
Involving Non Knowledge Base Experts With the
Development of Ontologies

Vlad Nicolicin-Georgescu*, Vincent Bénatier
SP2 Solutions

La Roche Sur Yon, France
vladgeorgescun@sp2.fr, vbenatier@sp2.fr

Rémi Lehn, Henri Briand
*Ecole Polytechnique de l’Université de Nantes

Nantes, France
remi@fc.univ-nantes.fr, henri.briand@univ-nantes.fr

Abstract - The paper presents an approach to ontology
development with the help of regular, non technical users. The
specific objective is the construction of a software ontology
with a much higher level of detail (e.g., patch version or
software version compatibility) than existing propositions like
OpenCyc. To this end, we need the feedback of software
experts and users. The problem is that these are not knowledge
experts with a background in working with ontology concepts,
as required by the actual ontology development solutions. Our
strategy is to provide an intuitive online platform through
which users can provide feedback about their software
configurations without the perquisites of ontology modeling.
The platform, called TimSys, is linked with the ontology model
via mapped data bases and it represents a bridge between the
technical and non technical knowledge base worlds.

Keywords – Ontology, Information System, Software, Decision
Support System

I. INTRODUCTION

The evolution of information systems (IS) lead to
complex description of their architectures, from hardware
resources to installed software. As the number of software
vendors increased exponentially, so did the number of
offered functionalities and services. It is assessed that up to
90% of the requested functionalities is already available with
existing applications [1]. The variety of software products
implies an increased number of problems, from bugs to
product incompatibility. These are referenced in different
non or semi-structured sources, such as readme documents or
technical forums. Integration propositions such as
Microsoft’s knowledge base (KB) articles for driver
development [2] are very specific and are addressed to expert
users.

In this context of problem resolution, whenever an issue
occurs the user searches for answers with several sources,
among which: the available documentation, call centers or
technical forums and discussion lists. This way of
functioning poses two major problems.

First, it requires a perfect knowledge of the used software
configuration (vendor, name, version, patch, OS etc.). For
example, if an interactive reporting software crashes
constantly while using a specific data spreadsheet program,
the user reports at best the reporting software version. He/she

has no knowledge of the Java JRE version, which is actually
the cause of the malfunction. As there is no complete
description of the installed software, it will take several
exchanges, e.g., with the support line, to determine that there
is a third element at the root of the crash.

Second, each time an issue occurs, there is a repetitive
and confusing process of software description. For instance,
help desks employ three levels of competencies [3]. At each
level, you are asked for your software configuration. If the
problem isn’t solved, each time you are in contact with a
person from the help desk, you have to re-specify the
software and the problem. This translates to frustrating
repetitive operations and increased times for problem
resolution. Moreover, it relates to the first problem as a non
technical user is asked for detailed technical pieces of
information.

With the expansion of the Semantic Web, ontologies
have become a standard to model complex IS. Proposition of
ontology usage for software models [4] or for semantic help
desks [5] have proven that this may be a valid path to
explore. Building and managing an ontology is not a trivial
task, and is based on the collaboration of a specific user
community. The problem is that this implies an expertise in
working with ontologies and KBs, thus being reserved to a
‘closed’ category of users.

In consideration with the problems mentioned above, our
objective is to build a software ontology, which should
provide a reference point for system software description.
For the initial ontology, we have chosen a restrained
software perimeter, related to our expertise: decision support
systems (DSS). To this end, we propose a semantic
collaborative online platform, TimSys, which enables the
description of user software environments starting from the
ontology software concepts. The main idea behind TimSys is
to help the evolution of the software ontology by integration
of non technical user feedback. This way, everyone
contributes to the development of the ontology, even if they
are not KB experts.

The remainder of the paper is organized as follows.
Section 2 presents the main software types with DSS and the
problems of software configuration description. Section 3
shows how ontologies are used for knowledge modeling, and
some of the advantages and drawbacks of using them.
Section 4 introduces the TimSys platform, with the data

10

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

model and the use case scenarios. Finally, Section 5 sums up
the conclusion and the future directions for this work.

II. SOFTWARE CONFIGURATION DESCRIPTION

First, this section introduces the main DSS software
types, and then the existent problems and solutions with
software description.

A. Decision Support Systems Software

DSSs represent the use case of our proposition. They are
a type of IS that supports business and organizational
decision-making activities. They have been thoroughly
described by Inmon [6], with focus on data warehouse
architectures. Software environments of DSSs include the
following four major components:

(i) A data provider which contains the data that is
integrated with the data warehouses. This data can be
structured (e.g., DBs) or non-structured (e.g., technical
documentation). The most often met solution is relational
DBs (e.g., SQL Server, Oracle DB).

(ii) ETL (Extract, Transform, Load) software is in charge
of transforming the provided data and loading it into the data
warehouses. ETLs are usually developed by the data
provider software editors (e.g., Oracle DW Builder, Data
Integrator & Data Services by SAP).

(iii) The data warehouse, which stores the aggregated
analytical data. Examples include the Oracle Hyperion
Essbase or SAP Business Objects.

(iv) The use interfaces that provide access to the data
from the data warehouse, usually for reporting (e.g.,
Hyperion Interactive Reporting , Microsoft Excel).

As decisional experts, we have been faced with the need
of describing the software products above. Usually, the
enterprises maintain this information in plain text documents,
or eventually semi-structured ones (e.g., office documents
with templates). This implies that every reference to the
software configuration is based on a specific document,
which must be provided each time. Moreover, version
control has to be investigated for the documentation and for
the software configuration. We have met several situations
where software patches were applied without proper
documentation (e.g. undocumented software migration). If
the initial configuration specification is not updated,
inconsistencies and false information occur.

B. Software Configuration Description

Software description offers many modeling alternatives.
With the development of modeling tools such as UML or
Architecture Description Languages (ADL), companies
understood that integration and easy access are key factors
for fast problem resolution.

In [7], the authors present an overview of the usage of
UML with software architecture description. There is an
extensive area of research over this subject, at a very detailed
and technical level. Although they provide standardization
with the description language, the complexity of such
solutions is in most cases a ‘deal-breaker’ when facing
simpler needs.

Another solution, less complex and simpler to use is
system information software (e.g., Belarc Advisor [8]). For
example, on Windows machines, the SOFTWARE registry
keys contain reference to the installed software.
Nevertheless, this solution has several drawbacks. First, it
requires the installation of a specific program on each
machine. Second, there is no complete view of the system
(i.e., number of physical machines, how they are connected).
Third, there is a problem with information availability, as the
software list is not managed collaboratively; its sharing
requires each time a duplication of the description file.

Our proposition is elaborated over the two modeling
aspects presented above, taking the benefits of both. First, it
uses a model complex enough, which enables the description
of machines, software and the links that exist between them,
but not too complex to enter the ADL world, while providing
an intuitive interface for non-technical users. Second, by
using ontologies, it overcomes the issues of availability and
synchronization. Each software, configuration and system
has its own unique URI, while assuring a complete system
overview. Moreover, as the data model is opened, users
benefit by adding feedback and continually improving it.

III. LINKED DATA AND ONTOLOGIES

With the development of the web and the expansion of
the Internet, linked data is specified as the future of
information throughout online environments. Developed by
Berners-Lee, linked data is founded over the collaborative
efforts of the Web 2.0 and the semantics of the future Web
3.0 [9]. The proposition states that the entire information on
the web is part of a single global KB.

The formalization of the linked data concept is made
through ontologies. Introduced by Gruber [10], an ontology
defines a set of representational primitives able to model a
domain knowledge or discourse [11]. An ontology allows the
definition of three types of concepts: (i) classes (type of
concept), (ii) individuals (instances of classes), and (iii)
properties (links between classes and/or individuals). A
sentence in an ontology is represented under the form of a
triplet (subject, predicate, object), e.g., (Windows2003SRV,
isA, Windows2003). Ontology expression languages are
XML based, such as the W3C standards RDFS and OWL
[12]. Additionally, SPARQL enhances SQL-like data query
to retrieve information from ontologies.

Relating to the problem of software configuration, in
[13], the authors provide an overview over how ontologies
mix with UML. Moreover, some of our previous works with
ontology models for managing DSSs [14] have shown the
advantages and inconveniences of ontology modeling.

The benefits of using ontologies come from the dynamics
of the data model, high expressivity and inference support.
Dynamics refers to the fact that the information model is
prone to constant changes (unlike DBs implementations), as
collaboration is the key to building an ontology. High
expressivity indicates that any matter or facts can be
expressed within the ontology (from where the three levels
of expressivity with the OWL). Last, inference allows the
deduction of new knowledge from the existing knowledge by
using axioms and rules.

11

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

On the contrary, the main drawbacks of ontologies are
the novelty of the technology, information retrieval
performance and high technical competences requirement.
Only recently the industry has shown its interest towards this
technology (i.e., Oracle 10g semantic module). Data retrieval
performance for large scale ontologies proves to be a
problematic point, from where the recommendation that for
high number of concepts, relational DBs are preferred for
faster access [15]. The last major inconvenient is that
working with ontologies (as with any new technology)
requires a formal technical preparation. As ontologies aim to
sustain a large collaborative online usage, this sends aback a
good part of its ‘target’ users.

Our proposition is implemented with regards to these
disadvantages. We use a combined data model (DB + OWL),
to assure high expressivity and collaboration, while
providing fast data access.

IV. TIMSYS

TimSys [16] is our proposition for a collaborative,
semantic, online and non-technical software configuration
description platform. Collaborative expresses the fact that its
users play an active role in the evolution of the software KB.
Semantic indicates the usage of ontologies for KB
formalization. Online sends to the standardization of the
software concepts. Last, non-technical underlines that
anyone can contribute to the development of the KB,
regardless his background in working with ontologies.

TimSys is composed of two main modules: (i) the
software and systems KB and (ii) the user interface .

A. The Knowledge Base

The KB contains the totality of available software,
configurations and systems. As mentioned earlier, the data
model is a combination between relational DBs and OWL
ontologies.

OWL is used to implement the software ontology with a
very high granularity. All the details from editor to patch
version are described. Additionally, it allows the dynamic
description of relations between software such as
compatibility or functionalities. Inference rules play a very
important role, as to establish software version dependencies.
Our prototype software ontology contains 902 individuals,
25 classes, 13 object properties and 14 data type properties
with the OWL DL expressivity.

An example of a software concept from the ontology
(Windows Server 2003 R2) is shown in the following table

Table 1 – Software ontology concept example (triple)
Subject Predicate Object

Win2k3SRV_R2

rdf:type Win2k3SRV
hasMajorVersion “5”^^xsd:string
hasVersion “5.2”^^xsd:string
isCompatibleWith Essbase_9.2.1
hasPrevious Win2k3SRV_SP1
hasEditor Microsoft

First, we notice the inclusion of the Win2k3SRV_R2
individual the general Windows2k3SRV class via the rdf:type
property. Then, two string data properties indicate the

version of the software. The object property
isCompatibleWith specifies the list of software with which it
is compatible. The hasPrevious property links this specific
version with the Win2k3 server products timeline. Last, the
hasEditor property links it with the Microsoft concept, which
is obtained by querying the DBPedia SPARQL endpoint [17]
as an already existing concept.

Relational DBs are used for the representation of the
systems and the corresponding software configurations. We
define a configuration as the totality of (interesting) software
installed on a single machine (the OS and the installed
software). A system is defined as a combination of one or
several configurations; which we consequently call a timsys.

The choice of DBs for the implementation comes from
the fact that, unlike the software ontology (where there is a
reduced number of concepts), the number of configurations
and systems may reach billions. In order for the DB model to
be as fast as possible, a mapping of the software ontology
concepts is done such that they are also formalized in the DB
model. This means that the data backend is fully assured by
relational DBs. Any evolution in the ontology model results
in its remapping into the DB model. This permits a constant
availability of the software lists, while new changes to the
software ontology are processed.

B. Evoloving the Ontology - The User Interface

The graphical user interface is the front end of the
TimSys platform. It includes two major different sub
interfaces: (i) access and (ii) management.

The access interface enables the online view of a system
by an unique hash link (e.g.,
http://www.timsys.org/hjJKuyJ8). Using this link, anyone at
anytime can have a look at the configurations and list of
software. This greatly helps the problematic of ambiguity,
duplication and synchronization while offering access to an
opened software KB.

The management administration interface proposes the
creation of new systems or the modification of existent ones,
similarly via an unique link. The interface is build with
regards to non-technical users, thus remaining as simple as
possible. Alongside permitting users to describe their
configurations, it provides the possibility of feedback in the
cases where a required software is not found in the KB.

This is the key aspect towards the evolution of the
software ontology. Whenever a software is not found, the
user fills a three field form with the software editor, name
and version (only the last 2 are compulsory). This feedback
is stored temporarily in the DB, becoming instantly available
to the user and with the destination of ontology integration.
At this point, the KB experts are in charge of updating the
software ontology accordingly. Once the ontology updated
(e.g., once per day), the remapping of the new concepts to
the DBs is made, and the new software becomes
permanently available. We note that the intervention of a KB
expert is always needed for integration.

Summing up, Figure 1 shows the general functioning of
the TimSys platform, with the presented modules and use
cases.

12

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

Figure 1 – TimSys Overall Architecture

The arrows indicate the direction in which the data flows.
We notice that this is both ways for the management
modification interface. Moreover, the ontology is published
online and available to users for direct access of its concepts.

V. CONCLUSIONS

In this paper, we presented a proposition for building an
ontology by involvement of non KB experts. Specifically,
the objective was to develop a software ontology by
integrating a maximum of user feedback. To this end, we
proposed an online platform for describing software
configurations. Consequently, we proposed solutions to
overcome the issues of collaboration, synchronization and
availability when it comes to describing the software
environments, with the use case of DSSs.

The state of the art offered a view over software
configuration modeling approaches and over the semantic
web technologies. With our proposition, TimSys, we have
presented a combined DB/OWL data model and an intuitive
interface for access and management. Thus, we have seen
how non-technical users feedback contributes to the
development of the software ontology.

Nevertheless, the work presented here is at an early stage.
Our future works will detail the aspects of: DB/OWL
mapping with the data model, usage of existing software KB
(more than DPBedia), validation of the ontology and its
publication as a recognized reference. As it is an open source
project, we aim at building an active community around
TimSys, for both technical and non-technical feedback.

REFERENCES

[1] P. Oreizy, “Decentralized software evolution,” in The
International Conference on the Principles of Software
Evolution (IWPSE 1), 1998. Last accessed November
2010. Available: http://www.ics.uci.edu/~peymano/-
papers/iwpse98/

[2] Microsoft. Knowledge base articles for driver
development. Last accessed November 2010.
Available: http://www.microsoft.com/whdc/driver/-
kernel/kb-drv.mspx

[3] T. N. I. A. System. Help desk level competencies. Last
accessed November 2010. Available: http://-
www.nitas.us/docs/-
Help%20Desk%20Level%20Competencies.pdf

[4] M. Brauer and H. Lochmann, “An ontology for
software models and its practical implications for
semantic web reasoning,” in The 5th European
semantic web conference on The semantic web:
research and applications, ESWC’08, 2008.

[5] Nepomuk. Mandriva community case study first
prototype of a social semantic help desk. Last accessed
November 2010. Available: http://-
nepomuk.semanticdesktop.org/xwiki/bin/download/-
Main1/D11-2/-
D11.2_v10_NEPOMUK_1st%20Prototype%20of%20S
ocial%20Semantic%20Helpdesk.pdf

[6] W. H. Inmon, Building the data warehouse, fourth
edition, W. Publishing, Ed. Wiley Publishing, 2005.

[7] P. Avgeriou, N. Guelfi, and N. Medvidovic, “Software
architecture description and uml,” UML MODELING
LANGUAGES AND APPLICATIONS, vol. 3297, pp.
23–32, 2005.

[8] Belarc. The belarc advisor. Last accessed January 2011.
Available: http://www.belarc.com/free_download.html

[9] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data -
the story so far,” International Journal on Semantic
Web and Information Systems (IJSWIS), vol. 5, no. 3,
pp. 1–22, 2009.

[10] T. Gruber, What is an ontology? Academic Press Pub.,
1992.

[11] L. Liu and M. T. Özsu, Encyclopedia of Database
Systems, L. Liu and M. T. Özsu, Eds. Springer-Verlag,
2008. Available: http://tomgruber.org/writing/ontology-
definition-2007.htm

[12] W3C. World Wide Web consortium. W3C. Last
accessed July 2010. Available: http://www.w3.org/

[13] J. Savolainen, “The role of ontology in software
architecture,” in OOPSLA Workshop on How to Use
Ontologies and Modularization to Explicitly Describe
the Concept Model of a Software Systems Architecture,
2003.

[14] V. Nicolicin-Georgescu, V. Benatier, R. Lehn, and
H. Briand, “Ontology-based autonomic computing for
decision support systems management,” in The First
International Conference on Models and Ontology-
based Design of Protocols, Architectures and Services,
MOPAS 2010, pp. 233–236, 2010

[15] N. K. Irina Astrova and A. Kalja, “Storing owl
ontologies in sql relational database,” International
Journal of Electrical, Computer, and Systems
Engineering, vol. 1, no. 4, pp. 242–247, 2007.

[16] This is my System (TimSys). Last accessed January
2011. Available: www.timsys.org

[17] DBpedia. DBpedia SPARQL endpoint. Last accessed
January 2011. Available: http://dbpedia.org/sparql

13

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

