"vdu-id": "states",
"depends-on": "oam"

b A

"Vdu_id" H "bgw" ,
"depends-on": "oam"

b A

"vdu-id": "sig",
"depends-on": "felb"
oo Ao

"Vdu_id": "Sig",
"depends-on": "states"

Figure 4. dependencies 1E example.

Alternatively, ETSI envisages the use of a scripting lan-
guage to express dependencies on virtual resources, but at the
time of this writing, no consensus has been reached yet about
the format to be used and the standardization process of a
Domain Specific Language (DSL) is still underway.

B. MetadataScript

In this subsection, we provide the description of the meta-
dataScript and LifeCycleMetadataScript 1Es. These extensions
are related to the execution of script(s) in response to particular
events detected on a VNFM reference point. The ETSI GS
NFV-IFA 011 specification [12] already supports the execution
of scripts - but only at the VNF level - with the LifeCycleM-
anagementScript 1E. Scripts can be launched in response to
lifecycle events or external stimulus detected by the VNFM.
These LCM scripts should be embedded in the VNF Package
and used in the LCM execution environments provided by
generic VNF Managers. Although in par.6.2.6, this specifica-
tion provides a list of requirements (VNF_PACK.LCM.001)
for the scripting Domain Specific Language, no practical
details are yet available.

Table IV shows the structure of the MetadataScript 1E that
has to be added to the VDU standard description.

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

111

TABLE IV. METADATASCRIPT INFORMATION ELEMENT

Attribute of the metadataScript VDU IE
Description

Attribute
dependencies

Qualifier M
Cardinality | 0..N
LifeCycleMetadataScript

Includes a list of events and correspond-
ing scripts producing metadata required
during the VDU lifecycle.

Content

Description

A LifeCycleMetadataScript 1E, instead of the LifeCycleM-
anagementScript formerly defined in the original specification,
has been defined and extended to comply with specific needs
originated from practical use cases.

The attributes of the LifeCycleMetadataScript 1E shall fol-
low the indications provided in Table V. The advantages of this
extension, compared with the existing standard specification,
are (a) the possibility to execute script(s) at the VDU level,
and (b) the possibility to pass parameter(s) to the script(s).

TABLE V. LIFECYCLEMETADATASCRIPT INFORMATION ELEMENT

Attributes of the LifeCycleMetadataScript 1IE
Attribute Description
event Qualifier M
Cardinality | 1
Content String
Description | Describes a VNF lifecycle event or an
external stimulus detected on a VNFM
reference point.
script Qualifier M
Cardinality | 1
Content Script
Description | Script name.
role Qualifier M
Cardinality | 1
Content String
Description | Describes the role of the VDU in re-
dundancy scheme(s). Possible values are
”Active” or “Passive”.
parameter Qualifier M
Cardinality | 0..N
Content String
Description | VDU specific parameters passed to the
script. Each of them represents the run-
time value of a NFVI resource (e.g., IP
address, VNFC instance name, etc.).

In Figure 5, it is provided an example based on a real im-
plementation of the Session Border Controller VNF. It is worth
noting that this IE allows the VNFM a complete flexibility in
the lifecycle management process of different VNFs/VNFCs:
in this example, the script for the instantiation of the SIG
component needs information from the infrastructure (i.e., the
IP address of the connection point cp_sig_int, the hostname
of the VNFC and the related domain_name), which will be
available only at run-time.

According to our experience, the proposed syntax is general
and can be easily adapted in order to suit different VNFM

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

providers.

"LifeCycleMetadataScript": [{

"event": "INSTANTATION",
"script": "instantiate_sig",
"role": "active",
"parameters": [

"SSparam.cp_sig_int.ipaddress",
"SSparam.hostname",
"SSparam.domain_name"

Figure 5. LifeCycleMetadataScript 1E example.

C. HighAvailability

In this subsection, we provide the description of the high-
Availability attribute. Availability is defined as the state to
perform a required function at a given instant of time or at
any instant of time within a given time interval, assuming
that the external resources, if required, are provided. This
attribute is important for telecom operators that want to offer
their customers services that perform as expected whenever
the service is requested.

Comparing the VDU IE originally proposed in the ETSI
MANO specification [7] with the one described in ETSI
GS NFV-IFA 011 [12], the high_availability 1E is no longer
specified. The reason provided by ETSI is based on the
assumption that the VNFM alone can hardly manage the
multitude of redundancy schemes: high availability policies
should be performed by each single VNFC at the application
level.

Instead, in our opinion, an attribute specified at the VDU
level allows the VNFM to execute specific operations tailored
for each single instance, thus simplifying the implementation
of the VNF itself.

Table VI shows the structure of the highAvailability 1E that
has to be added to the VDU standard description.

TABLE VI. HIGHAVAILABILITY INFORMATION ELEMENT

Attribute of the highAvailability VDU IE

Attribute Description
highAvailability Qualifier M
Cardinality | 0..N
Content Enum
Description | Defines redundancy model to ensure

high availability. Possible values are
”ActiveActive” or ~ActivePassive”.
ActiveActive: implies that two in-
stance of the same VDU will co-exists
with continuous data synchronization.
ActivePassive: implies that two in-
stance of the same VDU will co-exists
without any data synchronization.

If not provided: no specfic redun-
dancy model is applied.

For example, the statement “highAvailability”: ”ActivePas-
sive” implies the active part to request a set of parameters,
which can be different from the configuration set, which is

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

112

needed by the passive part. Furthermore, the active and passive
counterparts would require a different set of instantiation/con-
figuration scripts. As shown in Figure 5, this condition could be
easily enforced by using an additional attribute defined in the
LifeCycleMetadataScript 1E, i.e., the role attribute, which can
assume “active” (or “passive”) values, as described in Table
V.

D. AutoScale

An important aspect of the scaling, as VNF lifecycle op-
eration, is that scaling may be automatically performed by the
VNFM (auto-scaling) [14]. A specific attribute in the VNFD,
namely isAutoscaleEnabled of the VnfConfigurableProperties
IE, shall be used (set to true) in order to enable this feature for
the VNF. If auto-scaling is allowed, the auroScale IE can be
used to describe the auto-scaling rules, i.e., the conditions at
which to perform a scaling operation. These rules are generally
based on the values of the VNF indicators, or on the values of
VDU/VL monitoring parameters defined in the VNFD, or on
the combination of them. Moreover, the rules may be directly
included in the VNFD or expressed using external scripts.

Recently the IFA working group, developing the IFA-
023 [15] document, has proposed a stable study on how to
integrate policy management in NFV MANO architecture. In
this way, policies will give to MANO functions more automatic
characteristics, as required in a virtualized network environ-
ment. The model adopted consists of two logical entities: a
Policy Administration Point (PAP), which defines the policy,
and a Policy Function (PF), which evaluates it thus making
the consequent decisions. In this context, the auto-scale rules
become an auto-scaling policy pre-defined in the VNFD by the
VNF provider, which can be seen as the PAP, and enforced by
the VNFM acting as PF. Each time the VNFM detects the
occurrence of the condition(s) of the auto-scaling policy, it
executes the action(s) as indicated in the policy itself.

TABLE VII. AUTOSCALE INFORMATION ELEMENT

Attribute of the autoScale VNFD IE
Description

Attribute
autoScale

Qualifier M
Cardinality | 0..N

Content Rule
Description

Rule that determines when a scaling action
needs to be triggered on a VNF instance
e.g., based on certain VNF indicator val-
ues or VNF indicator value changes or a
combination of VNF indicator value(s) and
monitoring parameter(s).

In this subsection, we provide the description of the au-
toScale 1E. More precisely, we provide the description of the
Rule attribute of this IE. In fact, the autoScale is already
defined in IFA-O11 while a detailed description of the Rule
is missing. Table VII resumes the structure of the autoScale
IE as specified by IFA-011 document.

As mentioned in the description of Table VII, the Rule
(conditions and actions) may be expressed as a script: this
allows to provide specific instructions using a DSL. Anyway,
both IFA-011 and IFA-023 documents do not contain further
information about structure or domain specific language to be
used to create auto-scaling rules/policy.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In light of the above, we propose a possible structure of
the Rule attribute in the autoScale 1E.In particular, they should
be expressed by indicating the following attributes:

o ruleld, the unique identifier for the rule within the
VNFD.

e description, this attribute gives a human readable
description of the rule itself.

e deploymentFlavour, an explicit reference to the De-
ployment Flavour(s) for which the rule will take effect.
Since the cardinality can be greater than one, we make
explicit reference to the Deployment Flavour(s) for
which the rule will take effect.

e conditions: a list of statement, i.e., the conditions that
must occur to perform the actions and the number of
consecutive samples (n7ime attribute) for which they
have been verified (default 1). The identifiers in the
statement are the VNF indicators and the monitoring
parameters contained in the VNFD. Logical/arithmeti-
cal operators are used as defined in the specification
“ISO/IEC 9899 [16].

e actions: attribute containing the indication of the type
of scaling and a reference to the involved scaling
aspect.

Figure 6 shows an example of rule to perform automatic
scale out of the VDU SIG for the Italtel SBC.

"autoScale": [{
"ruleId": "SIG_AUTOSCALE_OUT",

"description": "Autoscale Rule to
<~ scale OUT the vdu SIG",
"flavourId": ["dfTest"],
"conditions": [{
"statement": "(KPI_SIG_1 > 30)",
"nTimes": 2
}J r
"actions": [{
"type": "SCALE OUT",
"aspectId": "sig_scale"

]
}H]

Figure 6. Proposed structure of the autoScale IE in the VNFD.

The attributes conditions and actions are the core of
the auto-scaling rule/policy. The former contains a list of
statement, i.e., the conditions that the VNFM must verify to
perform the actions and the number of consecutive samples for
which they have been verified. In this specific case the number
of consecutive samples is equal to 2 to avoid an immediate
reaction in case of a burst in the measured value.

Thanks to this simple data model extension, we can map,
directly inside the VNFD, the details about auto-scaling in/out
rules for the VNF components to be scaled (the SIG component
in the specific case).

IV. VALIDATION USE CASES

In this section we provide a description of two different
use cases in order to validate the benefits introduced by the
proposed extensions. The former practical example take into

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

113

account LifeCycleMetadataScript, highAvailability and depen-
dencies extensions showing how the information carried by
those IEs can be used during the instantiation lifecycle event.
The latter provides an example of the Rule attribute composing
the autoScale 1E, thus specifying the scripts conditions and
actions applied to a real deployment.

A. Cloud-Init Use Case

In Subsection III-B, the mechanism that associates the
execution of a script to a lifecycle event has been described
(LifeCycleMetadataScript). This association, contained in the
VNFD, is extremely powerful for a generic VNFM and useful
for a VNF provider that needs some specific configuration in
a given step of the lifecycle of its virtual network function. In
particular, the instantiation phase of a VNF is a very delicate
process and this mechanism shall provide all the data in order
to bring the VNF in a valid state, in which all the VMs have
to be up and running.

Several software tools make possible to reach the above-
mentioned target. Some of them consist of an agent installed
in the VMs composing the VNF through which the VNFM is
able to command the execution of scheduled scripts/commands
[17]. Other tools, already available on recent Linux distribu-
tions, consume scripts containing user-data section. One of the
most popular formats for this kind of scripts is the cloud-config
file format while cloud-init is a well know Linux program
designed to run these scripts [18]. They are particularly useful
for initial configuration on the very first boot of a server.

Since this second solution is extremely helpful in real
contexts, we decided to add it when we developed our own
VNF and VNFM. As a confirmation of the goodness of our
decision, recently ETSI IFA working group has started a new
discussion on the possibility to introduce a user-data section in
the next version of the VNF Descriptor, together with a VNFM
built-in mechanism to pass real-time values as proposed in
Subsection III-B.

Another important aspect related to the introduction of this
feature is that, if the VIM is Openstack [19], it natively accepts
user-data section as optional attribute of the VM creation
command.

#cloud-config
users:
- name: username#l
<user#l options>
- name: username#2
<user#2 options>

write_files:
- content: |
<lines to write to the file>
path: <dir>/<filename>
runcmd:
— command#1
- command#2

Figure 7. Basic cloud-config file structure.

In Figure 7 we report the basic structure of a cloud-config

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

file that Cloud-init is able to interpret. There are several parts
of this script that it worth to note:

e cach cloud-config file must start with the string
“#cloud-config” on the first line. In this way, cloud-
init will be immediately aware to interpret the rest as
cloud-config file;

e users” key is followed by a list of items, identified
by a ”-” in a new indentation level, representing the
different users enabled on the VM. Various options
are available for this section;

e write_files” key is used to open a section describing
all the data, placed after the “content” line, that will
be written in a file specified in the “path” line;

e “runcmd” key contains the list of commands that will
be executed on the VM by the cloud-init process.

Note that indentation is a key aspect in a cloud-config file: it
is necessary to differentiate and interpret the various levels in
the script.

In the rest of the section, we will show a practical use
case in which the cloud-config scripts are executed during the
instantiation phase of the Italtel SBC. Furthermore, we will
show how the first three IEs introduced in Section III can work
together providing essential info in order to obtain a VNF run-
ning and eventually ready for service configuration. As already
said, each VDU described in the VNFD of the Italtel SBC
has a LifeCycleMetadataScript 1E containing the reference to
the cloud-config script associated to the "INSTANTIATION”
event. The “parameters” attribute is the list of parameters that
will be replaced in this script by the VNFM with the run-
time values returned by the VIM during the instantiation of
the VNF.

"LifeCycleMetadataScript": [{

"event": "INSTANTATION",

"script": "instantiate_ocam_active",

"role": "active",

"parameters": [
"SSparam.cp_oam_int.ipaddress”,
"S$Sparam.hostname"”,
"SSparam.domain_name",
"SSparam.passive.cp_oam_int.ipaddress",
"SSparam.passive.hostname"

]
oA

"event": "INSTANTATION",
"script": "instantiate_oam_passive",
"role": "passive",

"parameters": [
"SSparam.cp_oam_int.ipaddress”,
"SSparam.hostname",
"SSparam.domain_name",
"SSparam.active.cp_oam_int.ipaddress",
"SSparam.active.hostname"

]

Figure 8. Proposed structure of the autoScale IE in the VNFD.

Furthermore, if a VDU has the highAvailability 1E equal
to “ActivePassive” it is possible to differentiate the scripts
mechanism for the two instances having separate items in the

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

114

JSON array describing the LifeCycleMetadataScript 1E: one
for the VNFC with the “active” role, and the other for the
“passive” one.

Figure 8 shows an example of this configuration for the
VDU OAM: since it has an Active/Passive redundancy model,
cloud-config scripts with different commands will be executed
during the instantiation of the master and the slave instance.
Note that it is possible to customize the parameters lists based
on what kind of information the two VMs need at their boot.
In our example, for high availability purpose, the passive
VNFC OAM needs to know the hostname and IP address of
a connection point related to the active counterpart and vice
versa. In other configurations, a VDU (e.g., VDU_A) may
need some infrastructure details related to another VDU (e.g.,
VDU_B). In this case, the VduDependencies IE is extremely
useful since, by defining proper dependency rules, the manager
is able to instantiate the VNFC related to the VDU_B, before
the component coming from the VDU_A. In this way, all
the infrastructure information needed by the VDU_A will be
available to the VNFM at the right time.

Once all the parameters in the cloud-config script are
replaced with the run-time values, the manager will add it
to the virtual resource allocation request sent to the VIM.
The infrastructure manager will create the VM on the NFVI
and, at the very first boot, cloud-init process will start reading
the cloud-config file and performing all the tasks listed in it.
Repeating this procedure for all the VNFCs, the result will be
a VNF up and running, able to receive further configuration
data at service level.

B. VNFD Auto-scaling Use Case

As already mentioned, the VNF Descriptor has a key role
in the lifecycle management. In the last subsection we have
shown how the details contained in it about architecture, virtual
resources required and actions to be taken in certain conditions,
are used by the VNFM in order to instantiate a VNF ready to
work.

As it is depicted in Figure 9, the VNFM uses the mea-
surement information in the VNFD to collect data and the
rules to apply the consequent actions. They are the execution
of workflows that can be preconfigured or expressed with
lifecycle management scripts.

MEASURES RULES ACTION
Info from VNFD from VNFD Association in VNFD
Ty A vy
ve-vnfm
VNFM
Eventmsg LCM
" collector s Analysis, EVENT /7

Yy filtering,

NE Measurements | |
collector

correlation

vi-vnfm

| VIM

Figure 9. VNFM architecture.

A lifecycle event, that is particularly attractive in cloud
environment, is the "SCALING”. It represents the ability to

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dynamically extend or reduce resources allocated to a VNF.
There are four types of scaling:

e OUT - adds new instances (e.g., VM);
e IN - removes instances;

e UP - increases resources already allocated (e.g., vCPU
of a VM);

e DOWN - decreases resources already allocated.

Although not all the VNFs support these operations, they
are very useful in those scenarios in which the incoming traffic
increases and new components are necessary to guarantee the
execution of the network function with the same level of
performance. The Italtel SBC has two VNFCs that scale in/out:
the SIP signaling module (SIG), and the transcoding media
gateway (BGW).

In the rest of the section, we show a practical application of
the auto-scaling use case. By varying the incoming signaling
traffic managed by the SBC VNF, the VNFM will perform the
SIG scale in/out following the info contained in the autoScale
IE.

In Figure 10 it is reported the average vCPU load (in
percentage) of the two SIG components initially instantiated

by the VNFM. At this point, the VNF is fully configured, but
there is no incoming traffic.

Average SIGs vCPU Load (%)

21030 12:11:00 121130 121201
Time (s)

Figure 10. Average vCPU Load (%) of SIG VNFCs without incoming traffic.

In particular, the “’scale out” operation, i.e., the instantiation
of a new instance of a SIG component, is triggered when the
vCPU load (averaged on the different instances of SIG VNFC
already deployed on the NFVI) measured by the VNFM is
greater than the predefined threshold of 30% (red line in Figure
10) for two consecutive sampling periods (by default scheduled
every 30 seconds). On the other hand, the ”scale in” operation
is performed when the load goes below the threshold of 15%
(blue line in Figure 10) for two consecutive samples.

This behavior is depicted in Figure 11, in which there are
two aspects that are worth noting:

e after the scale out command, the VNFM will wait
another two sampling periods before executing another
scaling procedure: this is due to the fact that the
new VM can take some time to boot and start all its
applicative processes. To perform scaling without con-
sidering any guard interval would lead to an unstable
system;

e once the new SIG component is up and running, the
overall traffic will be distributed on an higher number

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

115

of instances of this VNFC type and so, maintaining
the same amount of incoming traffic, the average
vCPU load will decrease remaining between the two
thresholds, in the interval desired and designed as the
optimal way of working of this specific VNFC.

Average SIGs vCPU Load (%)

56:30 14:57:00 14:57:30 14:58:00 14:58:30 14:59:00 14:59:30 15:00:00 15:00:30 15:01:00 15:01:30 15:02:00

Time (s)

Figure 11. Average vCPU Load (%) of SIG VNFCs when incoming traffic
increases.

The same threshold mechanism is defined to automatically
scale in the SIG components if the selected performance metric
becomes lower than 15%. This is the case reported in Figure
12, where the amount of incoming traffic decreases to such
a value that the average vCPU load falls below the blue
line for two consecutive sampling periods. Consequently, the
VNFM commands to the VIM the termination of all the virtual
resources associated to one of the VNFCs SIG instantiated on
the NFVI, whose service is no longer required.

Average SIGs vCPU Load (%)

05:00 15:05:30 15:06:00 15:06:30 15:07:00 15:07:30 15:08:00 15:08:30 15:09:00 15:09:30 15:10:00 15:10:30

Time (s)

Figure 12. Average vCPU Load (%) of SIG VNFCs when incoming traffic
decreases.

V. CONCLUSIONS

In this paper, some improvements have been proposed in
Management and Orchestration of Virtual Network Functions,
based on extensions of the Information Model specified by
ETSI. The need for these additional IEs in the VNFD/VDU
descriptor(s) has been originated from a real implementation
of a novel NFV-compliant Session Border Controller solution.
The key points addressed have been more flexibility in the
management of network functions and increased reliability of
virtualized systems. As a result of this work, we provided
a detailed description, rationales, relationships and possible
benefits coming from the new attributes, as well as practical
examples to support the validity of the proposed approach.
The extensions have been applied and successfully validated

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/networks_and_services/

in two real use cases related to different lifecycle events of
the Italtel SBC solution. These examples demonstrate how the
proposed extensions can be very useful to improve VNF life-
cycle management and easy to fit into the ETSI specification
framework.

(1]

(2]

[3]

(4]

(51

(6]

(71

(8]

(91

(10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

REFERENCES

G. F. Andreotti, P. S. Crosta, E. Miucci, and G. Monteleone "NFV
Information Model Extensions for Improved Reliability and Lifecycle
Management,” SOFTNETWORKING 2017, April 23 - 27,2017 - Venice,
Italy.

V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, "An Approach
for Service Function Chain Routing and Virtual Function Network
Instance Migration in Network Function Virtualization Architectures,”
in IEEE/ACM Transactions on Networking , vol.PP, n0.99, pp.1-18.

R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck and
R. Boutaba, ”"Network Function Virtualization: State-of-the-Art and Re-
search Challenges,” in IEEE Communications Surveys & Tutorials, vol.
18, no. 1, pp. 236-262, Firstquarter 2016.

ETSI - NETWORK FUNCTIONS VIRTUALISATION [Online]. Avail-
able: http://www.etsi.org/technologies-clusters/technologies/nfv [Nov.
28, 2017].

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV 002
V1.1.1: Network Functions Virtualization (NFV); Architectural Frame-
work,” October, 2013.

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV 003
V1.2.1: Network Functions Virtualization (NFV); Terminology for Main
Concepts in NFV,” December, 2014.

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV-MAN
001 V1.1.1: Network Functions Virtualization (NFV); Network Functions
Virtualization Management and Orchestration,” December 2014.

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV-IFA
006 V2.1.1: Network Functions Virtualization (NFV); Management and
Orchestration; Vi-Vnfm reference point Interface and Information Model
Specification,” April 2016.

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV-IFA
007 V2.1.1: Network Functions Virtualization (NFV); Management and
Orchestration; Or-Vnfm reference point Interface and Information Model
Specification,” October 2016.

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV-IFA
008 V2.1.1: Network Functions Virtualization (NFV); Management and
Orchestration; Ve-Vnfm reference point Interface and Information Model
Specification,” October 2016.

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV-SOL
004 V2.3.1: Network Functions Virtualisation (NFV) Release 2; Proto-
cols and Data Models; VNF Package specification”, July 2017.

ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV-IFA
011 V2.3.1: Network Functions Virtualization (NFV); Management and
Orchestration; VNF Packaging Specification,” August 2017.

The JSON Data Interchange Format [Online]. Available:
http://www.ecma-international.org/publications/filessECMA-ST/ECMA-
404.pdf [Nov. 28, 2017].

P. Tang, F. Li, W. Zhou, W. Hu and L. Yang, “Efficient Auto-Scaling
Approach in the Telco Cloud Using Self-Learning Algorithm,” 2015
IEEE Global Communications Conference (GLOBECOM), San Diego,
CA, 2015, pp. 1-6.

ETSI Industry Specification Group (ISG) NFV, "ETSI GR NFV-IFA
023 V3.1.1: Network Functions Virtualisation (NFV); Management and
Orchestration; Report on Policy Management in MANO,” July 2017.

ISO/IEC 9899, Information technology Programming languages C.

Open Baton: NFV compliant MANO frame-
work. Generic VNF Manager [Online]. Available:
https://openbaton.github.io/documentation/vnfm-generic/ [Nov. 28,
2017].

Cloud-init: The standard for customising cloud instances [Online].
Available: https://cloud-init.io/ [Nov. 28, 2017].

Openstack: Open source software for creating private and public clouds
[Online]. Available: https://www.openstack.org/ [Nov. 28, 2017].

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

116

