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Abstract—The development of video-calling applications using 
Web Real-Time Communication (WebRTC) represents an 
efficient and modern solution for real-time communications, 
enabling the direct transmission of audio, video, and data 
between browsers with no need for additional plugins. This 
research aimed to design and develop a WebRTC-based video-
calling application capable of predicting Quality of Service 
(QoS) patterns through the implementation of an Artificial 
Neural Network (ANN). The proposal focused on analyzing 
key indicators (e.g., latency, jitter, and packet loss) that play a 
critical role in shaping user-perceived quality. The 
development of the predictive model was performed by using a 
Recurrent Neural Network (RNN) of the Long Short-Term 
Memory (LSTM) type. To validate the solution, four 
representative scenarios were established: acceptable quality, 
moderate degradation, critical quality, and extreme conditions. 
The results demonstrated that the LSTM model successfully 
captured the temporal behavior of QoS metrics and generated 
predictions within acceptable ranges according to standards 
defined by specialized organizations and industry leaders. It is 
concluded that the integration of LSTM neural networks into 
WebRTC applications constitutes a viable and effective 
strategy to enhance proactive QoS management and optimize 
the end-user experience. 

Keywords-Quality of Service; WebRTC; Video-Calling; 
Neural Networks; Prediction. 

I. INTRODUCTION 

Web Real-Time Communication [1]-[6] (WebRTC) is a 
set of open-source emerging technologies and APIs that 
enable real-time, peer-to-peer communications (audio, video, 
and data) directly between web browsers and mobile 
applications. It does not require intermediaries, plugins, or 
external software, making it a cornerstone of modern, 
decentralized communication systems. Due to its low 
latency, WebRTC has permitted the development of many 
new applications, revolutionizing how people interact online. 
It is now present in the majority of video conferencing 
systems (e.g., Google Meet), live streaming platforms, VoIP 
services, collaborative workspaces, online education 
platforms, file sharing, and multiplayer gaming. The use of 
WebRTC in browser-to-browser applications is expanding 
significantly as demand for real-time communication on the 
web grows, due to its standardized APIs [1] (e.g., 
getUserMedia, RTCPeerConnection, and RTCDataChannel), 

versatility, cross-platform compatibility, mandatory 
encryption for all media and data, and native integration on 
modern web browsers (e.g., Chrome, Firefox, Edge, and 
Safari). 

This work proposes to develop an intuitive user interface 
for a WebRTC-based video call application and to analyze 
Quality of Service (QoS) parameters extracted from packets 
collected. In addition, the study seeks to design and 
implement a neural network model capable of predicting 
QoS patterns based on collected data, followed by a rigorous 
evaluation of its predictive performance. By combining user 
interface development, protocol-level traffic analysis, and 
advanced deep learning techniques, this research provides a 
systematic framework for addressing QoS prediction in real-
time communication systems. The proposed approach 
intends to enhance both the accuracy and reliability of 
service quality estimation, thereby contributing to the 
optimization of WebRTC-based video call applications. 

Recurrent Neural Networks (RNNs) of type Long Short-
Term Memory (LSTM) with multiple outputs were used in 
this work since they are designed to handle sequential or 
time-series data. Unlike traditional networks, RNNs have an 
internal memory allowing them to use information from 
previous inputs to influence current outputs. Multiple outputs 
are used because the QoS output variables are correlated. 

The rest of this paper is organized as follows. Section II 
discusses several peer-reviewed literature works conducted 
within this area of research and the problem addressed in this 
work. Section III describes the methodology employed, 
while Section IV presents and analyzes the results. Finally, 
Section V concludes the paper and discusses possible future 
work. 

II. RELATED WORK 

The study of real-time communication systems and QoS 
prediction has been widely addressed in the last two decades. 
Several studies have investigated the likelihood of network 
underperformance, anomalies, and failures, as well as the 
possibility of improving the QoS by applying artificial 
intelligence techniques. 

Since WebRTC is an emerging technology, it is not 
considered in most of the work done in this area so far. For 
example, the study in [7] performed anomaly detections in 
network traffic using different models such as Isolation 
Forest, Naïve Bayes, XGBoost, LightGBM, and SVM 
classification. The results revealed that some of these models 

29Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025



exhibit impressive performance and accuracy, highlighting 
the strengths and limitations of each one. The authors 
suggested integrating deep learning techniques, such as 
convolutional and RNNs. Another significant contribution in 
the area came from Garcia and Salcedo [8], who developed a 
model for failure prediction in IP networks using Artificial 
Neural Networks (ANNs). The study focused on detecting 
LAN failures, such as timeouts and connection rejections, 
demonstrating that ANNs can significantly improve the 
accuracy of fault diagnosis. In [9], the authors proposed a 
QoS prediction model called Topology-Aware QoS-GRNN 
(TAQ-GRNN), which incorporates gated RNNs of LSTM 
type. Even if their model could be integrated into WebRTC, 
the authors did not consider this possibility. The authors of 
[10] chose six specific QoS/QoE metrics and extracted the 
associated values from a VoIP measurement campaign in an 
LTE-A environment, before employing a set of recurrent 
neural networks (simple RNN, LSTM, and GRU) to predict 
the behavior of the selected QoS/QoE metrics. Aziz, 
Ioannou, Lestas, Qureshi, Iqbal, and Vassiliou [11] proposed 
a prediction model for QoS by using an RNN to integrate a 
Bidirectional Long Short-Term Memory (BLSTM). It can 
predict the QoS-aware network traffic for over 13 hours with 
high accuracy. They compared the RNN-BLSTM with other 
algorithms (i.e., LSTM, ARIMA, SVM). Their architecture 
is suitable for 5G and 6G mobile networks. The work in [12] 
did another relevant investigation within the field of QoS and 
Deep Learning, with the classification of multimedia traffic 
by using Convolutional Neural Networks. The authors of 
[13] developed a model for Service QoS prediction based on 
feature Mapping and Inference. In [14], Gerard, Bonilla, 
Bentaleb, and Céspedes proposed a Machine Learning (ML) 
model to enhance Forward Error Correction (FEC) 
efficiency. According to their findings, it corrects up to 60% 
of errors and achieves 2.5 times better energy efficiency than 
standard WebRTC. 

Some work has been done in the area with the use of 
WebRTC. For example, Google [15] has deployed ML-
based Bandwidth Estimation (BWE) systems within 
WebRTC that utilize a combination of LSTM and dense 
layer architecture to process real-time statistics (e.g., RTT 
and packet loss). This architecture enables superior proactive 
congestion prediction, significantly reducing parameters such 
as video freezes and connection drop rates. Sakakibara, 
Ohzahata, and Yamamoto [16] validated the creation of 
highly accurate No-Reference (NR) Quality of Experience 
(QoE) models solely based on WebRTC client statistics 
(jitter and bandwidth). Their models offer computationally 
efficient Deep Neural Networks (DNNs) or Temporal 
Convolutional Networks (TCNs) suitable for client-side 
monitoring. A doctoral thesis from Bingol [17] studied the 
convergence of AI techniques and WebRTC to predict QoE 
indicators, as they are more representative of user 
satisfaction than QoS. 

This work differs from other state-of-the-art approaches 
in several key aspects. First, our architecture is proposed to 
predict QoS in interactive video calls specifically, and not for 
streaming or other applications. Second, we initially 
establish a robust comparative methodology by evaluating 

four distinct RNNs (GRU single output, GRU multiple 
outputs, LSTM single output, and LSTM multiple outputs) 
against three crucial performance indicators (Mean Absolute 
Error, Mean Squared Error, and Root Mean Squared Error) 
to select the optimal model for implementation. Third, both 
the training and the subsequent operational deployment of 
the application rely exclusively on real-world measurements 
captured under diverse and varying network congestion 
conditions. Fourth, by utilizing a NoSQL Firebase Firestore 
[18] database for WebRTC metrics, this architecture 
provides superior scalability and high throughput with 
optimized performance and low latency. 

Given all the aspects discussed previously, in the state-
of-the-art, it is evident that in networks, QoS has become a 
crucial aspect to ensure an optimal user experience. This 
implies that the services and applications in use operate 
constantly. To achieve the best quality, it is necessary to 
invest in high-quality network infrastructure and carry out 
network monitoring. However, it is also important to develop 
applications with advanced capabilities that enable the 
prediction of QoS patterns. These applications might include 
artificial neural networks. 

Based on the findings presented in the state of the art, 
two research questions arise: 

 Question 1: Which QoS metrics can be considered to 
measure, analyze, and predict QoS patterns? 

 Question 2: Which specific type of neural network 
predicts better QoS in a WebRTC-based video call? 

III. METHODOLOGY 

In this section, the implemented methodology is 
described, which includes  the definition and 
characterization of the four study scenarios and the three 
indicators, the development of the WebRTC-based 
application and its final recurrent neural network 
architecture, after evaluating four possible alternatives, as 
well as the operation of the predictive model.   

A. Establishment of Scenarios and Quality of Service 
Parameters 

In this subsection, the QoS parameters considered in 
WebRTC were identified and defined, establishing criteria 
and metrics for the evaluation. The parameters selected were 
(1) latency, (2) jitter, and (3) packet loss rate. Four scenarios 
were chosen according to Rec. ITU-T G.1010 [19] as 
specified in Table I. 

TABLE I. SCENARIOS SELECTED FOR STUDY 

Scenario Bandwidth Latency PLR Description 
(1) Acceptable Quality 50 Mbps 20 ms 0% Ideal 
(2) Moderate Degradation 2 Mbps 100 ms 3% Congestion 
(3) Critical Quality 0.8 Mbps 200 ms 10% Deficient 
(4) Extreme Conditions 0.3 Mbps 500 ms 20% Degraded 

B. Development of the User Interface 

The user interface was developed using JavaScript along 
with the React framework, which allowed for the creation of 
a dynamic, modular, and scalable web application. For the 
implementation of real-time video calls, the PeerJS [20] 
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library was used. PeerJS is a JavaScript library built on top 
of WebRTC that simplifies Peer-to-Peer (P2P) data, audio, 
and video communication in web browsers. 

C. Extraction, Data Processing, and Pattern Analysis 

For the collection of real-time metrics related to QoS 
during video calls, the getStats [21] function provided by 
the WebRTC API was used. In order to evaluate the 
application’s performance across various connectivity 
contexts, the Network Link Conditioner tool [22], available 
on macOS, was used. 

Figure 1 depicts the testbed for measurements. The client 
with the Network Link Conditioner tool is connected to the 
Internet via the SimpleFibra provider, using a 400 Mbps 
fiber optic WAN access link. Internally, the WLAN 
connection is established through a Wi-Fi 5 (IEEE 802.11ac) 
network, operating on the 5 GHz band, channel 161, with an 
80 MHz channel width. On the other hand, the remote client 
is connected to the Internet via the NetUno provider, also 
through a fiber optic link, with a bandwidth of 200 Mbps. In 
its WLAN, Wi-Fi 5 is also used on the 5 GHz band, channel 
153, with an 80 MHz channel width. 
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Figure 1.  Testbed for Measurements 

A mechanism was implemented to request a statistical 
report at 2-second intervals, in order to capture sudden 
variations in connection quality that might be overlooked 
with a longer interval. Then, based on the data obtained from 
each sample, structured JSON objects were built. Metrics 
collected for the object were: (1) timestamp, (2) jitterVideo, 
(3) jitterAudio, (4) roundTripTimeVideo, (5) roundTrip-
TimeAudio, (6) packetsLostVideo, (7) PacketsLostAudio, 
(8) PacketsReceivedVideo, and (9) PacketsReceivedAudio. 
Using Formulas 1 and 2, the delay and packet loss rate were 
computed from the collected values. 
 

𝑑𝑒𝑙𝑎𝑦 =
𝑅𝑜𝑢𝑛𝑑𝑇𝑟𝑖𝑝𝑇𝑖𝑚𝑒

2
 

 (1) 
 

𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒 =
𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝐿𝑜𝑠𝑡

𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 + 𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝐿𝑜𝑠𝑡
× 100 

 
(2) 

 
After constructing the metrics object, data were 

transmitted and stored in a Firebase Firestore [18] database 
(a cloud-based NoSQL database). To normalize the selected 
variables, the Python MinMaxScaler method from the 
sklearn.preprocessing [23] library was used. 

D. Development of the Neural Network 

For the analysis of patterns and the prediction of network 
conditions based on the collected metrics, it was decided to 
implement an RNN formed by four layers: one RNN input 
layer (receiving the six QoS metric values), one RNN layer 
(cell), one dense layer, and one output reshape that re-
dimensioned the dense layer (outputting the six predicted 
QoS metric values). For the purpose of identifying the most 
suitable neural network model for predicting the QoS 
metrics, four experimental configurations were designed and 
evaluated. These configurations are based on the recurrent 
cell (first 2 layers): Gated Recurrent Unit (GRU) and Long 
Short-Term Memory (LSTM). For each type of architecture, 
two output approaches were explored: one focused on 
predicting a single variable at a time (single output) and 
another capable of estimating multiple metrics 
simultaneously (multiple outputs). The four experimental 
models evaluated were: recurrent cell GRU single output 
(GRU-1), recurrent cell GRU multiple outputs (GRU-M), 
recurrent cell LSTM single output (LSTM-1), and recurrent 
cell LSTM multiple outputs (LSTM-M). The 
hyperparameters selected are shown in Table II. 

TABLE II. HYPERPARAMETERS PER NEURAL NETWORK MODELS 

Hyperparameter GRU-1 GRU-M LSTM-1 LSTM-M 
Output (steps) 1 30 1 30 
LSTM Layers 2 2 2 2 
Neurons per Layer 128 128 128 128 
Optimizer Adam Adam Adam Adam 
Learning Rate 0.001 0.001 0.001 0.001 
Epochs 12 11 32 25 
Batch Size 16 16 16 16 

 
The training of the four configurations was conducted 

using a general single dataset comprising values obtained 
under the four network conditions defined in Table I, during 
one hour. 

The initial 80% of this general dataset was used 
exclusively for model training (training set), while the 
remaining 20% (corresponding to the most recent data) was 
reserved for testing (testing set). Each model was trained 
individually, respecting its specific architecture. During the 
training process, the EarlyStopping technique was applied. 
In each scenario, the model that achieved the best 
performance during validation was saved, in order to be 
formally evaluated later on another test set. 

E. Evaluation of the Neural Network 

To compare the performance of the different models, 
three evaluation metrics were defined and applied to the test 
set: Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and Root Mean Squared Error (RMSE). Single-
output models (for both GRU and LSTM) achieved lower 
error metrics. For example, LSTM achieved errors of 0.0601 
and 0.0994 for MAE and RMSE, respectively, demonstrating 
remarkable accuracy in predicting the next immediate point. 
However, these models presented significant limitations for 
long-term predictions, such as high computational 
inefficiency, cumulative error propagation, and 
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underutilization of temporal relationships. In contrast, 
multiple-step (multiple-output) models were designed to 
address these challenges. Although their error metrics were 
slightly higher on average, the multi-output LSTM 
(MAE=0.1205, RMSE=0.2044) showed better capability for 
predicting extended series in a stable and coherent manner, 
mitigating the negative effects of error accumulation, and 
reducing computational cost per inference. Finally, the 
LSTM-M architecture was selected, consisting of one input 
layer (input 60 time steps and 6 features), one hidden LSTM 
layer (output 128 nodes), one dense layer (output 180 nodes), 
and one output reshape layer (output 30 time steps and 6 
features), to perform predictions across the four scenarios 
(see Table I) without requiring retraining. 

F. Measurements and Prediction of QoS per Scenario 

Each call generated approximately 150 sets of samples 
(one every 2 seconds), capturing the following QoS 
parameters: audio and video jitter, audio and video round-
trip time, packet loss rate, and number of packets received 
per channel. The model started operating from the first 
minute of the call, as sufficient data history was available at 
that point. The prediction model operated with a sliding 
window of historical values (60 steps) and predicted values 
(30 steps ahead). 

IV. RESULTS AND ANALYSIS 

The results of the four scenarios studied with the selected 
neural network are presented in the following sections, using 
embedded Python code within the general application built 
with PeerJS for WebRTC. 

A. Acceptable Quality 

Figure 2 shows that the model successfully estimated the 
video latency, closely following the actual signal trend. No 
significant offsets or error accumulation were observed, 
demonstrating the model’s ability to adapt to stable network 
conditions. 

 

 
Figure 2. Actual Test Data vs. Model Prediction for Video Latency in Last-

Minute Scenario 1 

Figure 3 illustrates that the audio latency predictions 
exhibited a high level of agreement with the actual data. The 
model was able to maintain the trend without notable 
deviations, validating its ability to model this metric properly 
in low-variability environments. 

 
Figure 3. Actual Test Data vs. Model Prediction for Audio Latency in Last-

Minute Scenario 1 

Figure 4 shows that, although the model accurately 
predicted most video jitter values, an outlier was detected 
near 500 ms, indicating an anomaly in an otherwise stable 
network. 

 

 
Figure 4. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 1 

As depicted in Figure 5, the audio jitter was predicted 
with minimal errors, showing highly stable behavior. This 
reinforces the idea that under ideal conditions, the model was 
capable of accurately capturing slight fluctuations in audio 
quality. 

 

 
Figure 5. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 1 

In Figure 6, it can be noted that the video packet loss rate 
was practically zero throughout the whole experiment, with 
the model predicting values close to zero. 
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Figure 6. Actual Test Data vs. Model Prediction for Video Packet Loss 

Rate in Last-Minute Scenario 1 

As shown in Figure 7, the audio packet loss rate 
prediction remained near zero, close to the measured data. 

 

 
Figure 7. Actual Test Data vs. Model Prediction for Audio Packet Loss 

Rate in Last-Minute Scenario 1 

B. Moderate Degradation 

In Figure 8, it can be seen that the video latency showed 
an increase in variability compared to the acceptable quality 
network scenario (see Figure 2). While the model adapted 
well to average values, it exhibited limitations in predicting 
sudden latency spikes, which is expected given the less 
stable nature of the network in this scenario. 

 

 
Figure 8. Actual Test Data vs. Model Prediction for Video Latency in Last-

Minute Scenario 2 

Figure 9 illustrates that the audio latency model 
effectively followed the general trend of the data, although, 
as with the video latency (see Figure 3), discrepancies arose 

when estimating extreme values. The performance is 
considered acceptable. 

 

 
Figure 9. Actual Test Data vs. Model Prediction for Audio Latency in Last-

Minute Scenario 2 

According to Figure 10, the video jitter showed greater 
dispersion than the first scenario (see Figure 4). 
Nevertheless, the model could follow the overall trend, 
though with slightly reduced accuracy. This suggests that it 
can adapt to more dynamic conditions, yet with an increasing 
margin of error. 

 

 
Figure 10. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 2 

As depicted in Figure 11, the behavior of the audio jitter 
showed wider fluctuations than in the first scenario (see 
Figure 5). The model maintained an acceptable ability to 
reflect the direction of changes compared to a stable 
environment (see Figure 5). 

 

 
Figure 11. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 2 
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Regarding the video packet loss rate, Figure 12 indicates 
that the model faced greater difficulties in anticipating the 
actual pattern due to the intermittent and unpredictable 
nature of this type of traffic on a congested network. Even 
so, it managed to represent the overall trend of the 
fluctuations correctly. 

 

 
Figure 12. Actual Test Data vs. Model Prediction for Video Packet Loss 

Rate in Last-Minute Scenario 2 

Figure 13 reveals that the audio packet loss rate exhibited 
variability similar to that of video (see Figure 12), although 
with lower intensity. The model captured the overall trend 
adequately, despite occasional discrepancies, demonstrating 
its adaptability while highlighting limitations in scenarios 
with irregular loss. 

 

 
Figure 13. Actual Test Data vs. Model Prediction for Audio Packet Loss 

Rate in Last-Minute Scenario 2 

C. Critical Quality 

Figure 14 shows a pronounced deviation between the 
actual video latency values and the model’s predictions. 
Although the model was generally able to follow the trend, 
differences in absolute values were evident, especially during 
periods of higher delay. This lack of precision can be 
attributed to the high baseline latency and the significant 
network instability. 

 

 
Figure 14. Actual Test Data vs. Model Prediction for Video Latency in 

Last-Minute Scenario 3 

Similar to the video latency (see Figure 14), the audio 
latency also suffered discrepancies as shown in Figure 15. 
Although the model reasonably followed the trend, 
significant deviations were noted at the highest delay peaks. 

 

 
Figure 15. Actual Test Data vs. Model Prediction for Audio Latency in 

Last-Minute Scenario 3 

In Figure 16, it can be seen that in the case of the video 
jitter, the model showed relatively stable performance. 
However, it struggled to replicate certain abrupt peaks 
present in the actual data. Despite this, the predictions 
reasonably captured the overall jitter dynamics, 
demonstrating the model’s partial ability to adapt to rapid 
delay variations under critical conditions. 

 

 
Figure 16. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 3 
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As depicted in Figure 17, the audio jitter also exhibited 
behavior similar to that of video (see Figure 16). The model 
managed to follow the overall trend but faced notable 
difficulties during sudden changes. This illustrates that while 
the model can adapt to moderate fluctuations, it has 
limitations when faced with highly unstable events. 

 

 
Figure 17. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 3 

Regarding the video packet loss rate, Figure 18 indicates 
that the predictions generally remained close to the actual 
values. However, fluctuations were observed that the model 
was unable to predict accurately. 

 

 
Figure 18. Actual Test Data vs. Model Prediction for Video Packet Loss 

Rate in Last-Minute Scenario 3 

As shown in Figure 19, the audio packet loss rate 
exhibited patterns similar to those of video (see Figure 18). 
That is, while the model’s predictions generally tracked the 
actual values, discrepancies emerged, reflecting its difficulty 
in anticipating abrupt changes. 

 

 
Figure 19. Actual Test Data vs. Model Prediction for Audio Packet Loss 

Rate in Last-Minute Scenario 3 

D. Extreme Conditions 

As can be seen in Figure 20, the model was able to 
reasonably follow the behavior of the video latency, 
adequately reproducing the most significant peaks present in 
the actual data. Although there are some discrepancies 
between the real and predicted values, the overall trend was 
effectively captured. 

 

 
Figure 20. Actual Test Data vs. Model Prediction for Video Latency in 

Last-Minute Scenario 4 

In contrast with the video latency (see Figure 20), the 
audio latency predictions exhibited greater deviations from 
the actual values, as shown in Figure 21. Increased 
dispersion and variability were observed, suggesting that the 
model has more difficulty adapting to rapid and erratic 
changes for this metric. Nevertheless, the overall trend was 
partially maintained, indicating that the model still achieved 
a coherent structural response. 

 

 
Figure 21. Actual Test Data vs. Model Prediction for Audio Latency in 

Last-Minute Scenario 4 
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In Figure 22, it can be seen that in the case of the video 
jitter, the model showed a reasonable ability to follow the 
general signal dynamics, although with specific differences 
in the maximum values. The predictions were consistent with 
the variation patterns, reflecting the model’s ability to 
capture changes in delay instability, even if it did not achieve 
millimeter-level accuracy. 

 

 
Figure 22. Actual Test Data vs. Model Prediction for Video Jitter in Last-

Minute Scenario 4 

As with the video jitter (see Figure 22), Figure 23 reveals 
that the audio jitter predictions provided an acceptable 
representation of the signal variations. Although 
discrepancies occurred at specific moments, especially 
during the most abrupt peaks, the model managed to 
represent the underlying behavior of the metric, reaffirming 
its partial ability to adapt to extreme fluctuations. 

 

 
Figure 23. Actual Test Data vs. Model Prediction for Audio Jitter in Last-

Minute Scenario 4 

Regarding the video packet loss rate, Figure 24 indicates 
that the model’s predictions showed an average difference of 
around 2 percentage points compared to the actual data. 

 

 
Figure 24. Actual Test Data vs. Model Prediction for Video Packet Loss 

Rate in Last-Minute Scenario 4 

Similar to the video packet loss rate (see Figure 24), 
Figure 25 shows that the audio packet loss rate predictions 
reproduced the general structure of the actual signal, albeit 
with slight offsets at certain points. While an exact match 
was not achieved for all values, the model maintained 
acceptable coherence in terms of dynamics, correctly 
capturing the variation pattern in adverse environments. 

 

 
Figure 25. Actual Test Data vs. Model Prediction for Audio Packet Loss 

Rate in Last-Minute Scenario 4 

V. CONCLUSIONS AND FUTURE WORK 

After completing each of the phases outlined in this 
research project, it can be concluded that the integration of 
technologies such as WebRTC and RNNs represents a viable 
and modern alternative for addressing the problem of QoS 
prediction in video-call applications. 

The research demonstrated that WebRTC, as a base 
technology, facilitates the creation of real-time 
communication environments with measurement and 
adaptation capabilities, removing previous technological 
barriers. The versatility of WebRTC, combined with a robust 
simulation infrastructure, made it possible to collect real 
metrics under different network conditions, thereby 
enriching the training of the predictive models. 

During the system development, it was evidenced that 
LSTM-type neural networks are capable of capturing the 
temporal behavior of the evaluated metrics (latency, jitter, 
and packet loss rate), allowing the anticipation of their future 
evolution with an acceptable level of accuracy, especially 
under stable or moderately degraded conditions. In more 

36Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025



extreme scenarios, with packet losses of up to 80% or abrupt 
variations in delay, the model showed limitations in absolute 
accuracy, although it was still able to reflect the general 
trends of network behavior. This characteristic is particularly 
useful for implementing early warning mechanisms or 
dynamic adaptation that can be activated before 
communication quality noticeably degrades for the user. 

One of the most significant contributions of this work 
was demonstrating that a deep-learning-based model can be 
fed with the first few minutes of a call to generate reliable 
predictions of its future behavior. 

The adopted predictive approach demonstrated 
robustness when trained across multiple network scenarios, 
which allowed the neural network to learn diverse patterns 
and therefore generalize better under new conditions. 

The following recommendations are proposed to 
strengthen the developed solution and encourage future 
research: expansion of the dataset, inclusion of new QoS and 
QoE metrics, implementation of the model in real production 
environments, exploration of more complex architectures, 
and design of autonomous network management systems. 
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