MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Involving Non Knowedge Base Experts With the
Development of @Qtologies

Vlad NicoIicin-Georgesc*u Vincent Bénatier

SP2 Solutions
La Roche Sur Yon, France
vladgeorgescun@sp2.fr, vbenatier@sp2.fr

Abstract - The paper presents an approach to ontology
development with the help of regular, non technical users. The
specific objective is the construction of a software ontology
with a much higher level of detail (eqg., patch version or
software version compatibility) than existing propositions like
OpenCyc. To this end, we need the feedback of software
expertsand users. The problem isthat these are not knowledge
experts with a background in working with ontology concepts,
asrequired by the actual ontology development solutions. Our
strategy is to provide an intuitive online platform through
which users can provide feedback about their software
configurations without the perquisites of ontology modeling.
The platform, called TimSys is linked with the ontology model
via mapped data bases and it represents a bridge between the
technical and non technical knowledge base worlds.

Keywords — Ontology, Information System, Softwai2ecision
Support System

l. INTRODUCTION

The evolution of information systems (IS) lead to
complex description of their architectures, fronrdweare
resources to installed software. As the numberoftivare
vendors increased exponentially, so did the numibfer
offered functionalities and services. It is assgégbat up to
90% of the requested functionalities is alreadylalike with
existing applications [1]. The variety of softwapeoducts
implies an increased number of problems, from btwms
product incompatibility. These are referenced iffedent
non or semi-structured sources, such as readmerduts or
technical forums. Integration propositions such
Microsoft's knowledge base (KB) articles for driver
development [2] are very specific and are addressedpert
users.

In this context of problem resolution, wheneverissue
occurs the user searches for answers with seveuates,
among which: the available documentation, call eenbr
technical forums and discussion lists. This way
functioning poses two major problems.

First, it requires a perfect knowledge of the useftiware
configuration (vendor, name, version, patch, OS).eteor

Rémi Lehn, Henri Briand

"Ecole Polytechnique de I'Université de Nantes
Nantes, France
remi@fc.univ-nantes.fr, henri.briand@univ-nantes.fr

has no knowledge of the Java JRE version, whiclttisally
the cause of the malfunction. As there is no cotaple
description of the installed software, it will taleeveral
exchanges, e.g., with the support line, to detezrttiat there
is a third element at the root of the crash.

Second, each time an issue occurs, there is aithepet
and confusing process of software description.ifstance,
help desks employ three levels of competenciesABgach
level, you are asked for your software configuratif the
problem isn’t solved, each time you are in contaith a
person from the help desk, you have to re-spedify t
software and the problem. This translates to fatisiy
repetitive operations and increased times for bl
resolution. Moreover, it relates to the first pebl as a non
technical user is asked for detailed technical qseof
information.

With the expansion of the Semantic Web, ontologies
have become a standard to model complex IS. Ptigosif
ontology usage for software models [4] or for seticamelp
desks [5] have proven that this may be a valid pgath
explore. Building and managing an ontology is natidal
task, and is based on the collaboration of a speuser
community. The problem is that this implies an elipe in
working with ontologies and KBs, thus being resdrie a
‘closed’ category of users.

In consideration with the problems mentioned aboue,
objective is to build a software ontology, whichosld
provide a reference point for system software dton.
For the initial ontology, we have chosen a res&din
software perimeter, related to our expertigeision support

a%ygtems (DSS). To this end, we propose a semantic

collaborative online platform;TimSys, which enables the
description of user software environments starfrogn the
ontology software concepts. The main idea befimiBys is

to help the evolution of the software ontology htegration

of non technical user feedback. This way, everyone
contributes to the development of the ontologyneveéhey

Ofare not KB experts.

The remainder of the paper is organized as follows.
Section 2 presents the main software types with Bx@6the
problems of software configuration description. tec 3

example, if an interactive reporting software cessh ghows how ontologies are used for knowledge mogletind

constantly while using a specific data spreadshesgram,
the user reports at best the reporting softwarsiser He/she

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

some of the advantages and drawbacks of using them.
Section 4 introduces th&imSys platform, with the data

10

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

model and the use case scenarios. Finally, SeStmms up
the conclusion and the future directions for thasky

Another solution, less complex and simpler to use i
system information software (e.g., Belarc Advis8}).[For
example, on Windows machines, the SOFTWARE registry

Il. SOFTWARE CONFIGURATION DESCRIPTION keys contain reference to the installed software.
First, this section introduces the main DSS soféwar Nevertheless, this solution has several drawbagkst, it

types, and then the existent problems and solutioits
software description.

A. Decision Support Systems Software
DSSs represent the use case of our propositiory atee

requires the installation of a specific program each
machine. Second, there is no complete view of fstem
(i.e., number of physical machines, how they arnected).
Third, there is a problem with information availélj as the
software list is not managed collaboratively; itsaisng

a type of IS that supports business and organimdtio requires each time a duplication of the descripfilen

decision-making activities. They have been thordugh

Our proposition is elaborated over the two modeling

described by Inmon [6], with focus on data wareleous aspects presented above, taking the benefits bf Bost, it

architectures. Software environments of DSSs irgltlte
following four major components:

(i) A data provider which contains the data that is

integrated with the data warehouses. This data lm&an
structured (e.g., DBs) or non-structured (e.g.hréal
documentation). The most often met solution is tiahal
DBs (e.g., SQL Server, Oracle DB).

(ii) ETL (Extract, Transform, Load) software is in charge
of transforming the provided data and loading tib ithe data

uses a model complex enough, which enables theiplésc
of machines, software and the links that exist ketwthem,
but not too complex to enter the ADL world, whil®piding
an intuitive interface for non-technical users. @et; by
using ontologies, it overcomes the issues of abiitha and
synchronization. Each software, configuration agdtesm
has its own unique URI, while assuring a completeesn
overview. Moreover, as the data model is openeéysus
benefit by adding feedback and continually imprguin

warehouses. ETLs are usually developed by the data

provider software editors (e.g., Oracle DW BuildBata
Integrator & Data Services by SAP).

Ill. LINKED DATA AND ONTOLOGIES
With the development of the web and the expansfon o

(iii) The data warehouse, which stores the aggregated the Internet, linked data is specified as the futwf
analytical data. Examples include the Oracle Hyperi information throughout online environments. Develdby

Essbase or SAP Business Objects.

Berners-Lee, linked data is founded over the collative

(iv) The use interfaces that provide access to the dataefforts of the Web 2.0 and the semantics of thar&itWeb
from the data warehouse, usually for reporting .(e.g 3.0 [9]. The proposition states that the entir@rimfation on

Hyperion Interactive Reporting , Microsoft Excel).

As decisional experts, we have been faced withtres
of describing the software products above. Usuaihg
enterprises maintain this information in plain tdgtuments,
or eventually semi-structured ones (e.g., officeutoents
with templates). This implies that every refererioethe
software configuration is based on a specific dcotn

the web is part of a single global KB.

The formalization of the linked data concept is mad
through ontologies. Introduced by Gruber [10], aotogy
defines a set of representational primitives ablenbdel a
domain knowledge or discourse [11]. An ontologpal the
definition of three types of concepts: (i) clasgpgpe of
concept), (ii) individuals (instances of classeapd (iii)

which must be provided each time. Moreover, VerSiOI’properties (links between classes and/or indivigjualA

control has to be investigated for the documentagiod for
the software configuration. We have met severalatitns

sentence in an ontology is represented under ttme & a
triplet (subject, predicate, object), e.g., (Wind@@03SRYV,

where software patches were applied without propeisA, Windows2003). Ontology expression languages ar

documentation (e.g. undocumented software migratitin
the initial configuration specification is not uped,
inconsistencies and false information occur.

B. Software Configuration Description

Software description offers many modeling altemresti
With the development of modeling tools such as UBbfL
Architecture Description Languages (ADL), companies
understood that integration and easy access ardakéyrs
for fast problem resolution.

In [7], the authors present an overview of the asaf
UML with software architecture description. There an
extensive area of research over this subjectyatyadetailed
and technical level. Although they provide staniaatibn
with the description language, the complexity ofctsu
solutions is in most cases a ‘deal-breaker’ whetinta
simpler needs.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

XML based, such as the W3C standards RDFS and OWL

[12]. Additionally, SPARQL enhances SQL-like dataegy
to retrieve information from ontologies.

Relating to the problem of software configuration,
[13], the authors provide an overview over how yies
mix with UML. Moreover, some of our previous wonkgith
ontology models for managing DSSs [14] have showen t
advantages and inconveniences of ontology modeling.

The benefits of using ontologies come from the dyica
of the data model, high expressivity and inferesgpport.
Dynamics refers to the fact that the informationdelois
prone to constant changes (unlike DBs implememta}icas
collaboration is the key to building an ontologyighi
expressivity indicates that any matter or facts dan
expressed within the ontology (from where the tHeaels
of expressivity with the OWL). Last, inference a® the
deduction of new knowledge from the existing knalgle by
using axioms and rules.

11

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

On the contrary, the main drawbacks of ontologies a version
the novelty of the technology, information

of the software. The object property
retrieva isCompatibleWith specifies the list of software with which it

performance and high technical competences reqaitem
Only recently the industry has shown its interestards this
technology (i.e., Oracle 10g semantic module). Detideval
performance for large scale ontologies proves to abe
problematic point, from where the recommendaticat for
high number of concepts, relational DBs are preféror
faster access [15]. The last major inconvenientthat

is compatible. ThénasPrevious property links this specific
version with the Win2k3 server products timelinast, the
hasEditor property links it with théMlicrosoft concept, which
is obtained by querying the DBPedia SPARQL endddiri
as an already existing concept.

Relational DBs are used for the representation of the
systems and the corresponding software configuratigv/e

working with ontologies (as with any new technolpgy define aconfiguration as the totality of (interesting) software

requires a formal technical preparation. As ontigegim to
sustain a large collaborative online usage, thisis@back a
good part of its ‘target’ users.

Our proposition is implemented with regards to these

disadvantages. We use a combined data model (D®/k)Q
to assure high expressivity and collaboration,
providing fast data access.

IV. TiMSYys

TimSys [16] is our proposition for a collaborative,
semantic, online and non-technical software cométon
description platform. Collaborative expresses #wt that its
users play an active role in the evolution of tbftveare KB.
Semantic indicates the usage of ontologies for
formalization. Online sends to the standardizatadnthe
software concepts. Last, non-technical underlinbst t

anyone can contribute to the development of the KB

regardless his background in working with ontolsgie

installed on a single machine (the OS and the liadta
software). Asystem is defined as a combination of one or
several configurations; which we consequently atlinsys.

The choice of DBs for the implementation comes from
the fact that, unlike the software ontology (whtere is a

evhil reduced number of concepts), the number of cordtguns

and systems may reach billions. In order for therbdlel to
be as fast as possible, a mapping of the softwarelagy
concepts is done such that they are also formalizdte DB
model. This means that the data backend is fubyras by
relational DBs. Any evolution in the ontology modebults
in its remapping into the DB model. This permitsomstant
availability of the software lists, while new chasgto the

KBsoftware ontology are processed.

B. Evoloving the Ontology - The User Interface

The graphical user interface is the front end of th
TimSys platform. It includes two major different bsu

TimSys is composed of two main modules: (i) the interfaces: (i) access and (ii) management.

software and systems KB and (ii) the user interface
A. The Knowledge Base

The access interface enables the online view of a system
by an unique hash link (e.q.,
http://www.timsys.org/hjJKuyJ8. Using this link, anyone at

The KB contains the totality of available software,anytime can have a look at the configurations asidaf

configurations and systems. As mentioned earller, data
model is a combination between relational DBs aMiLO
ontologies.

OWL is used to implement the software ontology with a

very high granularity. All the details from editto patch
version are described. Additionally, it allows tHgnamic
description of relations between software such

compatibility or functionalities. Inference ruletap a very
important role, as to establish software versigredeencies.
Our prototype software ontology contains 902 irdiinls,
25 classes, 13 object properties and 14 data tymeefies
with the OWL DL expressivity.

software. This greatly helps the problematic of eyuiby,
duplication and synchronization while offering aszdo an
opened software KB.

The management administration interface proposes the
creation of new systems or the modification of &xis ones,
similarly via an unique link. The interface is hlilvith

agegards to non-technical users, thus remainingraple as

possible. Alongside permitting users to describeirth
configurations, it provides the possibility of féedk in the
cases where a required software is not found itKee

This is the key aspect towards the evolution of the
software ontology. Whenever a software is not fouthe

An example of a software concept from the ontologyuser fills a three field form with the software tedj name

(Windows Server 2003 R2) is shown in the followtagle

Table 1 — Software ontology concept example (tyiple

Subjec Predicate Objec
rdf:type Win2k3SR\
hasMajorVersio “5"Mxsd:string
Win2k3SRV_R2 | hasVersio “5.2"Mxsd:string
isCompatibleWitl | Essbase_9.2
hasPreviol Win2k3SRV_SP
hasEdito Microsofi

First, we notice the inclusion of th&in2k3SRV_R2
individual the generalMindows2k3SRYV class via thedf:type
property. Then, two string data properties indicéte

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

and version (only the last 2 are compulsory). Taedback
is stored temporarily in the DB, becoming instamtixailable
to the user and with the destination of ontologggnation.
At this point, the KB experts are in charge of upugathe
software ontology accordingly. Once the ontologylated
(e.g., once per day), the remapping of the new eqtscto
the DBs is made,
permanently available. We note that the interventiba KB
expert is always needed for integration.

Summing up, Figure 1 shows the general functiomihg

the TimSys platform, with the presented modules and use

cases.

12

and the new software becomes

MOPAS 2011

[:

=" J
ExtamnallSources KB Hipert
(2.0. DBPedia)

= TimSys Online Platform [] User System

imSys Knawlzdge Base -]
User Interface [4]
(front end)
Online Published\ _ _ _—l——====TT T T Do
Saftware Onfology ™~~~ At =i E‘
(OWL+ules) Temparaly somware | Sofvware notfound. N o
DBs feeghack \ =
|
\\ oftware Cdnfiguration 1
i
: f \ |
Mapped Softwars | Mogicatianibieae s |
{cttirat o) {uniads oclfcatonink) i [5]
i
i \ Users i
_ (tzchnical & non-technical) o
Canfigurations: | \
and Systems) ‘
tmsys | (unique azcess fink)
(staonal0Bs) -~

Software Configuration n

Figure 1 —TimSys Overall Architecture

The arrows indicate the direction in which the dhievs. [6]
We notice that this is both ways for the management
modification interface. Moreover, the ontology isbfished [7]
online and available to users for direct accests aoncepts.

V. CONCLUSIONS

In this paper, we presented a proposition for mgdan [g]
ontology by involvement of non KB experts. Spedifig,
the objective was to develop a software ontology b){g]
integrating a maximum of user feedback. To this, end
proposed an online platform for describing software
configurations. Consequently, we proposed solutitos
overcome the issues of collaboration, synchrormnatnd
availability when it comes to describing the softeva
environments, with the use case of DSSs.

The state of the art offered a view over softwar
configuration modeling approaches and over the séma
web technologies. With our propositiomimSys, we have
presented a combined DB/OWL data model and antiveui
interface for access and management. Thus, we $ese
how non-technical users feedback contributes to the
development of the software ontology.

Nevertheless, the work presented here is at an ade.
Our future works will detail the aspects of: DB/OWL
mapping with the data model, usage of existingnsnkt KB
(more than DPBedia), validation of the ontology aitsl
publication as a recognized reference. As it is@gn source
project, we aim at building an active community uard
TimSys, for both technical and non-technical feedback.

REFERENCES

[1] P. Oreizy, “Decentralized software evolutiong’ The

International Conference on the Principles of Saftv
Evolution (IWPSE 1), 1998. Last accessed November
2010. Available: http://www.ics.uci.edu/~peymano/-

papers/iwpse98/

Microsoft. Knowledge base articles for
development. Last accessed November 2010.

[13]J. Savolainen,

[14] V. Nicolicin-Georgescu,

[15]N. K.

: The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

T. N. I. A. System. Help desk level competescikast
accessed November 2010. Available: http://-
www.nitas.us/docs/-
Help%20Desk%20Level%20Competencies.pdf

M. Brauer and H.Lochmann, “An ontology for
software models and its practical implications for
semantic web reasoning,” in The 5th European
semantic web conference on The semantic web:
research and applications, ESWC’08, 2008.

Nepomuk. Mandriva community case study first
prototype of a social semantic help desk. Last ssam
November 2010. Available: http://-
nepomuk.semanticdesktop.org/xwiki/bin/download/-
Main1/D11-2/-
D11.2_v10_NEPOMUK_1st%20Prototype%200f%20S
ocial%20Semantic%20Helpdesk.pdf

W. H. Inmon, Building the data warehouse, fburt
edition, W. Publishing, Ed. Wiley Publishing, 2005.

P. Avgeriou, N. Guelfi, and N. Medvidovic, “Sefare
architecture description and uml,” UML MODELING
LANGUAGES AND APPLICATIONS, vol. 3297, pp.
23-32, 2005.

Belarc. The belarc advisor. Last accessed JsritGil 1.
Available: http://lwww.belarc.com/free_download.html
C. Bizer, T. Heath, and T. Berners-Lee, “Linkddta -
the story so far,” International Journal on Senaanti
Web and Information Systems (IJSWIS), vol. 5, no. 3
pp. 1-22, 2009.

[10]T. Gruber, What is an ontology? Academic Presb.,

1992.

e[11]L. Liu and M. T. Ozsu, Encyclopedia of Databas

Systems, L. Liu and M. T. Ozsu, Eds. Springer-Mgrla
2008. Available: http://ftomgruber.org/writing/onbaly-
definition-2007.htm

[12]W3C. World Wide Web consortium. W3C. Last

accessed July 2010. Available: http://www.w3.org/
“The role of ontology in softea
architecture,” in OOPSLA Workshop on How to Use
Ontologies and Modularization to Explicitly Desaib
the Concept Model of a Software Systems Architegtur
2003.

V. Benatier, R. Lehnand

H. Briand, “Ontology-based autonomic computing for
decision support systems management,” in The First
International Conference on Models and Ontology-
based Design of Protocols, Architectures and Sesyic
MOPAS 2010, pp. 233-236, 2010

Irina Astrova and A. Kalja, “Storing owl
ontologies in sql relational database,” Internaion
Journal of Electrical, Computer, and Systems
Engineering, vol. 1, no. 4, pp. 242-247, 2007.

driver [16] This is my System (TimSys). Last accessed dgnu

2011. Available: www.timsys.org

Available: http://www.microsoft.com/whdc/driver/- [17]DBpedia. DBpedia SPARQL endpoint. Last accdsse
kernel/kb-drv.mspx January 2011. Available: http://dbpedia.org/sparg|

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4 13

