
Rethinking the Role of Department of Defense Architecture Framework
in System-of-Systems Architecture Design

Zhemei Fang and Yuxuan Liu
School of Artificial Intelligence and Automation
Huazhong University of Science and Technology

Wuhan, Hubei 430074 China
email: zmfang2018@hust.edu.cn

Jianbo Wang
China Ship Development and Design Center

Wuhan, Hubei 430064 China
email: jbwcn@hotmail.com

Abstract—While Department of Defense Architecture
Framework (DoDAF) remains widely adopted for architecture
modeling, its application to System-of-Systems (SoS) design
still faces significant challenges according to feedbacks from
practitioners in industry and academia. Existing research often
focuses on model creation or tool support but lacks a
comprehensive examination of the issues behind the
unsuccessful applications. Thus this paper analyzes the root
causes of unsuccessful DoDAF applications, including the
perspectives of common misconceptions, inherent
shortcomings, methodological inadequacies, limitations of
modeling tools, and cultural and organizational barriers.
Based on the challenges observed, we further explore how the
Unified Architecture Framework (UAF) and SysML 2.0 could
alleviate some of these limitations. Based on this analysis, we
propose three improvement directions: iterative, process-
driven architecture modeling, AI-assisted model generation
and evolution, and domain-specific meta-model customization
with consistency assurance. The study concludes that treating
architecture models as evolving decision-support tools, rather
than static documentation, significantly enhances their value in
SoS design and provides actionable guidance for improving
DoDAF and other architecture frameworks in practice.

Keywords-architecture design; department of defense
architecture framework; system-of-systems; misconceptions.

I. INTRODUCTION
Architecting is increasingly being adopted by

organizations to manage the growing complexity of human-
made systems, particularly large-scale SoS such as those in
defense and air transportation. The latest ISO/IEC/IEEE
42010:2022 standard (Software, systems and enterprise -
architecture description) [1] defines architecture as
“fundamental concepts or properties of an entity in its
environment and governing principles for the realization and
evolution of this entity and its related life cycle processes”.
Meanwhile, the standard introduces the term Architecture
Description Framework (ADF) (replacing architecture
framework in the 2011 version) to formalize the conventions
and common practices of architecture description—a
tangible work product that communicates the otherwise
intangible and abstract concept of architecture [1].

The ADF has evolved from the C4ISR architecture
framework to DoDAF, then to the Unified Profile for
DoDAF/MODAF (UPDM), and most recently to the UAF.

Despite this evolution, DoDAF remains the predominant
ADF in the defense sector [2]. At the same time, most
commercial modeling tools have gradually aligned their
underlying meta-models with the UAF meta-model,
enhancing tool interoperability while still maintaining
support for DoDAF-based practices. Current DoDAF models
[3][4] are compatible with UAF meta-models.

However, concerns about DoDAF have been raised over
the years, including inconsistencies across architectural
views [5], challenges in effectively utilizing architecture
models for downstream applications [6], difficulties in
accommodating new technologies, such as cloud computing
and big data [7]. Although UAF was introduced to address
some of these challenges, it inherits many of the same
weaknesses. This critique is frequently acknowledged within
the Model-based Systems Engineering (MBSE) community
as well [8]. Interestingly, these issues are more commonly
acknowledged in informal exchanges [8] than systematically
addressed in published research. This gap highlights a
critical need for more rigorous investigation into the practical
barriers that hinder the effective application of ADFs in real-
world SoS contexts.

This paper aims to uncover the reasons behind
unsuccessful application of DoDAF, as a representative
ADF, in supporting SoS architecture design. The
perspectives include prevalent misconceptions about
DoDAF’s intended role, limitations in existing modeling tool
support, methodological gaps in modeling approaches, and
organizational and cultural barriers to model adoption.
Building on this analysis, we propose several potential
directions to achieve an enhanced use of DoDAF as well as
other ADFs.

The paper is organized as follows. Section II reviews
related work on architecture frameworks. Section III
analyzes the key challenges of applying DoDAF to SoS
design. Section IV discusses improvement opportunities.
Section V concludes the study and suggests future research.

II. RELATED WORK
The importance of architecture, along with the supporting

ADFs that guide its formal representation, has been
increasingly acknowledged across both academic and
industrial domains in recent years.

Early research by Wagenhals and Levis [9] pioneered a
structured methodology for developing DoDAF models

9Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

using IDEF0. Subsequently, numerous studies have adopted
and extended this approach for DoDAF models development
(e.g., [10]-[12]). In DoDAF model development, the Systems
Modeling Language (SysML) has progressively superseded
IDEF0 as the preferred modeling approach [11]. Current
research and practice continue to demonstrate the
framework’s relevance, with active applications documented
in recent works [3][4].

The U.S. Department of Defense (DoD) concluded its
development of the DoDAF framework with the 2009
release (DoDAF 2.02). This transitioned to the UPDM,
developed by the Object Management Group (OMG), as an
interim solution. OMG subsequently established the UAF as
the current standard [13]. Hause [14] indicates that the UAF
was developed to address interoperability challenges by
reducing disparities among architecture frameworks,
modeling tools, standards, processes, data exchange formats,
and domain terminology in ADF implementations.

From the 31st to 34th Annual INCOSE International
Symposium proceedings, numerous implementation case
studies of the UAF have been documented. For example,
Martin [15] proposed an aspect-oriented approach aimed at
harmonizing architectural frameworks to enhance
interoperability and better support MBSE practices. Later,
Martin [16] demonstrated how MBSE enhances an
organization’s ability to plan for capability deployments, and
manage portfolios of systems, services, people, technologies,
processes, and facilities critical to fielded capabilities.
Carroll et al. [17] successfully implemented UAF in
modeling the global copper market enterprise, noting its
efficacy in fostering systems thinking beyond traditional
engineering roles. Hause et al. [18] specifically addressed
enterprise software architecture challenges through UAF
modeling. Most recently, Martin et al. [19] and Gagliardi et
al. [20] extended UAF’s utility to Mission Engineering (ME),
showcasing its adaptability to complex defense and
aerospace applications, and the resultant modeling process
and models are standardized in the U.S. DoD’s Mission
Architecture Style Guide (MASG) [21].

Alongside these applications of UAF, significant legacy
challenges persist. Gagliardi et al. [20] highlight that “even a
relatively simple Resource Architecture model requires
significant time and effort to develop”, emphasizing the need
for careful upfront planning. Their findings suggest three
critical prerequisites for effective UAF adoption: 1) scoping
the modeling effort, 2) assessing modeling risks, and 3)
establishing a model federation plan—all of which should be
addressed prior to commencing development. Similarly,
Fang et al. [22] pointed out that the relationship between
DoDAF description models and architecting decisions is
ambiguous—a limitation that also persists in UAF.

Modeling languages and tools also present challenges.
Trujillo and Madni [23] highlight that modeling languages—
particularly SysML—pose a high entry barrier, primarily due
to the extensive training required to interpret increasingly
complex models. In response, Morkevicius et al. [24]
advocate for implementing UAF within the SysML v2
environment, anticipating that the updated specification may
mitigate some inherent limitations of current SysML

implementations. Regarding tooling considerations, Maier
[25] indicates that a good modeling tool should manage
significant redundancy in representations by using
referencing instead of duplication and employing automated
checks; nevertheless, there remains a clear risk of model
proliferation beyond practical usefulness.

In summary, while the evolution from DoDAF to UAF
has led to improved standardization and broader applicability
in both defense and enterprise contexts, practical challenges
remain prevalent across modeling frameworks, languages,
and tools. The literature reveals a persistent tension between
the theoretical promise of ADFs and their real-world
implementation barriers—many of which stem from
complexity, tool limitations, and organizational constraints.
These gaps underscore the necessity for a deeper
investigation into the root causes hindering effective ADF
application, particularly in complex SoS environments.
Building upon these insights, this study aims to critically
examine the key obstacles to DoDAF adoption and propose
actionable strategies for enhancing its practical utility.

III. PRACTICAL CHALLENGES AND INHERENT
SHORTCOMINGS OF DODAF IN SOS ARCHITECTURE DESIGN

The unsuccessful applications of DoDAF in supporting
SoS architecture design stem from a fundamental
misunderstanding of its intended role, limited support from
modeling tools, inadequate methodological guidance, and
practical and cultural barriers to model adoption, as shown in
Fig. 1. This section examines these four aspects in detail.

Figure 1 . Practical challenges of DoDAF in SoS architecture design.

A. Misunderstanding of the Role of DoDAF in SoS
Architecture Design
Based on our practical modeling experiences and

interviewing with modeling experts in industry, we
summarize four common misunderstandings of the DoDAF’s
role in SoS architecture design.

1) Misunderstanding I: DoDAF Modeling Equals SoS
Architecture Design

This misunderstanding often arises among outsiders who
have unrealistically high expectations of DoDAF. They
mistakenly assume that creating DoDAF models is
equivalent to completing SoS architecture design.

In fact, DoDAF provides a structured set of standardized
views and establishes a formal framework for representing

Misunderstanding of
the Role of DoDAF in

SoS Architecture
Design

Inadequate
Support from

Modeling Tools

Challenges in
Successful Use

of DoDAF

Inherent Limitations
of DoDAF and

Inadequate Support of
Modeling Methods

Practical and Cultural
Barriers to Model

Adoption

DoDAF Modeling
Equals SoS

Architecture Design

DoDAF Modeling
Equals Microsoft Visio

Modeling

DoDAF is Only for
Documentation, Not

for Analysis

DoDAF Models Are
Static and Do Not

Evolve
Steep Learning Curves

for New Users

Insufficient Support for
Model Reuse

Insufficient Support for
Iterative and Agile

Modeling

Limited Support for
Modeling Dynamic

Behavior

Difficulty in Managing
Large-Scale SoS

Complexity

Poor Interoperability
with Other Modeling
and Simulation Tools

Lack of Intelligent
Support

Over-Simplification of
SoS Complexity

Underestimation of
Evolutionary Nature of

SoS

Unclear Boundary
Between

Representation and
Decision-making

Lack of
Methodological

Guidance for SoS
Analysis

Models Focus on
Compliance, Not

Practical Use

Model Maintenance Is
Costly and

Operationally
Unattractive

Engineers and
Architects Speak

Different Languages

Inadequate Modeling
and Verification

Methods

10Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

SoS architecture. However, a practical and effective SoS
architecture design involves not only representation but also
decision-making and evaluation—aspects that DoDAF alone
does not fully address. Therefore, additional methodologies,
such as operational simulation, trade-space analysis, and
optimization, are essential to complement DoDAF for
achieving a comprehensive SoS architecture design.

These inflated expectations often lead to significant
disappointment, ultimately causing them to overlook the
actual value of DoDAF models.

2) Misunderstanding II: DoDAF Modeling Equals
Microsoft Visio Modeling

This misunderstanding often arises among practitioners
who have some experiences with DoDAF modeling but have
not delved into the underlying theories. They assume that
creating DoDAF views is simply about drawing static
diagrams, like flowcharts, without considering the
underlying semantic relationships, constraints, and
traceability.

In fact, DoDAF is model-based, not merely diagram-
based. While it employs visual representations, it is
fundamentally a structured architecture framework, not just a
collection of disconnected drawings. Tools like Visio and
similar diagramming software allow freeform visualization
but do not enforce architectural consistency or data integrity.
In contrast, DoDAF models should be developed using
structured modeling tools (e.g., Cameo Enterprise
Architecture, Sparx EA, IBM Rhapsody) that enforce rules
and ensure consistency between capabilities, systems, and
services across multiple views.

This misunderstanding can lead to superficial
architecture modeling that lacks architectural rigor.
Organizations may create visually appealing but structurally
meaningless diagrams that fail to support real system
development. Without architectural rigor, inconsistencies
and logical errors may go unnoticed, ultimately undermining
the effectiveness of the architecture.

3) Misunderstanding III: DoDAF is Only for
Documentation, Not for Analysis

DoDAF is often misperceived as merely a documentation
framework, rather than a foundation for architectural analysis
and informed decision-making. This misunderstanding stems
in part from the limitations of current practices and tools,
which often fail to deliver on the promise of model-based
analysis. Despite many tools claiming to support analytical
functions, the actual use of DoDAF models for quantitative
or qualitative analysis remains challenging in practice.

Several factors contribute to this gap. First, many
DoDAF-compliant tools focus heavily on model
visualization and reporting, offering limited support for
integrated simulations, trade-off analysis, or impact
assessments. Second, users may lack clear methodological
guidance on how to leverage architectural description models
for analytical purposes, especially in complex SoS contexts.
Lastly, architecture models are often developed in isolation
from operational or technical data, limiting their usefulness
for real-time or predictive analysis.

As a result, DoDAF models are frequently underutilized
in decision-making processes, reducing their value to
stakeholders and reinforcing the notion that they are static
deliverables rather than dynamic decision-support artifacts.

4) Misunderstanding IV: DoDAF Models Are Static and
Do Not Evolve

Some organizations mistakenly treat DoDAF models as
static, one-time deliverables rather than as evolving artifacts
that must be continuously updated as the system evolves.
This misconception largely arises from the inadequate
support current modeling tools provide for iterative
development and model maintenance.

SoS architectures are dynamic, requiring continuous
updates to DoDAF models to reflect new requirements,
emerging threats, and evolving technologies. Architecture
models should support versioning, impact analysis, and
iterative refinements throughout the SoS lifecycle.

When this need for evolution is overlooked, DoDAF
models quickly become outdated and disconnected from the
actual SoSs they are intended to represent, resulting in
misalignment between architectural intent and operational
reality.

5) Summary
The misunderstandings stem not only from a general lack

of familiarity with DoDAF, but also from widespread
disappointment with its practical applications. These
challenges arise from inherent limitations within DoDAF and
supporting methods, inadequate support from current
modeling tools, and cultural resistance to adopting model-
driven approaches.

B. Inadequate Support from Modeling Tools
From the perspective of modeling tools, the issues can be

categorized into the following aspects.
1) Steep Learning Curves for New Users

Existing DoDAF tools often present steep learning curves,
particularly for multidisciplinary teams involving architects,
engineers, and operators. This hinders effective collaboration,
especially when stakeholders have varying levels of
modeling expertise.

2) Insufficient Support for Model Reuse
Model reuse is a fundamental benefit of architecture

description modeling [23]. However, in practice, the tightly
coupled nature of elements within DoDAF-based
architecture models often impedes effective reuse. This
rigidity limits the adaptability of existing models to new
systems or evolving contexts. While some of these issues
stem from tool implementations, the underlying challenges
are also rooted in the structural constraints and design
philosophy embedded in the DoDAF metamodel itself.

3) Insufficient Support for Iterative and Agile Modeling
SoS architecture design is typically an iterative process,

yet most DoDAF tools do not effectively support version
control, impact analysis, or automatic updates. Furthermore,
the weak integration between different design phases (e.g.,
from capability planning to system design) makes it difficult
to transition seamlessly from conceptual models to
executable or detailed design artifacts.

11Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

4) Limited Support for Modeling Dynamic Behavior
Most DoDAF tools are primarily designed to represent

static structures and relationships. While activity and
sequence models offer some capability to model and analyze
dynamic behaviors, they lack the flexibility needed to handle
a wide range of scenarios. This limitation makes it
challenging to perform simulations or visualizations that
accurately reflect the operation of SoS under varying
conditions, thus reducing the practical utility of architecture
models in operational analysis and decision-making.

5) Difficulty in Managing Large-Scale SoS Complexity
When dealing with complex SoS architectures,

comprising a large number of activities, systems, and
interfaces, many tools exhibit performance bottlenecks. This
includes slow user interface responsiveness and delays in
rendering large diagrams. Moreover, as the interconnections
between elements grow more intricate, users often find it
difficult to trace dependencies, leading to confusion and
decreased confidence in the models.

6) Poor Interoperability with Other Tools
Despite the growing emphasis on integrated modeling

environments, current DoDAF tools often operate in silos.
They lack interoperability with executable modeling tools,
such as Modelica, Simulink, or AnyLogic. Data format
inconsistencies and the absence of standardized exchange
mechanisms hinder seamless integration, resulting in
duplicated efforts and inconsistencies between architectural
models and executable simulations.

7) Lack of Intelligent Support
The modeling process can be cumbersome, adding to the

already heavy workload of architects and SoS engineers,
who are responsible for many other tasks. Current modeling
tools offer limited intelligent assistance, such as automated
reasoning, consistency checking, or even model auto-
generation. The integration of advanced technologies, such
as large language models (LLM), holds significant potential
to improve these processes by offering smarter support.

C. Inherent Limitations of DoDAF and Inadequate Support
of Modeling Methods
From the perspective of inherent limitations and

inadequate methodological support, five key issues can be
identified: the first two stem from the intrinsic limitations of
DoDAF itself, while the latter three arise from shortcomings
in existing modeling methods.

1) Over-Simplification of SoS Complexity
While the goal of ADFs is to develop stable blueprints,

expressed through various views, for complex SoS—similar
to blueprints for building architecture—the boundaries of an
SoS are far more intricate than those of a building. The
diversity of stakeholders, unclear boundaries (and sometimes
even objectives), varying development timelines for
constituent systems, and the occurrence of complex,
unexpected emergent behaviors all contribute to the
difficulty of representing an SoS. As a result, ADFs tend to
oversimplify the inherent complexity of SoS, making the
choice of appropriate abstraction critically important.

2) Underestimation of Evolutionary Nature of SoS

SoSs are inherently dynamic, evolving continuously in
response to changing requirements, constituent system
upgrades, and unforeseen operational conditions. However,
DoDAF often treats architecture models as static snapshots
rather than living artifacts that demand iterative validation
and continuous adaptation. While views such as CV-3
(Capability Phasing) and SV-8 (Systems Evolution
Description) attempt to address system evolution, they
largely depict it as a predefined, static process. Furthermore,
many types of changes are overlooked—for example,
frequent updates to OV-5b (Operational Activity Model) and
OV-4 (Organizational Relationship Chart) are seldom
adequately captured or represented.

3) Inadequate Modeling and Verification Methods
Although many modeling methods have been proposed

over the years, some fundamental issues remain, primarily
stemming from the inherent subjectivity of the modeling
process. A typical example is the lack of a systematic
understanding of granularity levels, which leads to
inconsistent model granularity—some levels are overly
detailed while others are too vague, resulting in a
disorganized hierarchy. These seemingly minor issues can
hinder the development of effective and reliable models.

In terms of verification, most existing methods rely on
syntactic checks and rule-based reasoning [5], which are
insufficient for detecting complex logical errors. This
limitation undermines the reliability of the models and
erodes user confidence in their correctness and utility.

4) Unclear Boundary Between Representation and
Decision-making

DoDAF models are designed to structure vague or
incomplete information, define and formulate decision-
making problems, and guide architectural decisions [22].
However, these decision-making issues often remain
obscured within the architecture models. This ambiguity
creates confusion, leading to uncertainty about whether the
models are flawed due to insufficient modeling experience or
a lack of adequate decision analysis.

5) Lack of Methodological Guidance for SoS Analysis
While DoDAF defines a set of views, it offers limited

guidance on how to use these views to conduct architecture
evaluations, trade-space exploration, or impact analysis.
Users are often left to interpret the views without a clear
methodological framework, leading to inconsistent and
ineffective practices. More critically, in many real-world
applications, users struggle to identify latent deficiencies or
potential shortcomings in the architecture design as
represented by the models.

D. Practical and Cultural Barriers to Model Adoption
Beyond the structural limitations of DoDAF and the

constraints of current modeling tools, the successful adoption
of architecture models in real-world SoS projects also faces
practical and cultural challenges. These issues reflect broader
organizational behaviors and workflow mismatches that
hinder the integration of DoDAF-based modeling into
engineering practice.

1) Models Focus on Compliance, Not Practical Use

12Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

In many defense projects, DoDAF models are developed
primarily to satisfy contractual or regulatory requirements
rather than to support real-world design decisions. This
compliance-driven mindset turns modeling into a box-
checking exercise, where deliverables are created to pass
reviews but rarely maintained or reused afterward. Even
when the importance of architecture modeling is
acknowledged, organizations often lack incentives or
processes to keep these models up to date throughout the
system’s lifecycle. Once initial approvals are secured, model
updates are deprioritized, reinforcing the perception that
architecture models are static documents rather than evolving,
decision-support tools. As a result, the long-term value of
model-based systems engineering is significantly diminished.

2) Model Maintenance is Costly and Operationally
Unattractive

The effort required to keep architecture models aligned
with rapidly changing systems often outweighs the perceived
benefits. Teams may prefer to directly update prototypes or
source code, bypassing the architecture layer entirely. As a
result, models quickly become outdated and are abandoned,
viewed as an unsustainable overhead rather than a valuable
asset for ongoing development

3) Engineers and Architects Speak Different Languages
A cultural gap exists between architects, who work

within frameworks like DoDAF, and engineers, who focus
on building and testing systems using simulation
environments or programming languages. Engineers often
find that DoDAF models are too high-level to support
executable behavior or real system implementation in tools
like Python or Simulink. This disconnect hampers
collaboration and limits the effectiveness of architecture-
driven development, leaving the architecture models isolated
from actual system implementation.

IV. OPPORTUNITIES FOR IMPROVEMENT
Based on the identified challenges, we first evaluate

whether UAF and SysML 2.0 can address some of these
issues, and then propose several directions to enhance the
practical application of DoDAF—applicable to UAF as
well—in supporting SoS architecture design.

A. UAF’s Capability to Address the Issues
As discussed in Section II, the UAF consolidates multiple

architecture frameworks and offers more comprehensive
views and dimensions compared to DoDAF. At its core,
UAF establishes an integrated meta-model that enhances the
semantic consistency and structural rigor of architecture
representations. This unified meta-model also enables
improved traceability from architectural elements to
capability objectives by systematically linking functions,
resources, and operational activities to capability definitions
and performance measures.

Importantly, the OMG provides extensive support for
UAF adoption, including the UAF Domain MetaModel
(DMM), the UAF Modeling Language (UAFML), and a
practical guide for enterprise architecture development.
These resources offer more structured methodological

guidance and clearer modeling practices than DoDAF,
contributing to improved usability and standardization in
SoS architecture design. Furthermore, UAF aligns more
closely with MBSE principles and SysML [26], facilitating
tighter integration between SoS architecture modeling and
system lifecycle management.

Nevertheless, despite addressing fragmentation and
enhancing semantic clarity, UAF still faces practical
adoption challenges—particularly in terms of modeling
methodology, tool maturity, and organizational constraints—
as discussed in Section III.

B. SysML 2.0’s Capability to Address the Issues
The current modeling language, SysML, is undergoing a

significant transformation with the development of SysML
2.0. The SysML 2.0 standard focuses on three core elements,
the underlying Kernal metaModeL (KerML), modeling
semantics and syntax in the SysML, and the Application
Programming Interface (API) and services [27]. It integrates
graphical and textual modeling approaches, bridging the
language gap between system architects and domain
engineers. At the same time, it enhances modeling flexibility
and efficiency, while supporting model sharing and
automation. This revision aims to improve usability for
systems engineering practitioners by introducing these more
intuitive language constructs, enhanced expressiveness, and
better model organization.

SysML 2.0 also defines standardized APIs that enable
seamless integration with simulation engines and verification
tools, significantly enhancing interoperability across the
system development lifecycle. Moreover, it offers improved
composability, allowing for more coherent and scalable
representations of hierarchical structures—from SoSs to
individual systems and components.

Moreover, its support for a formal textual syntax makes it
naturally compatible with LLMs (e.g., ChatGPT, DeepSeek),
enabling more interactive model manipulation, streamlined
workflows, and reduced modeling complexity [28].

SysML 2.0 holds strong potential to address many of the
challenges outlined in Section III; however, most of these
anticipated benefits have yet to be validated in practice, and
realizing them would require significant retooling of existing
tools and workflows.

C. Improvement Suggestions
1) Architecture Description Models Reflect Architecting

Process more than Architecture Outcomes
Rather than building complete DoDAF models upfront,

development teams should focus on creating evolving,
minimal viable models. Fig. 2 illustrates an iterative
architecture modeling process that encompasses architecture
modeling, analysis, evaluation, and decision-making.
Simultaneously, enabling different stakeholders to contribute
at varying levels of detail promotes better collaboration and
aligns with agile development principles.

Fig. 3 demonstrates an example of iterative architecture
modeling process that integrates DoDAF models, executable
models (e.g., ExtendSim, Anylogic), and decision models.
The decision models include qualitative decisions that help

13Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

collect constraints/rules and clarify the information for
architecture models, and quantitative decision-making and
evaluations based on executable simulation results.
Compared to the traditional paradigm [9], the key emphasis
is placed on an iterative modeling process rather than
delivering a complete set of architecture models all at once.
Our core argument is that architecture models should serve
as a means to guide and evolve with the architecting process,
rather than simply capture its final products.

Figure 2 . Iterative architecture modeling process.

Figure 3 . An example for iterative architecture modeling process that
integrates DoDAF models, executable models, and decision models.

2) AI-Assisted Architecture Modeling and Design
Recent artificial intelligence (AI) technologies offer

significant potential for supporting SoS architecture design.
As listed in Fig. 4, AI can support this process in four key
areas: AI-assisted architecture modeling, AI-assisted
architecture selection, AI-assisted architecture verification,
and AI-assisted architecture evolution.

Figure 4 . Issues requiring AI assistance and potential solutions.

Among these areas, AI-assisted architecture modeling
and evolution have attracted significant attention in the past
two years, primarily due to the challenges associated with
manual model development and maintenance, which are both
labor-intensive and error-prone. Fig. 5 illustrates the
generation process of architecture models (e.g., SysML or
DoDAF models) using LLMs, which support the automatic

generation of functional/component decompositions, activity
models, and other artifacts in standard XML format. These
standard XML models can then be transformed into XML
structures compatible with SysML or DoDAF specifications.

Figure 5 . Architecture model generation framework based on LLMs.

AI-driven techniques, when integrated with model
version control, also show strong potential for automatically
detecting inconsistencies, recommending updates, and
managing complex dependencies. Furthermore, the ability to
synchronize SysML/DoDAF/UAF models with real-time
operational data could greatly enhance the timeliness and
accuracy of model updates throughout the design lifecycle.

3) Customized Metamodel Development and Underlying
Consistency Assurance

To better support domain-specific needs, organizations
can develop customized meta-models that extend or
specialize existing frameworks (e.g., DoDAF, UAF). These
tailored meta-models allow for more precision in addressing
specific requirements of a given system or domain. An
integrated process of SoS architecture development and
meta-model development is illustrated in Fig. 6.

Figure 6 . SoS architecture design process with meta-model development.

It is important to note that developing customized meta-
models introduces the challenge of maintaining consistency
across different modeling views and with other frameworks
used by different organizations. To address this, consistency
assurance mechanisms must be integrated into the meta-
model development process. This includes defining clear
consistency rules and validation methods to ensure that
models derived from the customized meta-model align with
the intended system structure and behavior, while also
ensuring better compliance with existing meta-models.

V. CONCLUSION AND FUTURE WORK
This paper has analyzed the key challenges facing

DoDAF in the SoS architecture design, including
misconceptions, method limitations, inadequate tool support,

SoS architecture analysis, decision-making and evaluation

SoS architecture modeling

Develop
initial
models

Models
update

Initial
analysis

Qualitative analysis
of SoS architecting

decisions

Quantitative analysis
of SoS architecting

decisions

Models
update

Qualitative analysis
of SoS architecting

decisions

Models
update

…

…

ba
si
s

Decision points

Design
alternatives

DoDAFModels Decision Model

Identify decision
problems

Collect constraints
and rules

Analyze decision
problems

Multi-obj. decision
making

Executable Models

Consistency Check

clarify

abstract

Guide

support
Develop

DoDAF models

Model
iteration

Input Develop
executable models

Simulation
experiments

Simulation
resultsData

Architecture
Alternative

An
aly
ze

Complexity and Uncertainty in SoS

Multi-disciplinary information→ Heavy
architecture modeling workload

What AI can do?

Large number of architectural design
variables→ Design space explosion

Complex model iteration process→
Manual maintenance difficult

Complex interdependencies across
different architectural views→ Difficulty

of verification

Intelligent knowledge extraction / automatic
generation of architecture models (e.g.,

LLMs)

Intelligent selection of optimal architecture
alternatives (e.g., reinforcement learning)

Intelligent verification of architecture models
(e.g., knowledge graph based reasoning)

Intelligent assistance in updating architecture
models (e.g., LLMs)

LLMs
Prompt

Modeler

Regular XML

XML for SysML/DoDAFSysMLModels

Improve

Documents

Meta-model
requirement
analysis

Meta-model
design

Meta-model
development

Meta-model
verification

Meta-model
maintenanceSoS

Architecture
Analysis

SoS
Architecture
Design

SoS
Architecture
Verification

SoS
Architecture
Maintenance

SoS Architecture Model Development

14Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

and organizational barriers. Our findings indicate that the
core issue lies in treating DoDAF as a static documentation
tool rather than a dynamic decision-support asset that must
evolve throughout the lifecycle. Several key lessons emerged
from this investigation. We observed that organizational and
technical barriers are deeply intertwined, each exacerbating
the other. A recurring difficulty was distinguishing whether
problems originated from DoDAF’s inherent limitations,
tooling deficiencies, or methodological misapplication.
While newer frameworks like UAF offer improved semantic
consistency, our findings temper expectations regarding their
immediate utility, as they still face challenges in method and
tool maturity. The integration of AI-assisted modeling
presents a promising yet challenging path forward.

Future work will focus on three directions: developing a
lightweight iterative modeling plugin to integrate
architectural models with decision-support tools; creating a
specialized prompt engineering framework for LLMs
tailored to SoS architecture tasks; and establishing
quantitative metrics to empirically validate improvements in
model maintenance efficiency and decision-support
capability. Eventually, transforming DoDAF from a
documentation exercise into an evolving intelligent decision-
support process represents quite a promising direction for
enhancing its practical value in complex SoS environments.

REFERENCES
[1] ISO/IEC/IEEE, “ISO/IEC/IEEE 42010:2022(E) Systems,

Software and Enterprise - Architecture Description,” 2022.
[2] Joint Staff, “Charter of the Joint Requirements Oversight

Council and Implementation of the Joint Capabilities
Integration and Development System,” 2021.

[3] G. Bangjun, C. Yunfeng, W. Xinyao, and Y. Wangwang,
“Modeling the Anti-UAV Swarm System Architecture Based
on DoDAF,” in 2023 9th Int. Conf. Big Data Inf. Anal.,
Haikou, China, Dec. 2023, pp. 409–412.

[4] A. Aghamohammadpour, E. Mahdipour, and I. Attarzadeh,
“Architecting Threat Hunting System Based on the DoDAF
Framework,” J. Supercomput., vol. 79, pp. 4215–4242, 2023.

[5] M. Vinarcik, “The Problem with DoDAF Models,” in 22nd
Annu. Syst. Mission Eng. Conf., Tampa, FL, 2019.

[6] S. W. Mitchell, “Transitioning the SWFTS Program Combat
System Product Family from Traditional Document-Centric to
Model-based Systems Engineering,” Syst. Eng., vol.17, no.3,
pp.313-329, 2014.

[7] M. Zaman, “Dynamic Resilient Enterprise Architecture
Model (DREAM) Adoption in Defense Digital Architecture
Management to Mitigate Disconnected Systems and
Processes,” Ph.D. dissertation, George Mason Univ., 2025.

[8] [Reddit], “Change My View: Model-Based Systems
Engineering in 2024 is Still More Hype Than Value,”
r/systems_engineering, 2024. [Online]. Available:
https://www.reddit.com/r/systems_engineering/comments/1bp
avpi/change_my_view_model_based_systems_engineering_in
/?rdt=57765 [Accessed: Sept, 21st, 2025].

[9] L. W. Wagenhals, I. Shin, D. Kim, and A. H. Levis, “C4ISR
Architectures II. A Structured Analysis Approach for
Architecture Design,” Syst. Eng., vol. 3, no. 4, pp. 248–287,
2000.

[10] C. Piaszczyk, “Model Based Systems Engineering With
Department of Defense Architectural Framework,” Syst. Eng.,
vol. 14, no. 3, pp. 305-326, 2011.

[11] R. Wang and C. H. Dagli, “Executable System Architecting
Using Systems Modeling Language in Conjunction With
Colored Petri Nets in a Model-Driven Systems Development
Process,” Syst. Eng., vol. 14, no. 4, pp. 383-409, 2011.

[12] M. Amissah and H. A. H. Handley, “A Process for DoDAF-
Based Systems Architecting,” in 2016 Annu. IEEE Syst.
Conf., Orlando, FL, USA, 2016, pp.1-7.

[13] J. N. Martin and D. P. O'Neil, “Enterprise Architecture Guide
for the Unified Architecture Framework (UAF) ,” in Proc.
INCOSE Int. Symp., vol. 31, pp. 242-263, 2021.

[14] H. M. Hause, “Rebuilding the Tower of Babel: The Case for a
Unified Architecture Framework,” in Proc. INCOSE Int.
Symp., vol. 23, no. 1, pp. 1460–1474, 2013.

[15] J. N. Martin, “Aspect-Oriented Architecting Using
Architecture Frameworks,” in Proc. INCOSE Int. Symp., vol.
31, no. 1, pp. 210–226, 2021.

[16] J. N. Martin, “Extending UAF for Model-Based Capability
Planning and Enterprise Portfolio Management,” in Proc.
INCOSE Int. Symp., vol. 32, no. 1, pp. 15-35, 2022.

[17] K. Carroll, A. Lyle, R. Lewark, C. Medina, and A.
Morkevičius, “SoS - Global Solutions to Global Problems
Using UAF,” in Proc. INCOSE Int. Symp., vol. 34, pp. 2400-
2412, 2024.

[18] M. Hause and L. O. Kihlström, “Modeling Enterprise
Software with UAF,” in Proc. INCOSE Int. Symp., vol. 34,
pp. 2452-2475, 2024.

[19] J. N. Martin and K. E. Alvarez, “Using the Unified
Architecture Framework in Support of Mission Engineering
Activities,” in Proc. INCOSE Int. Symp., vol. 33, pp. 1156–
1172, 2023.

[20] M. Gagliardi, M. C. Hause, J. N. Martin, and M. A. Phillips,
“Darth Vader's Secret Weapon: Implementing Mission
Engineering With UAF,” in Proc. INCOSE Int. Symp., vol.
34, pp. 1719-1747, 2024.

[21] Office of the Under Secretary of Defense for Research and
Engineering, Department of Defense Mission Architecture
Style Guide. Washington, DC, USA: U.S. Department of
Defense, 2025.

[22] Z. Fang, X. Zhao, and F. Li, “Architecture Design Space
Generation via Decision Pattern-Guided Department of
Defense Architecture Framework Modeling,” Systems, vol.
12, no. 2, p. 336, 2024.

[23] A. E. Trujillo and A. M. Madni, “MBSE Methods for
Inheritance and Design Reuse,” in Handbook of Model-Based
Systems Engineering, A. M. Madni, N. Augustine, and M.
Sievers, Eds. Cham, Switzerland: Springer, 2023.

[24] A. Morkevicius and G. Krisciuniene, “Towards UAF
Implementation in SysML V2,” in Proc. INCOSE Int. Symp.,
vol. 34, pp. 2452-2475, 2024.

[25] M. W. Maier, “Adapting the Hatley-Pirbhai Method for the
Era of SysML and Digital Engineering,” 2022 IEEE Aerosp.
Conf., Big Sky, MT, USA, 2022, pp. 1-12.

[26] J. N. Martin and D. Brookshier, “Linking UAF and SysML
Models: Achieving Alignment Between Enterprise and
System Architectures,” in Proc. INCOSE Int. Symp., vol. 33,
pp. 1132–1155, 2023.

[27] Object Management Group, “OMG Systems Modeling
Language (SysML) Version 2.0 Beta 2 (Revision 2024-02),
Part 2: SysML v1 to SysML v2 Transformation,” OMG Doc.
No. ptc/2024-02-01, Feb. 2024.

[28] J. K. DeHart, “Leveraging Large Language Models for Direct
Interaction With SysML v2,” in Proc. INCOSE Int. Symp.,
vol. 34, pp. 2168–2185, 2024.

15Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

MODERN SYSTEMS 2025 : International Conference of Modern Systems Engineering Solutions - 2025

