
Development of a WebRTC-Based Video Calling Application to Predict Quality of
Service Patterns Using an Artificial Neural Network

Carlos Moreno, Ezequiel Frias

Communications Department
Central University of Venezuela

Caracas, Venezuela
email: carlos.m.moreno@ucv.ve,

ezequieljfrias20@gmail.com

Vinod Kumar Verma
Computer Science and Engineering

Sant Longowal Institute of
Engineering and Technology

Punjab, India
email: vinod5881@gmail.com

Eric Gamess
MCIS Department

Jacksonville State University
Jacksonville, Alabama, USA

email: egamess@jsu.edu

Abstract—The development of video-calling applications using
Web Real-Time Communication (WebRTC) represents an
efficient and modern solution for real-time communications,
enabling the direct transmission of audio, video, and data
between browsers with no need for additional plugins. This
research aimed to design and develop a WebRTC-based video-
calling application capable of predicting Quality of Service
(QoS) patterns through the implementation of an Artificial
Neural Network (ANN). The proposal focused on analyzing
key indicators (e.g., latency, jitter, and packet loss) that play a
critical role in shaping user-perceived quality. The
development of the predictive model was performed by using a
Recurrent Neural Network (RNN) of the Long Short-Term
Memory (LSTM) type. To validate the solution, four
representative scenarios were established: acceptable quality,
moderate degradation, critical quality, and extreme conditions.
The results demonstrated that the LSTM model successfully
captured the temporal behavior of QoS metrics and generated
predictions within acceptable ranges according to standards
defined by specialized organizations and industry leaders. It is
concluded that the integration of LSTM neural networks into
WebRTC applications constitutes a viable and effective
strategy to enhance proactive QoS management and optimize
the end-user experience.

Keywords-Quality of Service; WebRTC; Video-Calling;
Neural Networks; Prediction.

I. INTRODUCTION

Web Real-Time Communication [1]-[6] (WebRTC) is a
set of open-source emerging technologies and APIs that
enable real-time, peer-to-peer communications (audio, video,
and data) directly between web browsers and mobile
applications. It does not require intermediaries, plugins, or
external software, making it a cornerstone of modern,
decentralized communication systems. Due to its low
latency, WebRTC has permitted the development of many
new applications, revolutionizing how people interact online.
It is now present in the majority of video conferencing
systems (e.g., Google Meet), live streaming platforms, VoIP
services, collaborative workspaces, online education
platforms, file sharing, and multiplayer gaming. The use of
WebRTC in browser-to-browser applications is expanding
significantly as demand for real-time communication on the
web grows, due to its standardized APIs [1] (e.g.,
getUserMedia, RTCPeerConnection, and RTCDataChannel),

versatility, cross-platform compatibility, mandatory
encryption for all media and data, and native integration on
modern web browsers (e.g., Chrome, Firefox, Edge, and
Safari).

This work proposes to develop an intuitive user interface
for a WebRTC-based video call application and to analyze
Quality of Service (QoS) parameters extracted from packets
collected. In addition, the study seeks to design and
implement a neural network model capable of predicting
QoS patterns based on collected data, followed by a rigorous
evaluation of its predictive performance. By combining user
interface development, protocol-level traffic analysis, and
advanced deep learning techniques, this research provides a
systematic framework for addressing QoS prediction in real-
time communication systems. The proposed approach
intends to enhance both the accuracy and reliability of
service quality estimation, thereby contributing to the
optimization of WebRTC-based video call applications.

Recurrent Neural Networks (RNNs) of type Long Short-
Term Memory (LSTM) with multiple outputs were used in
this work since they are designed to handle sequential or
time-series data. Unlike traditional networks, RNNs have an
internal memory allowing them to use information from
previous inputs to influence current outputs. Multiple outputs
are used because the QoS output variables are correlated.

The rest of this paper is organized as follows. Section II
discusses several peer-reviewed literature works conducted
within this area of research and the problem addressed in this
work. Section III describes the methodology employed,
while Section IV presents and analyzes the results. Finally,
Section V concludes the paper and discusses possible future
work.

II. RELATED WORK

The study of real-time communication systems and QoS
prediction has been widely addressed in the last two decades.
Several studies have investigated the likelihood of network
underperformance, anomalies, and failures, as well as the
possibility of improving the QoS by applying artificial
intelligence techniques.

Since WebRTC is an emerging technology, it is not
considered in most of the work done in this area so far. For
example, the study in [7] performed anomaly detections in
network traffic using different models such as Isolation
Forest, Naïve Bayes, XGBoost, LightGBM, and SVM
classification. The results revealed that some of these models

29Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

exhibit impressive performance and accuracy, highlighting
the strengths and limitations of each one. The authors
suggested integrating deep learning techniques, such as
convolutional and RNNs. Another significant contribution in
the area came from Garcia and Salcedo [8], who developed a
model for failure prediction in IP networks using Artificial
Neural Networks (ANNs). The study focused on detecting
LAN failures, such as timeouts and connection rejections,
demonstrating that ANNs can significantly improve the
accuracy of fault diagnosis. In [9], the authors proposed a
QoS prediction model called Topology-Aware QoS-GRNN
(TAQ-GRNN), which incorporates gated RNNs of LSTM
type. Even if their model could be integrated into WebRTC,
the authors did not consider this possibility. The authors of
[10] chose six specific QoS/QoE metrics and extracted the
associated values from a VoIP measurement campaign in an
LTE-A environment, before employing a set of recurrent
neural networks (simple RNN, LSTM, and GRU) to predict
the behavior of the selected QoS/QoE metrics. Aziz,
Ioannou, Lestas, Qureshi, Iqbal, and Vassiliou [11] proposed
a prediction model for QoS by using an RNN to integrate a
Bidirectional Long Short-Term Memory (BLSTM). It can
predict the QoS-aware network traffic for over 13 hours with
high accuracy. They compared the RNN-BLSTM with other
algorithms (i.e., LSTM, ARIMA, SVM). Their architecture
is suitable for 5G and 6G mobile networks. The work in [12]
did another relevant investigation within the field of QoS and
Deep Learning, with the classification of multimedia traffic
by using Convolutional Neural Networks. The authors of
[13] developed a model for Service QoS prediction based on
feature Mapping and Inference. In [14], Gerard, Bonilla,
Bentaleb, and Céspedes proposed a Machine Learning (ML)
model to enhance Forward Error Correction (FEC)
efficiency. According to their findings, it corrects up to 60%
of errors and achieves 2.5 times better energy efficiency than
standard WebRTC.

Some work has been done in the area with the use of
WebRTC. For example, Google [15] has deployed ML-
based Bandwidth Estimation (BWE) systems within
WebRTC that utilize a combination of LSTM and dense
layer architecture to process real-time statistics (e.g., RTT
and packet loss). This architecture enables superior proactive
congestion prediction, significantly reducing parameters such
as video freezes and connection drop rates. Sakakibara,
Ohzahata, and Yamamoto [16] validated the creation of
highly accurate No-Reference (NR) Quality of Experience
(QoE) models solely based on WebRTC client statistics
(jitter and bandwidth). Their models offer computationally
efficient Deep Neural Networks (DNNs) or Temporal
Convolutional Networks (TCNs) suitable for client-side
monitoring. A doctoral thesis from Bingol [17] studied the
convergence of AI techniques and WebRTC to predict QoE
indicators, as they are more representative of user
satisfaction than QoS.

This work differs from other state-of-the-art approaches
in several key aspects. First, our architecture is proposed to
predict QoS in interactive video calls specifically, and not for
streaming or other applications. Second, we initially
establish a robust comparative methodology by evaluating

four distinct RNNs (GRU single output, GRU multiple
outputs, LSTM single output, and LSTM multiple outputs)
against three crucial performance indicators (Mean Absolute
Error, Mean Squared Error, and Root Mean Squared Error)
to select the optimal model for implementation. Third, both
the training and the subsequent operational deployment of
the application rely exclusively on real-world measurements
captured under diverse and varying network congestion
conditions. Fourth, by utilizing a NoSQL Firebase Firestore
[18] database for WebRTC metrics, this architecture
provides superior scalability and high throughput with
optimized performance and low latency.

Given all the aspects discussed previously, in the state-
of-the-art, it is evident that in networks, QoS has become a
crucial aspect to ensure an optimal user experience. This
implies that the services and applications in use operate
constantly. To achieve the best quality, it is necessary to
invest in high-quality network infrastructure and carry out
network monitoring. However, it is also important to develop
applications with advanced capabilities that enable the
prediction of QoS patterns. These applications might include
artificial neural networks.

Based on the findings presented in the state of the art,
two research questions arise:

 Question 1: Which QoS metrics can be considered to
measure, analyze, and predict QoS patterns?

 Question 2: Which specific type of neural network
predicts better QoS in a WebRTC-based video call?

III. METHODOLOGY

In this section, the implemented methodology is
described, which includes the definition and
characterization of the four study scenarios and the three
indicators, the development of the WebRTC-based
application and its final recurrent neural network
architecture, after evaluating four possible alternatives, as
well as the operation of the predictive model.

A. Establishment of Scenarios and Quality of Service
Parameters

In this subsection, the QoS parameters considered in
WebRTC were identified and defined, establishing criteria
and metrics for the evaluation. The parameters selected were
(1) latency, (2) jitter, and (3) packet loss rate. Four scenarios
were chosen according to Rec. ITU-T G.1010 [19] as
specified in Table I.

TABLE I. SCENARIOS SELECTED FOR STUDY

Scenario Bandwidth Latency PLR Description
(1) Acceptable Quality 50 Mbps 20 ms 0% Ideal
(2) Moderate Degradation 2 Mbps 100 ms 3% Congestion
(3) Critical Quality 0.8 Mbps 200 ms 10% Deficient
(4) Extreme Conditions 0.3 Mbps 500 ms 20% Degraded

B. Development of the User Interface

The user interface was developed using JavaScript along
with the React framework, which allowed for the creation of
a dynamic, modular, and scalable web application. For the
implementation of real-time video calls, the PeerJS [20]

30Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

library was used. PeerJS is a JavaScript library built on top
of WebRTC that simplifies Peer-to-Peer (P2P) data, audio,
and video communication in web browsers.

C. Extraction, Data Processing, and Pattern Analysis

For the collection of real-time metrics related to QoS
during video calls, the getStats [21] function provided by
the WebRTC API was used. In order to evaluate the
application’s performance across various connectivity
contexts, the Network Link Conditioner tool [22], available
on macOS, was used.

Figure 1 depicts the testbed for measurements. The client
with the Network Link Conditioner tool is connected to the
Internet via the SimpleFibra provider, using a 400 Mbps
fiber optic WAN access link. Internally, the WLAN
connection is established through a Wi-Fi 5 (IEEE 802.11ac)
network, operating on the 5 GHz band, channel 161, with an
80 MHz channel width. On the other hand, the remote client
is connected to the Internet via the NetUno provider, also
through a fiber optic link, with a bandwidth of 200 Mbps. In
its WLAN, Wi-Fi 5 is also used on the 5 GHz band, channel
153, with an 80 MHz channel width.

Optical fiber

Internet

200 Mbps
NetUno

Optical fiber
400 Mbps

SimpleFibra

Client

Network Link
Conditioner

Modem/
Router

Wi-Fi 5
5 GHz

Channel 161
80 MHz

Modem/
Router

Wi-Fi 5
5 GHz

Channel 153
80 MHz

S
im

u
la

te
d

N
L

C
T

ra
ff

ic

Figure 1. Testbed for Measurements

A mechanism was implemented to request a statistical
report at 2-second intervals, in order to capture sudden
variations in connection quality that might be overlooked
with a longer interval. Then, based on the data obtained from
each sample, structured JSON objects were built. Metrics
collected for the object were: (1) timestamp, (2) jitterVideo,
(3) jitterAudio, (4) roundTripTimeVideo, (5) roundTrip-
TimeAudio, (6) packetsLostVideo, (7) PacketsLostAudio,
(8) PacketsReceivedVideo, and (9) PacketsReceivedAudio.
Using Formulas 1 and 2, the delay and packet loss rate were
computed from the collected values.

𝑑𝑒𝑙𝑎𝑦 =
𝑅𝑜𝑢𝑛𝑑𝑇𝑟𝑖𝑝𝑇𝑖𝑚𝑒

2

 (1)

𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒 =
𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝐿𝑜𝑠𝑡

𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 + 𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝐿𝑜𝑠𝑡
× 100

(2)

After constructing the metrics object, data were

transmitted and stored in a Firebase Firestore [18] database
(a cloud-based NoSQL database). To normalize the selected
variables, the Python MinMaxScaler method from the
sklearn.preprocessing [23] library was used.

D. Development of the Neural Network

For the analysis of patterns and the prediction of network
conditions based on the collected metrics, it was decided to
implement an RNN formed by four layers: one RNN input
layer (receiving the six QoS metric values), one RNN layer
(cell), one dense layer, and one output reshape that re-
dimensioned the dense layer (outputting the six predicted
QoS metric values). For the purpose of identifying the most
suitable neural network model for predicting the QoS
metrics, four experimental configurations were designed and
evaluated. These configurations are based on the recurrent
cell (first 2 layers): Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM). For each type of architecture,
two output approaches were explored: one focused on
predicting a single variable at a time (single output) and
another capable of estimating multiple metrics
simultaneously (multiple outputs). The four experimental
models evaluated were: recurrent cell GRU single output
(GRU-1), recurrent cell GRU multiple outputs (GRU-M),
recurrent cell LSTM single output (LSTM-1), and recurrent
cell LSTM multiple outputs (LSTM-M). The
hyperparameters selected are shown in Table II.

TABLE II. HYPERPARAMETERS PER NEURAL NETWORK MODELS

Hyperparameter GRU-1 GRU-M LSTM-1 LSTM-M
Output (steps) 1 30 1 30
LSTM Layers 2 2 2 2
Neurons per Layer 128 128 128 128
Optimizer Adam Adam Adam Adam
Learning Rate 0.001 0.001 0.001 0.001
Epochs 12 11 32 25
Batch Size 16 16 16 16

The training of the four configurations was conducted

using a general single dataset comprising values obtained
under the four network conditions defined in Table I, during
one hour.

The initial 80% of this general dataset was used
exclusively for model training (training set), while the
remaining 20% (corresponding to the most recent data) was
reserved for testing (testing set). Each model was trained
individually, respecting its specific architecture. During the
training process, the EarlyStopping technique was applied.
In each scenario, the model that achieved the best
performance during validation was saved, in order to be
formally evaluated later on another test set.

E. Evaluation of the Neural Network

To compare the performance of the different models,
three evaluation metrics were defined and applied to the test
set: Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE). Single-
output models (for both GRU and LSTM) achieved lower
error metrics. For example, LSTM achieved errors of 0.0601
and 0.0994 for MAE and RMSE, respectively, demonstrating
remarkable accuracy in predicting the next immediate point.
However, these models presented significant limitations for
long-term predictions, such as high computational
inefficiency, cumulative error propagation, and

31Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

underutilization of temporal relationships. In contrast,
multiple-step (multiple-output) models were designed to
address these challenges. Although their error metrics were
slightly higher on average, the multi-output LSTM
(MAE=0.1205, RMSE=0.2044) showed better capability for
predicting extended series in a stable and coherent manner,
mitigating the negative effects of error accumulation, and
reducing computational cost per inference. Finally, the
LSTM-M architecture was selected, consisting of one input
layer (input 60 time steps and 6 features), one hidden LSTM
layer (output 128 nodes), one dense layer (output 180 nodes),
and one output reshape layer (output 30 time steps and 6
features), to perform predictions across the four scenarios
(see Table I) without requiring retraining.

F. Measurements and Prediction of QoS per Scenario

Each call generated approximately 150 sets of samples
(one every 2 seconds), capturing the following QoS
parameters: audio and video jitter, audio and video round-
trip time, packet loss rate, and number of packets received
per channel. The model started operating from the first
minute of the call, as sufficient data history was available at
that point. The prediction model operated with a sliding
window of historical values (60 steps) and predicted values
(30 steps ahead).

IV. RESULTS AND ANALYSIS

The results of the four scenarios studied with the selected
neural network are presented in the following sections, using
embedded Python code within the general application built
with PeerJS for WebRTC.

A. Acceptable Quality

Figure 2 shows that the model successfully estimated the
video latency, closely following the actual signal trend. No
significant offsets or error accumulation were observed,
demonstrating the model’s ability to adapt to stable network
conditions.

Figure 2. Actual Test Data vs. Model Prediction for Video Latency in Last-

Minute Scenario 1

Figure 3 illustrates that the audio latency predictions
exhibited a high level of agreement with the actual data. The
model was able to maintain the trend without notable
deviations, validating its ability to model this metric properly
in low-variability environments.

Figure 3. Actual Test Data vs. Model Prediction for Audio Latency in Last-

Minute Scenario 1

Figure 4 shows that, although the model accurately
predicted most video jitter values, an outlier was detected
near 500 ms, indicating an anomaly in an otherwise stable
network.

Figure 4. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 1

As depicted in Figure 5, the audio jitter was predicted
with minimal errors, showing highly stable behavior. This
reinforces the idea that under ideal conditions, the model was
capable of accurately capturing slight fluctuations in audio
quality.

Figure 5. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 1

In Figure 6, it can be noted that the video packet loss rate
was practically zero throughout the whole experiment, with
the model predicting values close to zero.

32Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

Figure 6. Actual Test Data vs. Model Prediction for Video Packet Loss

Rate in Last-Minute Scenario 1

As shown in Figure 7, the audio packet loss rate
prediction remained near zero, close to the measured data.

Figure 7. Actual Test Data vs. Model Prediction for Audio Packet Loss

Rate in Last-Minute Scenario 1

B. Moderate Degradation

In Figure 8, it can be seen that the video latency showed
an increase in variability compared to the acceptable quality
network scenario (see Figure 2). While the model adapted
well to average values, it exhibited limitations in predicting
sudden latency spikes, which is expected given the less
stable nature of the network in this scenario.

Figure 8. Actual Test Data vs. Model Prediction for Video Latency in Last-

Minute Scenario 2

Figure 9 illustrates that the audio latency model
effectively followed the general trend of the data, although,
as with the video latency (see Figure 3), discrepancies arose

when estimating extreme values. The performance is
considered acceptable.

Figure 9. Actual Test Data vs. Model Prediction for Audio Latency in Last-

Minute Scenario 2

According to Figure 10, the video jitter showed greater
dispersion than the first scenario (see Figure 4).
Nevertheless, the model could follow the overall trend,
though with slightly reduced accuracy. This suggests that it
can adapt to more dynamic conditions, yet with an increasing
margin of error.

Figure 10. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 2

As depicted in Figure 11, the behavior of the audio jitter
showed wider fluctuations than in the first scenario (see
Figure 5). The model maintained an acceptable ability to
reflect the direction of changes compared to a stable
environment (see Figure 5).

Figure 11. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 2

33Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

Regarding the video packet loss rate, Figure 12 indicates
that the model faced greater difficulties in anticipating the
actual pattern due to the intermittent and unpredictable
nature of this type of traffic on a congested network. Even
so, it managed to represent the overall trend of the
fluctuations correctly.

Figure 12. Actual Test Data vs. Model Prediction for Video Packet Loss

Rate in Last-Minute Scenario 2

Figure 13 reveals that the audio packet loss rate exhibited
variability similar to that of video (see Figure 12), although
with lower intensity. The model captured the overall trend
adequately, despite occasional discrepancies, demonstrating
its adaptability while highlighting limitations in scenarios
with irregular loss.

Figure 13. Actual Test Data vs. Model Prediction for Audio Packet Loss

Rate in Last-Minute Scenario 2

C. Critical Quality

Figure 14 shows a pronounced deviation between the
actual video latency values and the model’s predictions.
Although the model was generally able to follow the trend,
differences in absolute values were evident, especially during
periods of higher delay. This lack of precision can be
attributed to the high baseline latency and the significant
network instability.

Figure 14. Actual Test Data vs. Model Prediction for Video Latency in

Last-Minute Scenario 3

Similar to the video latency (see Figure 14), the audio
latency also suffered discrepancies as shown in Figure 15.
Although the model reasonably followed the trend,
significant deviations were noted at the highest delay peaks.

Figure 15. Actual Test Data vs. Model Prediction for Audio Latency in

Last-Minute Scenario 3

In Figure 16, it can be seen that in the case of the video
jitter, the model showed relatively stable performance.
However, it struggled to replicate certain abrupt peaks
present in the actual data. Despite this, the predictions
reasonably captured the overall jitter dynamics,
demonstrating the model’s partial ability to adapt to rapid
delay variations under critical conditions.

Figure 16. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 3

34Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

As depicted in Figure 17, the audio jitter also exhibited
behavior similar to that of video (see Figure 16). The model
managed to follow the overall trend but faced notable
difficulties during sudden changes. This illustrates that while
the model can adapt to moderate fluctuations, it has
limitations when faced with highly unstable events.

Figure 17. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 3

Regarding the video packet loss rate, Figure 18 indicates
that the predictions generally remained close to the actual
values. However, fluctuations were observed that the model
was unable to predict accurately.

Figure 18. Actual Test Data vs. Model Prediction for Video Packet Loss

Rate in Last-Minute Scenario 3

As shown in Figure 19, the audio packet loss rate
exhibited patterns similar to those of video (see Figure 18).
That is, while the model’s predictions generally tracked the
actual values, discrepancies emerged, reflecting its difficulty
in anticipating abrupt changes.

Figure 19. Actual Test Data vs. Model Prediction for Audio Packet Loss

Rate in Last-Minute Scenario 3

D. Extreme Conditions

As can be seen in Figure 20, the model was able to
reasonably follow the behavior of the video latency,
adequately reproducing the most significant peaks present in
the actual data. Although there are some discrepancies
between the real and predicted values, the overall trend was
effectively captured.

Figure 20. Actual Test Data vs. Model Prediction for Video Latency in

Last-Minute Scenario 4

In contrast with the video latency (see Figure 20), the
audio latency predictions exhibited greater deviations from
the actual values, as shown in Figure 21. Increased
dispersion and variability were observed, suggesting that the
model has more difficulty adapting to rapid and erratic
changes for this metric. Nevertheless, the overall trend was
partially maintained, indicating that the model still achieved
a coherent structural response.

Figure 21. Actual Test Data vs. Model Prediction for Audio Latency in

Last-Minute Scenario 4

35Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

In Figure 22, it can be seen that in the case of the video
jitter, the model showed a reasonable ability to follow the
general signal dynamics, although with specific differences
in the maximum values. The predictions were consistent with
the variation patterns, reflecting the model’s ability to
capture changes in delay instability, even if it did not achieve
millimeter-level accuracy.

Figure 22. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 4

As with the video jitter (see Figure 22), Figure 23 reveals
that the audio jitter predictions provided an acceptable
representation of the signal variations. Although
discrepancies occurred at specific moments, especially
during the most abrupt peaks, the model managed to
represent the underlying behavior of the metric, reaffirming
its partial ability to adapt to extreme fluctuations.

Figure 23. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 4

Regarding the video packet loss rate, Figure 24 indicates
that the model’s predictions showed an average difference of
around 2 percentage points compared to the actual data.

Figure 24. Actual Test Data vs. Model Prediction for Video Packet Loss

Rate in Last-Minute Scenario 4

Similar to the video packet loss rate (see Figure 24),
Figure 25 shows that the audio packet loss rate predictions
reproduced the general structure of the actual signal, albeit
with slight offsets at certain points. While an exact match
was not achieved for all values, the model maintained
acceptable coherence in terms of dynamics, correctly
capturing the variation pattern in adverse environments.

Figure 25. Actual Test Data vs. Model Prediction for Audio Packet Loss

Rate in Last-Minute Scenario 4

V. CONCLUSIONS AND FUTURE WORK

After completing each of the phases outlined in this
research project, it can be concluded that the integration of
technologies such as WebRTC and RNNs represents a viable
and modern alternative for addressing the problem of QoS
prediction in video-call applications.

The research demonstrated that WebRTC, as a base
technology, facilitates the creation of real-time
communication environments with measurement and
adaptation capabilities, removing previous technological
barriers. The versatility of WebRTC, combined with a robust
simulation infrastructure, made it possible to collect real
metrics under different network conditions, thereby
enriching the training of the predictive models.

During the system development, it was evidenced that
LSTM-type neural networks are capable of capturing the
temporal behavior of the evaluated metrics (latency, jitter,
and packet loss rate), allowing the anticipation of their future
evolution with an acceptable level of accuracy, especially
under stable or moderately degraded conditions. In more

36Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

extreme scenarios, with packet losses of up to 80% or abrupt
variations in delay, the model showed limitations in absolute
accuracy, although it was still able to reflect the general
trends of network behavior. This characteristic is particularly
useful for implementing early warning mechanisms or
dynamic adaptation that can be activated before
communication quality noticeably degrades for the user.

One of the most significant contributions of this work
was demonstrating that a deep-learning-based model can be
fed with the first few minutes of a call to generate reliable
predictions of its future behavior.

The adopted predictive approach demonstrated
robustness when trained across multiple network scenarios,
which allowed the neural network to learn diverse patterns
and therefore generalize better under new conditions.

The following recommendations are proposed to
strengthen the developed solution and encourage future
research: expansion of the dataset, inclusion of new QoS and
QoE metrics, implementation of the model in real production
environments, exploration of more complex architectures,
and design of autonomous network management systems.

ACKNOWLEDGMENT

We acknowledge the Central University of Venezuela
(UCV), Sant Longowal Institute of Engineering and
Technology (SLIET), and Jacksonville State University
(JSU) for partially funding this project.

REFERENCES
[1] World Wide Web Consortium (W3C), “WebRTC 1.0: Real-

Time Communication Between Browsers”, March 2025,
https://www.w3.org/TR/webrtc/

[2] H. Alvestrand, Overview: Real-Time Protocols for Browser-
Based Applications, RFC 8825, January 2021, doi:
10.17487/RFC8825, https://www.rfc-editor. org/info/rfc8825

[3] E. Rescorla, “Security Considerations for WebRTC”, RFC
8826, January 2021, doi: 10.17487/RFC8826, https://www.
rfc-editor.org/info/rfc8826

[4] E. Rescorla, “WebRTC Security Architecture”, RFC 8827,
January 2021, doi: 10.17487/RFC8827, https://www.rfc-
editor.org/info/rfc8827

[5] C. Perkins, M. Westerlund, and J. Ott, “Media Transport and
Use of RTP in WebRTC”, RFC 8834, January 2021, doi:
10.17487/RFC8834, https://www.rfc-editor.org/info/rfc8834

[6] H. Alvestrand, “Transports for WebRTC”, RFC 8835,
January 2021, doi: 10.17487/RFC8835, https://www.rfc-
editor.org/info/rfc8835

[7] S. Ness, V. Eswarakrishnan, H. Sridharan, V. Shinde, N.
Venkata Prasad Janapareddy, and V. Dhanawat, “Anomaly
Detection in Network Traffic Using Advanced Machine
Learning Techniques”, IEEE Access, vol. 13, pp. 16133–
16145, August 2025, doi: 10.1109/ACCESS.2025.3526988.

[8] G. Garcia and O. Salcedo, “Predicción de Fallos en Redes IP
Empleando Redes Neuronales Artificiales”, Trabajo de Grado
para Magister en Ciencias de la Información y las
Comunicaciones, Universidad Distrital Francisco José de
Caldas, Colombia, 2017.

[9] Y. Wang, Z. Jia, X. Zhang, B. Shao, H. Wang, and X. Xing,
“TAQ-GRNN: A Topology-Aware QoS Prediction Model

Based on Gated Recurrent Neural Networks”, 2024 IEEE
13th Data Driven Control and Learning Systems Conference
(DDCLS 2024), August. 2024, pp. 303-308, doi:10.1109/
DDCLS61622.2024.10606915.

[10] M. Di Mauro, G. Galatro, F. Postiglione, W. Song, and A.
Liotta, “Evaluating Recurrent Neural Networks for Prediction
of Multi-Variate Time Series VoIP Metrics”, 2024 22nd
Mediterranean Communication and Computer Networking
Conference (MedComNet 2024), Nice, France, 2024, pp. 1-8,
doi: 10.1109/MedComNet62012.2024.10578296.

[11] W. A. Aziz, I. I. Ioannou, M. Lestas, H. K. Qureshi, A. Iqbal,
and V. Vassiliou, “Content-Aware Network Traffic Prediction
Framework for Quality of Service-Aware Dynamic Network
Resource Management”, IEEE Access, vol. 11, pp. 99716–
99733, August 2023, doi: 10.1109/ACCESS.2023.3309002.

[12] Z. Wu, Y.-N. Dong, X. Qiu, and J. Jin, “Online Multimedia
Traffic Classification from the QoS Perspective Using Deep
Learning”, Computer Network, vol. 204, pp. 1–13, Elsevier,
January 2022, doi: 10.1016/j.comnet.2021.108716.

[13] P. Zhang, J. Ren, W. Huang, Y. Chen, Q. Zhao, and H. Zhu,
“A Deep-Learning Model for Service QoS Prediction Based
on Feature Mapping and Inference”, IEEE Transactions on
Services Computing, vol. 17, no. 4, pp. 1311–1325, August
2024, doi: 10.1109/TSC.2023.3326208.

[14] J. Gerard, D. C. Bonilla, A. Bentaleb, and S. Céspedes,
“Optimizing Quality and Energy Efficiency in WebRTC with
ML-Powered Adaptative FEC”, 2024 IEEE International
Conference on Multimedia and Expo Worlshops (ICMEW
2024), July 2024, pp. 57-64, doi: 10.1109/ICMEW63481.
2024.10645390.

[15] “Optimizing RTC Bandwidth Estimation with Machine
Learning”, https://engineering.fb.com/2024/03/20/
networking-traffic/optimizing-rtc-bandwidth-estimation-
machine-learning/

[16] K. Sakakibara, S. Ohzahata, and R. Yamamoto, “Deep
Learning-Based No-Reference Video Streaming QoE
Estimation Using WebRTC Statistics”, 2024 IEEE
International Conference on Artificial Intelligence in
Information and Communication (ICAIIC 2024), February
2024, pp.1-7, doi: 10.1109/ICAIIC60209.2024.10463278

[17] G. Bingol, “Advancing Video Communication: From
WebRTC Quality Prediction to Green Appplications”, Ph.D.
Dissertation, Department of Electrical and Electronical
Engineering, University of Cagliari, Cagliari, Italia, 2025.

[18] Google Firebase Firestore, “Cloud Firestore”, https://firebase.
google.com/docs/firestore

[19] ITU-International Telecommunications Union, “G.1010: End-
User Multimedia QoS Categories”, https://www.itu.int/rec/T-
REC-G.1010-200111-I

[20] PeerJS, “PeerJS Simplifies WebRTC Peer-to-Peer Data,
Video, and Audio Calls”, https://peerjs.com

[21] WebRTC for Developers, “Breaking Changes in getStats”,
https://www.webrtc-developers.com/breaking-changes-in-
getstats/

[22] Apple, “Network Link Conditioner”, https://nshipster.com/
network-link-conditioner

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine
Learning in Python”, Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

37Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

