MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

An Interference-Aware vCPU Scheduling Framework for Paravirtualized Real-Time
Industrial Control Systems

Jessica Miiller* ®, Steven Dietrich*, Michael Massoth'
*Bosch Rexroth AG; THochschule Darmstadt
*Lohr a. Main, Germany; fDarmstadt, Germany

email: { jessica.muellerd4,

steven.dietrich}@boschrexroth.de

email: michael .massoth@h-da.de

Abstract—Virtualization enables flexible, software-defined archi-
tectures in industrial automation, but introduces new challenges,
such as resource contention and unpredictable latencies. This
paper presents an interference-aware scheduling approach based
on paravirtualized VM profiling. By dynamically classifying virtual
CPUs (vCPUs) considering dominant I/0O usage and preventing
simultaneous execution of tasks with overlapping I/O demands,
the method improves determinism and responsiveness. Simulated
under realistic workloads, the scheduler significantly reduces
utilization peaks, eliminates overload conditions, and stabilizes
workload distribution. These results demonstrate the potential
of the approach to enhance the predictability and efficiency of
virtualized industrial control systems.

Keywords-virtualization; industrial automation; real-time sys-
tems; VM scheduling; interference mitigation; vCPU classification;
hypervisor scheduling; industry 4.0.

I. INTRODUCTION

The ongoing shift towards flexible production systems is
a defining feature of Industry 4.0 (I4.0), where adaptability,
modularity, and responsiveness are critical design goals [1].
To support this transformation, industrial control systems are
deployed increasingly as Virtual Machines (VMs) hosted on
centralized hypervisor platforms. This virtualization enables
software- defined control, efficient resource utilization, and
dynamic system reconfiguration without modifying physical
hardware. However, the consolidation of time-sensitive ap-
plications onto shared virtualized infrastructures introduces
new challenges. In particular, resource contention at the I/O
or CPU level can lead to unintended temporal interference
between virtual machines [2]. Such interference may impact
the timing behavior of control applications and thus affect the
predictability and reliability required in industrial automation
environments. We contribute a new interference-aware schedul-
ing approach that explicitly accounts for cross-VM interference
at scheduling time rather than relying on conservative worst-
case scheduling.

The remainder of this paper is organized as follows. Section
II introduces Multi-Virtual-Machine (Multi-VM) environments,
outlining industrial use cases, the state of VM scheduling
in practice, and the shortcomings that motivate our work.
Section III details the proposed interference-aware scheduling
approach based on paravirtualized VM profiling, covering its
design rationale, architectural components, and integration
workflow. Section IV describes the experimental testbed and
simulation scenarios used to evaluate the scheduler under

realistic industrial conditions. Section V presents and interprets
the results, with a focus on latency, interference mitigation,
and their implications for industrial automation. Section VI
concludes the paper and sketches avenues for future research.

II. MULTI-VIRTUAL-MACHINE ENVIRONMENTS

To understand the challenges and design requirements of
interference-aware scheduling, it is first necessary to analyze
how industrial multi-VM environments are structured, how
scheduling is currently implemented, and where existing
limitations arise.

A. Industrial Use Cases and Requirements for Multi-VM
Systems

In the context of 14.0, industrial control systems are deployed
increasingly as VMs hosted on centralized computing platforms.
Instead of being distributed across multiple embedded devices,
control logic, HMIs, and edge analytics are consolidated into a
single physical system running multiple VMs concurrently [3].
This architectural shift enables streamlined system integration,
centralized updates, and flexible resource allocation in modular
and reconfigurable production environments. To ensure strong
isolation and low overhead, these virtualized control systems
typically are managed by a Type 1 hypervisor [4].

A central requirement for such deployments is deterministic
behavior for time-critical control loops. In particular, short and
stable control cycle times — typically in the range of 1-10 ms
— are essential for guaranteeing timely responses to sensor
inputs and actuator commands [5][6]. Any temporal deviations
caused by VM scheduling delays or resource contention at
the hypervisor layer must therefore be minimized to maintain
the overall system’s functional integrity and reliability. An
overview of this architecture is illustrated in Figure 1.

Within a Systems-of-Systems (SoS) setup, a hybrid control
architecture is feasible: autonomous local real-time loops handle
fast dynamics, while a lightweight supervisory layer coordinates
setpoints and resource constraints across VMs.

B. Technical Overview: Current VM Scheduling in Industry

In modern industrial environments, Type-1 hypervisors play
a critical role in consolidating control systems, HMIs, and edge
computing workloads into virtualized infrastructures. These
bare-metal hypervisors, such as VMware ESXi, Microsoft
Hyper-V, or open-source solutions like Xen and KVM (with

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

16

https://orcid.org/0009-0007-6478-7307

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

r Multi-VM System

Hypervisor

Network HDD

Figure 1. Multi-VM architecture with shared resources under a Type 1 hypervisor.

real-time extensions), operate directly on the host hardware
and manage the allocation of physical CPU resources to VMs.

The core responsibility of the hypervisor’s scheduler is to
map vCPUs of the guest VMs to physical CPUs (pCPUs) on the
host system [7]. Current scheduling strategies predominantly
rely on variants of fair-share, priority-based, or real-time aware
algorithms:

o Fair-Share Schedulers, such as the default Credit Scheduler
in Xen or the Completely Fair Scheduler in KVM, aim
to distribute CPU time evenly across VMs, based on
configurable weights or credits. These are designed for
general-purpose workloads and maximize overall utilization
[7].

o Priority-Based Scheduling is commonly used to assign
static or dynamic priorities to VMs or individual vCPUs.
High-priority tasks receive preferential CPU access, which
is suitable for scenarios with mixed workloads where certain
VMs are more critical than others [8].

« Real-Time Extensions are offered in hypervisors, such
as VMware ESXi with Latency Sensitivity Mode or KVM
with the PREEMPT_RT patch. These mechanisms allow for
stricter control over scheduling behavior, including CPU
pinning (affinity), isolation from non-real-time workloads,
and reservation of exclusive resources [9].

In the context of industrial automation, schedulers often
leverage CPU affinity and isolation techniques to bind critical
control VMs to dedicated cores, thereby reducing variability
introduced by co-located workloads. Additionally, reservation
mechanisms allow guaranteeing a minimum share of CPU time
to latency-sensitive VMs [7].

Hypervisors may also employ I/O-aware scheduling policies,

attempting to balance compute and I/O workloads across VMs.

However, in standard configurations, CPU and I/O scheduling

remain decoupled, which can introduce indirect effects on
determinism — especially under high system load [10].

Overall, current hypervisor scheduling mechanisms are
designed to ensure fair, efficient, and scalable CPU usage
across virtual machines. While real-time features exist, their
practical integration into industrial VM setups often requires
careful tuning and architectural planning.

C. Identified Shortcomings and Interference Issues

Despite the availability of real-time extensions and resource
isolation features, current hypervisor scheduling mechanisms
remain susceptible to temporal interference — particularly in I/O-
intensive scenarios [4]. In virtualized industrial environments,
where deterministic control loops must operate within strict
cycle times of 1-10ms, even minor deviations in execution
timing can compromise system integrity.

A key source of such deviation lies in the interaction between
vCPU scheduling and I/O operations. Although CPU time may
be reserved or pinned for a control VM, I/O subsystems (e.g.,
disk, network, or fieldbus interfaces) are typically shared among
multiple VMs and rely on asynchronous handling through
interrupt-driven mechanisms or hypervisor-level emulation
[11][7]. These operations introduce latency that is neither fully
visible nor fully controllable by the guest operating system,
leading to non-deterministic delays in input acquisition or
actuator response.

Moreover, hypervisors often decouple I/0O scheduling from
CPU scheduling, which makes it difficult to coordinate compute
and communication timing holistically [12]. For instance, when
multiple VMs compete for access to shared I/O resources — such
as a virtual NIC or storage backend — context switches, interrupt
storms, or emulation delays may disrupt the timing guarantees
required by control applications [11][12]. These effects further

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

17

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

are amplified under system load, where best-effort workloads or
background processes inadvertently interfere with time-critical
VMs, despite configured priorities or affinity.

As a result, cycle-time violations and jitter become in-
creasingly probable in consolidated setups, particularly when
industrial controllers, HMIs, and monitoring tools coexist on
the same host [12]. Without holistic temporal coordination
across all relevant subsystems — including CPU, memory,
and I/O paths — the promise of determinism in virtualized
control architectures remains difficult to fulfill under real-world
conditions.

III. INTERFERENCE-AWARE SCHEDULING VIA
PARAVIRTUALIZED VM PROFILING

To address the timing deviations and interference issues
identified in multi-VM environments, a novel scheduling
approach is introduced that explicitly considers the I/O behavior
of virtual machines and their interactions at runtime.

A. Design Motivation and Objectives

In industrial environments increasingly shaped by digitaliza-
tion and I4.0, conventional scheduling mechanisms are reaching
their limits. These mechanisms were not typically designed to
meet the specific demands of virtualized control systems [13].
A major issue in this context is I/O interference, which leads
to unpredictable latencies and violations of strict cycle times.
This undermines the reliability of industrial control applications,
where, for instance, a guaranteed 1 ms cycle time is critical
— but in practice, often only a worst-case latency of around
100 ms can be assured [6].

The aim of the newly conceived scheduling approach is
therefore to proactively mitigate such interference through
deliberate planning. This enables more reliable system avail-
ability, as the state of the I/Os is known at all times. It
not only facilitates dynamic load balancing but also allows
for foresighted resource allocation for potential emergency
scenarios, such as interrupt-driven, I/O-intensive operations.
In addition to the classical objective of optimal process and
vCPU distribution, this approach strengthens overall system
stability under real-time conditions.

B. Architectural Overview of the Profiling Scheduler

The proposed scheduler architecture consists of two tightly
integrated components: A classification unit and a scheduling
unit. As soon as a VCPU becomes eligible for execution, it is
passed to the classification unit, which determines the dominant
I/0O resource it is expected to interact with. This classification
is based on a lightweight analysis of the task characteristics
within the vCPU and assigns it to an I/O category, such as
GPU-bound, RAM-bound, cache-bound, network-bound, or
disk-bound. The process is performed immediately before each
scheduling decision, ensuring that classification always reflects
the current system context without relying on historical profiling
data. An example for the classification is shown in Figure 2.

Once classified, the vCPU is passed to the scheduling unit,
which maps it to an appropriate pCPU core. The central policy

vCPU, vCPU,,
Task Run Queue " Task Run Queue |
rc|vcpu1] I'qvcpun E

40% GPU 5
20% GPU : 15% RAM
20% RAM :
10% Network ?
60% GPU LT 71

pCPU; | | 80% | 15%
popu [aow o |7
pPCPU; | | 10%] 60%

PCPU, 20% Co10% | 20%]

X% = I/O Utilization, Color = I/O Category

Figure 3. Scheduling Timelines.

enforced by the scheduler is to avoid concurrent execution of
vCPUs from the same 1/O category on different physical cores.
This interference-aware constraint ensures that no two vCPUs
with similar I/O access patterns simultaneously contend for the
same shared hardware resource. By isolating I/O categories
across cores within a given time window, the system prevents
unpredictable latency spikes caused by overlapping access
to memory buses, storage devices, or network interfaces. An
example for the scheduling is shown in Figure 3.

The entire process is executed synchronously and on-demand:
Every time a vCPU enters the ready queue, the classification
and scheduling decisions are computed in a single step.
This approach maintains high responsiveness while avoiding
background profiling overhead.

C. Integration into Virtualized Environments

Practical deployment of the interference-aware scheduler
requires integration at the hypervisor’s kernel scheduling layer.
On Linux-based hypervisors, such as KVM, this can be realized
via the sched_ext framework, which permits external
schedulers to be loaded without modifying the core kernel
[14]. Hypervisors lacking comparable extensibility — such
as Xen, VMware ESXi, or Microsoft Hyper-V — necessitate
direct modification of the scheduler code, although the required
changes remain confined to the scheduling path and do not
affect device drivers or memory management [15].

The logic supports two operating modes. First, it can function
as a standalone scheduler that assigns vCPUs solely on the basis
of I/O classification. Second, it can act as a refinement stage
atop an existing real-time scheduler (e.g., Earliest Deadline

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

18

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

First), reordering the run queue to prevent concurrent execution
of vCPUs with matching I/O profiles and thus minimizing
interference while preserving deadline guarantees.

Effective classification depends on visibility into each VM’s
internal run queue. To provide this information, every guest
transmits a compact summary of its runnable tasks to the
hypervisor via a dedicated hypercall or paravirtual channel.
Implemented as a small guest-kernel module, this mechanism
imposes no changes on user-space applications and can be
shipped alongside standard paravirtualization drivers [16].

Because the classification and mapping occur only when a
vCPU becomes ready, the additional computational burden
is negligible, making the approach suitable for resource-
constrained industrial hosts where deterministic timing and
minimal overhead are paramount.

IV. EXPERIMENTAL SETUP AND SIMULATION

To evaluate the effectiveness and timing behavior of the
proposed interference-aware scheduling concept, a controlled
simulation environment was developed that allows systematic
analysis under reproducible conditions.

A. Simulation Environment

The simulation was implemented in a Python-based Jupyter
Notebook environment. The scheduler was developed as a
custom computation that calculates the run queue assignments
for all virtual CPUs based on predefined workload scenarios.
These run queues represent the scheduling decisions over
time and were subsequently used as input for a discrete-
event simulation implemented with the SimPy framework. In
this setup, SimPy emulates the execution of the virtual CPUs
according to the generated schedule and enables measurement
of timing-related metrics, such as waiting times and utilization.
All experiments were conducted offline without deploying an
actual hypervisor or virtual machines, allowing controlled and
repeatable evaluation of the scheduling logic under synthetic
conditions.

B. Scenarios and Assumptions

The simulation comprised a set of predefined scenarios with
varying workload intensities, resource utilization patterns, and
virtual machine configurations. For each scenario, synthetic
datasets were generated to represent categorized vCPUs,
including their expected resource demands and arrival times.
It was assumed that all vCPUs were pre-classified and that
the system operated under ideal conditions without allocation
delays or interference between components. Resources were
modeled deterministically, with fixed maximum capacities and
no variability due to physical hardware behavior or contention
effects. The main objective of this simulation was to validate
the feasibility of the proposed scheduling approach and to
provide initial performance insights under controlled conditions.
Due to these simplifications, results should be interpreted as
indicative rather than fully representative of complex real-world
environments.

V. RESULTS AND INTERPRETATION

The subsequent analysis summarizes the outcomes of the
conducted simulation experiments, highlighting key behavioral
differences between the baseline and the optimized scheduling
strategies.

A. Scenario Overview and Scheduling Behavior

Figure 4 illustrates the execution timeline of the baseline
scheduling strategy, where vCPUs are assigned to the shortest
available run queue without considering their expected runtimes
or I/O dependencies. In this scenario, all physical CPU cores
initially process tasks in a balanced manner, resulting in nearly
synchronous task completions across the cores. However, during
execution, a pronounced idle period occurs on a single CPU
core that must wait for a shared I/O operation to complete
before further processing can continue. This blocking leads
to an extended idle phase on that core and increases the total
processing time for the workload.

Additionally, Figure 5 illustrates the utilization of the I/O
components observed during the simulation of the same
baseline execution. The diagram highlights a specific time
interval between 13 and 16 time units, where the GPU
utilization temporarily exceeds 100% due to concurrent access
from multiple tasks. This overcommitment results in contention
for the shared GPU resource, causing blocking delays that
propagate back to the scheduling timeline and extend the overall
processing time. The example demonstrates that purely queue-
length-based scheduling not only produces unpredictable idle
periods but also leads to excessive I/O load peaks that further
degrade system performance and determinism.

VM1 VM1 VM1
PID3 PID1 PID2

012 3 456 7 8 91011 12 13 14 15 16 17 18 19
Runtime t - CPU4

VM2 VM2 VM2
PID3) PID1 PID2

012 3 456 7 8 91011 12 13 14 15 16 17 18 19
Runtime t - CPU,
PID1 PID2
T T T T T T T T T T T T T T T T
1 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19
Runtime t - CPU3

[SE—

VM4
PID1

VM4

b enrnnannna H Pib2

8 9 10 11 12 13 14 15 16 17 18 19
Runtime t - CPU,

Figure 4. Scheduling Timelines without Optimization.

Figure 6 shows the execution timeline obtained with the
proposed scheduling approach, where overlapping execution
of equally categorized tasks is explicitly avoided. In this
configuration, the scheduler assigns vCPUs so that tasks of

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

19

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

100 -
4 — emnmet |— — L L hesssssssshass
£ g0l A
5
£ 604
Li‘
5 404
204

8 9 10 11 12 13 14 15 16
Runtime t

Figure 5. 1/0 Component Utilization after Simulation without Optimization.

the same category do not run concurrently on different cores,
thereby preventing the I/O blocking effects observed in the
baseline scenario. As a result, no idle periods occur during
execution, and the overall processing time is reduced. However,
this strict separation also leads to a less uniform workload
distribution across cores, as visible in the timeline. While
this setup demonstrates the feasibility of deterministic, non-
overlapping scheduling, the approach can be relaxed to allow
controlled overlap between task categories, providing additional
flexibility to balance I/O and CPU utilization more evenly if
required.

VM1 VM2 VM3 VM4 |
PID3 PID1 PID2 PID2

8 9 10 11 12 13 14 15 16 17 18 19
Runtime t - CPU4

VM2 VM4)
PID3 PID3
| — — L— | N W S S S LR S S N S
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Runtime t - CPU,

PID2 PID2
T T T T T T T T T T T T
8 9 10 11 12 13 14 15 16 17 18 19
Runtime t - CPU3

[P—
-

N

w-

N

o

o

~

| VM1 VM3 VM4
PID1 PID1 PID1

7 8 9 10 11 12 13 14 15 16 17 18 19
Runtime t - CPU,

Figure 6. Scheduling Timelines with 0% Overlapping Optimization.

Additionally, Figure 7 illustrates the I/O utilization observed
during the simulation of the optimized scheduling scenario.
In contrast to the baseline case, no overcommitment beyond
100% occurs, confirming that the separation of I/O categories
effectively reduces contention and stabilizes resource usage
over time.

B. Quantitative Metrics and Performance Comparison

To objectively evaluate the effectiveness of the proposed
vCPU scheduling optimization, a set of quantitative utilization
and CPU load metrics was collected before and after the

—RAM

100 — Ethernet
< —BUS
= 804 —GPU
5 — STORAG!
%< 604 CACHE
N
5 Sy

20

l |
T T T T T T T T T T T T
8 9 10 11 12 13 14 15 16 17 18 19

01234567
Runtime t

Figure 7. 1/0 Component Utilization after Simulation with 0% Overlapping
Optimization.

optimization. The components were categorized as RAM,
ETHERNET, BUS, GPU, STORAGE, and CACHE. The results
demonstrate several significant improvements.

First, the optimization led to a more constant utilization of
critical I/O components over time. For example, the average
utilization of ETHERNET decreased from 12.35% to 10.5%,
while CACHE utilization was reduced from 16.0% to 13.6%.
This more even distribution of load helps prevent unpredictable
fluctuations and enables better planning of system resources.

Second, the optimization effectively reduced utilization
peaks. The maximum utilization of ETHERNET dropped
from 70% to 45%, representing a reduction of more than one
third, while CACHE gets its maximum utilization cut by half,
from 34% to 17%. For STORAGE, the maximum utilization
was also reduced by approximately 33%. By lowering these
peaks, the system achieves a smoother and more predictable
workload profile, which is particularly important for time-
sensitive applications.

Third, the optimization ensured that no component exceeded
100% utilization at any time. Before the optimization, GPU
occasionally reached utilization peaks of up to 113%, indicating
that tasks temporarily demanded more I/O capacity than was
available, which resulted in waiting times and delays. After the
optimization, all components remained consistently below 100%
utilization, preventing overload conditions and eliminating
unnecessary queuing of I/O operations.

In addition to improvements in I/O utilization, the distribution
of CPU load across cores became more balanced. While the
CPU loads were initially nearly identical across cores, but after
optimization, the loads were more differentiated. Although this
led to slightly differing completion times for the individual
CPU cores in this synthetic example, this effect is not critical
in real-world applications. In practical scenarios, there is a
continuous inflow of new tasks, so the timing of core idle
phases becomes irrelevant. The system benefits far more from
the improved predictability and absence of overload situations
than it is impacted by minor variations in per-core runtime.

Overall, the results clearly show that the optimization keeps
component utilization more constant, reduces peak loads,
prevents overload conditions, and distributes CPU workloads
more evenly. This combination significantly increases the
stability and responsiveness of the system without introducing
adverse side effects for unaffected components, such as RAM
or BUS.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

20

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

C. Implications for Industrial Deployments

The presented optimization is highly relevant for industrial
control environments, where virtualized systems must deliver
consistent performance and comply with strict timing require-
ments.

By ensuring that critical I/O resources, such as Ethernet
interfaces, storage subsystems, and GPU accelerators remain
reliably below full utilization, the approach effectively prevents
situations where tasks are forced to wait due to resource
contention. This directly supports predictable cycle times,
which are essential for machine control and safety-related
processes.

The increased stability of resource usage also simplifies
planning and verification against industrial standards, reducing
the need for oversized hardware reserves and enabling more
efficient system designs.

In real-world deployments, minor differences in CPU com-
pletion times, as observed in synthetic tests, have no practical
impact, since industrial workloads are typically characterized
by continuous streams of tasks. Under these conditions, the
advantages of smoother utilization profiles and the elimination
of overload situations clearly outweigh any variations in per-
core timing, resulting in higher system availability and more
robust operation under changing load conditions.

Moreover, the more balanced distribution of CPU load
contributes to improved thermal behavior and can help extend
the lifespan of hardware components, which is an important
factor in embedded and industrial-grade platforms. Overall,
the optimization provides a practical means of enhancing
determinism, efficiency, and resilience in virtualized industrial
environments.

VI. CONCLUSION AND FUTURE WORK

This paper presented an interference-aware scheduling
approach based on paravirtualized VM profiling, designed
to improve the determinism and predictability of virtualized
industrial control systems. By classifying vCPUs according to
their dominant I/O resource usage and preventing the concurrent
execution of equally categorized tasks, the proposed method
effectively reduced utilization peaks and eliminated overload
conditions that often lead to unpredictable latencies.

Experimental evaluation under synthetic conditions demon-
strated that the optimization can maintain consistently lower
maximum utilization across critical components, such as
Ethernet, storage, and GPU, while achieving a smoother
distribution of workload over time. Although slight variations
in per-core completion times were observed, these effects
are negligible in real-world industrial environments where
continuous task streams are common.

Future work will focus on extending the approach beyond
offline simulation and integrating the scheduler into production-
grade hypervisors to validate its effectiveness under real work-
loads and mixed I/O patterns. Additionally, further research
will explore adaptive scheduling strategies that dynamically
adjust the degree of task separation based on system load
and application criticality. Investigating the impact of the

approach on power consumption, thermal behavior, and long-
term hardware reliability in embedded industrial platforms also
represents an important direction for future studies.

REFERENCES

[1] R. Stark, Virtual Product Creation in Industry. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2022, ISBN: 978-3-662-
64299-3. por: 10.1007/978-3-662-64301-3.

[2] V. Meyer, U. L. Ludwig, M. G. Xavier, D. F. Kirchoff,
and C. A. F. De Rose, “Towards interference-aware dynamic
scheduling in virtualized environments”, in Job Scheduling
Strategies for Parallel Processing, D. Klusacek, W. Cirne, and
N. Desai, Eds., Cham: Springer International Publishing, 2020,
pp. 1-24.

[3] C. Serddio, P. Mestre, J. Cabral, M. Gomes, and F. Branco,
“Software and architecture orchestration for process control in
industry 4.0 enabled by cyber-physical systems technologies”,
Applied Sciences, vol. 14, no. 5, 2024, 1SSN: 2076-3417. DOI:
10.3390/app14052160.

[4] J. Miiller, M. Giani, D. Deubert, and M. Massoth, “Virtualiza-
tion in industrial production - a survey focusing on virtual and
virtualized industrial controls”, in 2024 IEEE 29th International
Conference on Emerging Technologies and Factory Automation
(ETFA), 2024, pp. 1-7. por: 10.1109/ETFA61755.2024 .
10710668.

[S] M. Gundall, C. Glas, and H. D. Schotten, “Feasibility study on
virtual process controllers as basis for future industrial automa-
tion systems”, in 2021 22nd IEEE International Conference
on Industrial Technology (ICIT), vol. 1, 2021, pp. 1080-1087.
DporL: 10.1109/ICIT46573.2021.9453651.

[6] S. Dietrich, G. May, O. Wetter, H. Heeren, and G. Fohler,
“Performance indicators and use case analysis for wireless net-
works in factory automation”, in 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation
(ETFA), 2017, pp. 1-8. DOI: 10.1109/ETFA.2017.8247605.

[7]1 S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards real-
time hypervisor scheduling in xen”, in Proceedings of the
Ninth ACM International Conference on Embedded Software,
ser. EMSOFT 11, Taipei, Taiwan: Association for Computing
Machinery, 2011, pp. 39-48, 1SBN: 9781450307147. po1: 10.
1145/2038642.2038651.

[8] V. Roy, “A context-aware internet of things (iot) founded
approach to scheming an operative priority-based scheduling
algorithms”, Journal of Cybersecurity and Information Man-
agement, vol. 13, pp. 28-35, Jan. 2024. por: 10.54216/JCIM.
130103.

[9] M. A. Altahat, K. Mhaidat, and O. Al-Khaleel, “Quantitative

analysis of hypervisor efficiency and energy consumption in

heterogeneous multi-vm environments with varied server work-

loads”, Simulation Modelling Practice and Theory, vol. 141,

p- 103102, 2025, 1SSN: 1569-190X. DOTI: https://doi.org/10.

1016/j.simpat.2025.103102.

E. Jeannot, G. Pallez, and N. Vidal, “lo-aware job-scheduling:

Exploiting the impacts of workload characterizations to select

the mapping strategy”, The International Journal of High

Performance Computing Applications, vol. 37, no. 3-4, pp. 213—

228, 2023. poI: 10.1177/10943420231175854. eprint: https:

//doi.org/10.1177/10943420231175854.

J. Peixoto, J. Martins, D. Cerdeira, and S. Pinto, “Birtio: Virtio

for real-time network interface sharing on the bao hypervisor”,

IEEE Access, vol. 12, pp. 185434-185447, 2024. por: 10.

1109/ACCESS.2024.3512777.

[10]

[11]

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

21

https://doi.org/10.1007/978-3-662-64301-3
https://doi.org/10.3390/app14052160
https://doi.org/10.1109/ETFA61755.2024.10710668
https://doi.org/10.1109/ETFA61755.2024.10710668
https://doi.org/10.1109/ICIT46573.2021.9453651
https://doi.org/10.1109/ETFA.2017.8247605
https://doi.org/10.1145/2038642.2038651
https://doi.org/10.1145/2038642.2038651
https://doi.org/10.54216/JCIM.130103
https://doi.org/10.54216/JCIM.130103
https://doi.org/https://doi.org/10.1016/j.simpat.2025.103102
https://doi.org/https://doi.org/10.1016/j.simpat.2025.103102
https://doi.org/10.1177/10943420231175854
https://doi.org/10.1177/10943420231175854
https://doi.org/10.1177/10943420231175854
https://doi.org/10.1109/ACCESS.2024.3512777
https://doi.org/10.1109/ACCESS.2024.3512777

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

[12] N. Borgioli et al., “An i/o virtualization framework with i/o-
related memory contention control for real-time systems”, /[EEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 11, pp. 4469-4480, 2022. por: 10.
1109/TCAD.2022.3202434.

[13] U. Bilgen, E. Y. Tat, and M. ErelOzcevik, “A novel digital twin
enabled weighted task optimization framework for software
defined data centers in industry 4.0, in 2025 IEEE Wireless
Communications and Networking Conference (WCNC), 2025,
pp. 1-6. borL: 10.1109/WCNC61545.2025.10978632.

[14] T. L. K. Community, Sched_ext — bpf-based scheduler class,
https://docs.kernel.org/scheduler/sched-ext.html, Accessed:
2025-09-12, 2024.

[15] N. Kraljevic, B. Djordjevic, and V. Timcenko, “File system
performance comparison in full hardware virtualization with
esxi, kvm, hyper-v and xen hypervisors”, Advances in Electrical
and Computer Engineering, vol. 21, no. 1, pp. 7-14, 2021.
por: 10.4316/AECE.2021.01002.

[16] K. T. Raghavendra, S. Vaddagiri, N. Dadhania, and J.
Fitzhardinge, ‘Paravirtualization for scalable kernel-based
virtual machine (kvm)”, in 2012 IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM), 2012,
pp. 1-5. por: 10.1109/CCEM.2012.6354619.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

https://doi.org/10.1109/TCAD.2022.3202434
https://doi.org/10.1109/TCAD.2022.3202434
https://doi.org/10.1109/WCNC61545.2025.10978632
https://docs.kernel.org/scheduler/sched-ext.html
https://doi.org/10.4316/AECE.2021.01002
https://doi.org/10.1109/CCEM.2012.6354619

	Introduction
	Multi-Virtual-Machine Environments
	Industrial Use Cases and Requirements for Multi-VM Systems
	Technical Overview: Current VM Scheduling in Industry
	Identified Shortcomings and Interference Issues

	Interference-Aware Scheduling via Paravirtualized VM Profiling
	Design Motivation and Objectives
	Architectural Overview of the Profiling Scheduler
	Integration into Virtualized Environments

	Experimental Setup and Simulation
	Simulation Environment
	Scenarios and Assumptions

	Results and Interpretation
	Scenario Overview and Scheduling Behavior
	Quantitative Metrics and Performance Comparison
	Implications for Industrial Deployments

	Conclusion and Future Work

