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Abstract—This paper evaluates Q-learning performance in the
CartPole reinforcement learning environment under varying levels
of observation noise and two distinct reward functions, in the
broader context of designing robust learning-based controllers for
cyber-physical systems. Specifically, we compare the standard step-
based reward with a cosine-based reward designed to encourage
upright pole balance. Observation noise is modeled as Gaussian
noise, with standard deviations scaled to the range of each
observation variable. Through multiple training runs at different
noise levels, we evaluated convergence behavior, pole angle stability,
and cumulative rewards. Our results show that observation noise
significantly impairs learning under standard reward, whereas
cosine-based reward improves robustness and promotes more
stable policies. By linking reinforcement learning with noise-robust
control design, this work directly contributes to the understanding
of Q-learning under noisy environments and represents a step
toward applying reinforcement learning to real-world cyber-
physical systems, where noise and variability are inherent.

Keywords-reinforcement learning; q-learning; noise; reward;
cyber-physical systems.

I. INTRODUCTION

The CartPole system is a classic reinforcement learning
environment that is commonly used to benchmark various
algorithms. In this research, the open-source Python library
Gymnasium, developed by the Farama Foundation, is used
to implement the CartPole environment [1]. The CartPole
system—also known as the inverted pendulum—is a funda-
mental control problem used to test reinforcement learning
algorithms. While much prior work has demonstrated successful
applications of reinforcement learning algorithms to CartPole
[2], real-world factors such as sensor noise and the design of
reward functions have been less explored. This paper studies
the impact of additive observation noise and shaped reward
functions on Q-learning convergence and policy behavior.

The main contributions of this work are:

o Application of a Q-learning algorithm to CartPole under

noisy observation inputs.

o Comparison of a standard reward function with a cosine-

based reward function shaped by the pole angle.
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« Evaluation of convergence episodes, pole angle statistics,
and performance variance across noise levels.

The remainder of the paper is organized as follows. Section
IT provides a background on Q-learning, the epsilon-greedy
policy, and CartPole. Section III outlines the methodology,
including observation boundaries, noise modeling, reward
functions, and training steps. Section IV presents and discusses
the experimental results. Section V concludes the research with
a summary and directions for future work.

II. LITERATURE REVIEW

Q-learning, a concept first introduced by Watkins more than
three decades ago, values delayed rewards in reinforcement
learning [3]. It operates by estimating the optimal action-
value function and aims for long-term reward maximization
without requiring a model of the environment. The epsilon-
greedy algorithm is a simple and commonly used method in
reinforcement learning that attempts to balance exploration and
exploitation [4]. In recent years, reinforcement learning has
found increasing application in control problems, particularly
in robotics and other cyber-physical systems where adaptive
behavior is essential [5]. Q-learning, due to its simplicity and
ability to handle discrete actions, has been successfully applied
in robotic navigation and control [6]. Additional advancements
have been made on top of the original Q-learning function, such
as Efficient Q-learning, which improves computation through
newly defined state and action spaces, a new reward function,
and an optimized selection strategy [7]. The Deep Q-learning
algorithm also extends from Q-learning by using a deep neural
network to approximate the action-value function. With certain
modifications, it has been applied to efficiently solve two-player
zero-sum Markov games [8], in addition, it performs with good
stability and optimality [9].

Above are previous studies of Q-learning and their various
applications. More recently, researchers have also turned their
attention to the robustness of reinforcement learning methods in
noisy and uncertain environments, particularly in cyber-physical
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systems where safety is critical. A study by Krish et al. on
observation noise robustness utilizes a tree-based algorithm
for neural network control systems to identify the smallest
amount of observation noise that can cause the neural network-
based controller to violate safety constraints. They apply the
algorithm on several systems such as Gymnasium’s CartPole
and LunarLander, along with two aircraft systems [10]. In
another study, Nazrul demonstrates how reinforcement learning
can be applied to optimize sampling frequency in cloud-based
cyber-physical systems, enabling dynamic adjustment based on
network conditions and system state. In a vehicle cruise control
case, this approach outperformed fixed sampling strategies by
balancing control performance with network efficiency [11].

In context of exploring how Q-learning performs under
noisy environments, this paper will also briefly introduce
another popular reinforcement learning algorithm, SARSA
(State-Action-Reward-State-Action), which will serve as a
baseline for comparison. The key difference between the two
algorithms is that while Q-learning learns the value of the
optimal policy, SARSA learns the value of the current policy
being followed [12][13]. Details of the key terms mentioned
here are explained in the following background section.

SUMMARY OF NOTATION

0 Pole angle in radians.

f Mean of the pole angle over an episode.

Var(f) Variance of the pole angle over an episode.

r Reward given to the agent.

~ Discount factor applied to future rewards.

€ Probability of taking a random action in e-greedy policy.
Q(s,a) Estimated value of taking action a in state s.
a Learning rate for Q-value updates.

n Number of steps within an episode.

0; Noisy observation values for observation 1.

0; True observation values for observation 1.

o? Variance of the Gaussian noise added to o;.

III. SYSTEM AND PROBLEM FORMULATION

The CartPole system is a simulation used to solve the cart-
pole problem, described as: “A pole is attached by an unactuated
joint to a cart, which moves along a frictionless track. The
pendulum is placed upright on the cart and the objective is
to balance the pole by applying forces in the left and right
directions on the cart” [2]. In Gymnasium’s implementation,
the agent is rewarded for each step taken while the pole remains
upright. The environment terminates when the pole falls beyond
a threshold or the cart moves out of bounds. An episode is
defined as a sequence of actions that begins with a reset and
ends with termination—either by failure or upon reaching the
maximum of 500 steps. The maximum achievable reward per
episode is 500, which serves as the convergence threshold.

The goal of this work is to train a reinforcement learning
model using Q-learning to solve the CartPole system of
balancing a pole in the presence of observation noise and then
analyze the impact of noise and reward choice on performance.
The system receives continuous observation values for cart

position, cart velocity, pole angle, and pole angular velocity,
which are subject to additive Gaussian noise to simulate
real-world inaccuracies. These noisy observations are then
discretized to define a finite set of states. At each step, an
action is selected to maximize the cumulative reward for an
episode. Two reward functions are used along with different
levels of noise, and the convergence behavior and pole stability
are assessed to understand the impact of noise and reward on
the learning process. Figure 1 is a block diagram showing the
overall Q-learning CartPole system with noise.

Q-learning is a model-free reinforcement learning algorithm
that learns action-value functions based on observed transitions
[3]. The Q-function describes the Q-table, which holds all
action-value pairs and their corresponding Q-values (a 1 x 2
array where index O represents the reward for the action "left"
and index 1 represents the reward for the action "right"):

Q(st,at) « Q(st,at)+
a[mﬂ +ymaxQ(si1,a') — Q(Shat)} (D

Here, Q(s¢, a;) denotes the current estimate of the action-
value function, the expected return of taking action a; in
state s; at time step t. The parameter « is the learning rate,
ri41 1s the reward received after taking action ay, and 7y is
the discount factor. The term max, Q(s¢+1,a’) denotes the
maximum predicted future reward obtainable from the next
state sy11 over all possible actions a’.

The Q-learning update rule can be interpreted as follows:
take the current Q-value for this state-action pair and update
it using the immediate reward just received, plus the best Q-
value expected from the next state [11]. The learning rate
« determines how strongly this new estimate influences the
update, while the discount factor « controls the importance
given to future rewards.

To balance the trade-off between exploration (trying new or
less-used actions) and exploitation (choosing the best-known
action), we apply the epsilon-greedy policy, which helps choose
the action based on current state [14], defined as:

random action,

- if € > rand()
G,(S) - { arg maxg Q(Sva)’ (2)

otherwise

Here, ¢ is the epsilon value, a probability between 0 and 1
that determines the chance of choosing a random action, and
it gradually decays over time toward a small constant. The
function rand() represents a randomly sampled float from a
uniform distribution over the interval [0, 1]. The expression
arg max, Q(s,a) denotes the action that currently has the
highest Q-value for the state s. This exploration policy ensures
sufficient exploration during early training episodes, while
gradually favoring the exploitation of the learned Q-values as
training progresses [15].

IV. METHODOLOGY

This section outlines the approach used to evaluate Q-
learning performance, including the environment setup, state
and action representations, and implementation details of the
learning process.
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Figure 1. Block diagram of Q-learning CartPole system with noise.

A. Environment and Observations

The CartPole environment is implemented using the Gym-
nasium library developed by the Farama Foundation [1]. The
system simulates a cart moving along a one-dimensional,
frictionless track with a pole attached to it via an unactuated
hinge joint. The agent receives observations in the form of a
four-dimensional state vector: cart position x, cart velocity v,
pole angle 6, and pole angular velocity w.

Variables are continuous and bounded within defined limits:

TABLE I. OBSERVATION SPACE RANGES OF CARTPOLE ENVIRONMENT
Observation Range
Cart Position (x) [(—4.8,4.8]
Cart Velocity (v) [—5.0,5.0]
Pole Angle (6) [—0.418,0.418] radians
Pole Angular Velocity (w) [—10.0,10.0]

Note that the observation space here differs from Gymna-
sium’s original infinite range for Cart Velocity and Pole Angular
Velocity. A limitation of this environment is its discrete action
space, restricted to two binary actions: 0 for moving left and 1
for moving right. The velocity affected by the force applied to
the cart is not fixed and depends on the pole’s angle. We cannot
directly specify a particular amount of force as an action [16].

B. Observation Noise

To simulate imperfect sensor measurements encountered in
real-world systems, additive Gaussian noise is applied to each
component of the observation vector:

6; = 0; + N(0,07) 3)

Here, o; represents the true observation, and o; is the stan-
dard deviation of the noise applied to observation ¢, proportional
to the variable’s range. This noise is injected before state
discretization, meaning it may cause the agent to misclassify
its current state. Several noise levels are tested—specifically,
0.0 (no noise), 0.01, 0.05, and 0.1—to evaluate their effect on
learning performance and control stability.

C. State Discretization

Since Q-learning operates on a discrete state space, each
continuous observation variable is divided into a fixed number

of bins. These bins are uniformly spaced within each variable’s
range. The state is encoded as a tuple of discretized indices
corresponding to the binned values of cart position, cart velocity,
pole angle, and pole angular velocity. The combination of
these indices uniquely identifies a state in the Q-table. In
this paper, we use 8 bins for cart position, 8 bins for cart
velocity, 20 bins for pole angle, and 20 bins for pole angular
velocity. Note that a larger number of bins sharply increases
computational complexity [17]. This discretization reduces the
infinite continuous observation space to a manageable number
of discrete states, at the cost of precision. Observation noise
can cause transitions between neighboring bins, introducing
non-determinism into state transitions.

D. Reward Functions

In this work, two reward functions are evaluated:

1) Default Reward: A constant reward of +1 is given at
each step as long as the pole remains upright and the cart stays
within bounds. This is the default reward under the gymnasium
environment.

2) Cosine-Based Reward: The reward is defined as:

r = cos(0) 4)

This function rewards the agent more when the pole angle
0 is near vertical ( = 0) and penalizes deviations from the
position. Since cos(0) = 1, this function shapes the agent’s
behavior toward learning actions that minimize pole deviation,
instead of just surviving.

E. Training Details

All reward function and noise level combinations are trained
over 10,000 episodes, with each episode capped at 500 steps.
The Q-learning hyperparameters used are:

o Learning rate (o) = 0.1

o Discount factor (v) = 0.95

o Epsilon (¢) starts at 1.0 and decays exponentially to a

minimum of 0.001

These parameters were found to perform well in the local
environment: a Windows laptop with modern CPU and GPU,
though they can be adjusted based on performance goals.
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For each episode, the following statistics are recorded:

o Total reward: Sum of rewards per episode
« Pole angle mean and variance: Metrics that show how
well Q-learning stabilizes the pole

Pole angle mean formula:

0= ®)

S|

n
Db
i=1
Pole angle variance formula:
n

1 _

Var(0) = = Y (6, —0)? 6

ar(0) = ;( ) (©6)

Here, n is the number of steps in the episode, and 6; is the
pole angle at step 1.

F. SARSA Baseline

A baseline comparison using the SARSA algorithm is run
under the same settings as the Q-learning CartPole system,
with the function being:

Q(8¢, ar) < Q(s¢, a1)+
a [Tt+1 +7Q(s8¢41,a141) — Q(5¢, at)} (7

At each time step, the agent updates its action-value estimate
Q) (s, a;) based on the actual reward received, the next observed
state s;4+1, and the next action a,4; selected by the current
policy. The SARSA update is policy-dependent, as the learned
values directly reflect the behavior policy being followed,
including any exploration strategy. The same data as Q-learning
is collected, allowing for a direct baseline comparison. This
enables an assessment of how the off-policy approach of Q-
learning influences learning performance relative to the on-
policy nature of SARSA under noisy observations.

V. RESULTS AND DISCUSSION

The bar graph (Figure 2) shows the number of episodes
required to reach convergence—defined here as achieving
a total reward of 500—in the CartPole environment across
different combinations of reward functions and observation
noise levels. A maximum of 10,000 episodes was allowed,
with bars reaching that value indicating non-convergence within
the limit. We can observe that, for a default reward, only the
training with no noise successfully converges within the 10,000
episode limit. However, the cosine reward function, which
penalizes larger pole angles, shows the ability to converge
at noise levels up to 0.01. This suggests that the cosine
reward function can offer an improved Q-learning experience
and encourage more stable control behavior, allowing for the
CartPole system to stay upright.

The two box plots (Figure 3 and Figure 4) show the mean
and variance of pole angles across episodes for different
combinations of noise levels and rewards. For example, in the
mean pole angle plot for cosine reward, a single dot represents
the mean pole angle over all steps taken within one episode.

For the default reward function, the mean pole angle remains
close to zero when there is no noise, indicating that the pole
stays centered. However, as the noise level increases to 0.01
and beyond, the mean pole angle shifts and becomes more

Convergence Comparison by Reward Function and Noise

10000

Default0.0 Default 0.01 Default0.05 Default0.1

Cosine 0.0 Cosine 0.01 Cosine 0.05 Cosine 0.1

Figure 2. Q-Learning bar plot comparing episodes to convergence of different
reward function and noise level combinations.

spread out, which is an expected behavior. This suggests
that the training struggles to maintain balance under noisy
conditions. The corresponding variance plots further reinforce
this observation, showing a notable increase in pole angle
variance with rising noise levels. Specifically, the median
variance increases and the spread widens, indicating more
frequent and extreme pole oscillations during training.

In contrast, the cosine reward function exhibits much better
performance. Less outliers are observed at 0.0 noise level
demonstrating the cosine reward’s ability to promote steadier
control even in uncertain environments.

As for the SARSA algorithm, the bar graph (Figure 5)
shows the number of episodes required to reach convergence
and the two box plots (Figure 6 and Figure 7) show the mean
and variance of poles angles across episodes for different
combinations of noise levels and rewards just like the Q-
learning figures. The SARSA bar graph can be seen to have
a similar points of convergences as the Q-learning bar graph.
Also, similar to Q-learning, it can be seen that under cosine
reward, the variance is more consistent across noise levels.

Overall, these plots show that for Q-learning the default
reward function leads to unstable learning in the presence of
noise, while the cosine reward function encourages more stable
and consistent control. This aligns well with the convergence
analysis, where the cosine reward enabled convergence at the
0.01 noise level, in contrast to the lack of convergence when
noise was added under the default reward training. The CartPole
system can be seen to behave similarly under the SARSA
algorithm. These results demonstrate that careful reward
design—such as using a cosine-based function that penalizes
large pole angles—can improve robustness in reinforcement
learning for the CartPole environment.

VI. CONCLUSION AND FUTURE WORK

This paper explored the impact of observation noise and
reward function design on the performance of Q-learning
in the CartPole reinforcement learning environment and its
relevance to cyber-physical systems. Our results demonstrate
that observation noise significantly affects the stability and
reliability of convergence. When the default reward function
was used, even small amounts of noise impaired learning and
control performance. In contrast, the cosine reward function
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Boxplot of Mean Pole Angle (Default Reward)

Boxplot of Pole Angle Variance (Default Reward)
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Figure 3. Q-learning box plot of default reward pole angle mean and variance.

Boxplot of Mean Pole Angle (Cosine Reward)

Boxplot of Pole Angle Variance (Cosine Reward)
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Figure 4. Q-learning box plot of cosine reward pole angle mean and variance.

Convergence Comparison (SARSA) by Reward Function and Noise

10000

& 5 3
& = B
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Figure 5. SARSA bar plot comparing episodes to convergence of different
reward function and noise level combinations.

showed improvement in robustness, guiding the system to learn
more stable policies under the noisy conditions.

Future work should extend this investigation beyond sim-
ulation by applying the experimental setup to a real-world
physical system, where noise and variability are inherent and
unavoidable. This would validate whether the observed benefits
of different rewards translate into performance on real hardware.

Additionally, since this work used tabular Q-learning with
discretized state spaces, a future direction is to examine how

such methods can generalize to more complex or continuous
environments. Although discretization provides interpretability
and simplicity, it is often limited in scalability. Extending this
framework using neural networks could bridge the tabular
approach and deep reinforcement learning, enabling policies
learned in idealized environments such as CartPole to generalize
more effectively to higher-dimensional control tasks.

Finally, another promising direction is to develop or integrate
noise detection and filtering techniques to help the system adapt
its reinforcement learning process under uncertainty. Exploring
combinations of reward functions, noise adaptation, and learn-
ing strategies can offer new insights into building intelligent,
robust, and fault-tolerant cyber-physical systems capable of
operating effectively in complex real-world environments.
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0.15 4

0.10

0.05 1

0.00 -

Mean Pole Angle

—0.05

—0.10 1

—0.15

:

Variance

0.0175 +

0.0150 +

0.0125 +

0.0100 +

0.0075 1

0.0050 1

0.0025

0.0000

:

1

(o]

8
8

0.0

0.01

Noise Level

0.05

0.1

0.0

0.01

Noise Level

Figure 6. SARSA box plot of default reward pole angle mean and variance.
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