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Abstract—A standard Voronoi diagram decomposes a plane 
into cells with a common closest site. This structure is widely 
used in computational geometry in application to the nearest 
neighbor problem. Using Euclidean metric is the most 
straightforward solution, however, in an urban environment, it 
may lead to insufficient accuracy that is crucial in applications 
such as dynamic ride sharing. Deviations in determining the 
nearest meeting point are especially significant under the 
presence of obstacles: water reservoirs, railway tracks, 
highways, industrial zones, as well as hilly terrain. Here, we 
propose a combined approach for a city Voronoi diagram 
construction in a generalized metric space. A transportation 
network is modelled as a weighted graph, so that the route 
consists of a foot-walking part and the shortest path in the 
graph. The presented algorithm constructs a continuous 
Voronoi diagram for a plane using the individual Voronoi cells 
graph as generator objects. Evaluation for the specific city 
topography shows that the described algorithm provides more 
accurate results in comparison with the standard Voronoi 
diagram. 
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I.  INTRODUCTION  

Ride sharing applications are aimed at connecting drivers 
and passengers in an optimal way. What this optimal way 
means depends a lot on the specific mobility solution 
philosophy and its target audience. Nevertheless, most of 
isthem face such optimization problem as the nearest 
neighbor search:  identifying the point from a set of points 
which is the closest to a given point according to some 
measure.   The mobility application Instaride [2] developed 
for the spontaneous shared trips is driven by an instant 
matching algorithm. It connects drivers and passengers in 
real time based on the user’s mobile device positioning 
(satellite navigation data, triangulation in mobile network) 
[1]. In order to minimize the driver’s efforts and his route 
detour, the finite set of preselected fixed points is used for 
passengers’ pick-up and drop-off (named meeting points, in 
general). Preselection of the meeting points is determined by 
the environmental conditions and is based on criteria such as 
parking opportunity, presence of pedestrian zones and easily 
recognizable landmarks. Such an approach leads to the 
problem of finding the nearest meeting point for users based 
on their real-time positions.  

The paper structure is the following. The Introduction 
explains the problem’s origin. In Section 2, we describe the 

concept of the presented approach and introduce the terms 
and notation. Sections 3 and 4 describe two parts of the 
algorithm: discrete and continuous. In Section 5, the 
algorithm steps are given in detail. Section 6 presents the 
algorithm efficiency evaluation for the specific city 
topography. Section 7 concludes our work. 

II. VORONOI DIAGRAM IN A GENERALIZED METRIC SPACE 

One of the most effective ways to solve problems related 
to the nearest neighbor search is to use the Voronoi diagram. 
We introduce the following notation here: pL  is a metric 

space with the corresponding function : {0}L L      

that satisfies metric axioms. Then, ( ) { : ( , ) }rS x z x z r   is 

the metric sphere with radius r   and 
( , ) { : ( , ) ( , )}B x y z x z y z    is the bisector of x  and y  

( , , ).x y z L  It splits pL  into the half-spaces 

( , ) { : ( , ) ( , )}D x y z x z y z   and, lying on the other 

bisector side, we have ( , ) { : ( , ) ( , )}D y x z y z x z   .  For 

a given finite set of seeds 1{ ,..., }kS s s L  , the Voronoi 

cell related to is  is expressed as  

( , ) ( , )i i j
i j

VR s S D s s


  

and the Voronoi diagram of :S  

( ) ( , ) ( , )i j
i j

V S VR s S VR s S


  , 

with the horizontal line denoting closure.  
Being the most straightforward solution, a Voronoi 

diagram based on the Euclidean distance provides tolerable 
approximation in the urban environment if the points are 
located quite far apart within the uniform transportation 
network. In other cases, the results are significantly worse: 
for short distances, in areas with irregular topography, under 
the presence of obstacles, or in application to suburbs 
stretched along the roads forming axon-like structures. The 
use of other metric functions may improve the accuracy; 
however, another problem arises: in some cases, the bisector 
dimension may be more than 1 (this is true even for the 
Manhattan distance 1 2 1 2( , ) (| | | |)x y x x y y     ). 

In a number of works, the graph represents the streets 
network. The discrete network Voronoi diagram is then 
constructed while the metric used is the link between nodes 
(e.g. Yomono [5]). However, such models do not allow 

5Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-962-1

MOBILITY 2022 : The Twelfth International Conference on Mobile Services, Resources, and Users



shortcuts, which are often used by pedestrians to shorten the 
paths. Aichholzer et al. [3] consider a plane with Manhattan 
distance and isothetic transportation network. There are also 
several works that use the generalized concept of Voronoi 
region (needle) proposed by Bae and Chwa [6].  

The approach presented in this work is aimed at being 
applicable for the non-orthogonal street structure with 
curvilinear street segments. At the same time, as the ride 
sharing is spontaneous, we strive to avoid excessive model 
complexity; only walking to/from meeting points is assumed. 
The same diagram is used by the driver and the passenger. In 
addition, being flexible to the possibility of using the 
available network bandwidth data, the model should also 
work with the minimum information of this kind. Thus, we 
believe, the task of developing an optimal method for 
constructing a Voronoi diagram for a similar class of 
problems is to find a balance between complexity, accuracy 
and flexibility in using available data as the latter may vary a 
lot in different regions.  

The main idea of the approach presented below is to 
construct a discrete Voronoi diagram on a graph and then 
transform the obtained cells into the seeds or generator 
objects for the continuous Voronoi diagram on the plane. 
The latter represents the partition of the plane with a 
transportation network into proximity regions for the set of 
the given meeting points. 

III. VORONOI DIAGRAM ON THE GRAPH  

We consider the area of interest as domain 2   
containing the city transportation network, providing fixed 
routes. This network is modelled as a weighted graph 

( , )G V E , where { }iE e  is the set of edges, representing 

roads and streets. { }kV v  are the graph vertices, 
corresponding to the intersections and the deadlocks. Non-
negative edge weights ( )iw e determine some proximity 

measure between the vertices connected by the edge .ie  
Depending on data availability, it can be, for e.g., edge 
length or edge travel time. The latter depends on the 
segment’s capacity, inclination, or traffic. Setting ( , )G i jv v  

in an ordinary way as the length of the shortest path between 

iv  and jv , one can consider 
G

V  as a metric space. Without 

additional constraints, it is true for the undirected graph as  

 
Figure 1. Voronoi diagram graph for three seeds. 

G  always satisfies the symmetry axiom unlike the directed 
graph case. Assuming the only way to move (car-driving or 
foot-walking), we can build a Voronoi diagram graph for 

( , )V G E  with respect to the meeting points 

1{ ,..., }kS s s V   (Figure 1).  
The Voronoi diagram brakes up the set of vertices into 

the direct sum of the Voronoi cells 1 ... kV V V   , 

where ( , ).i iV VR s S  Let ( )i iE s  be a set of edges connecting 

vertices within .iV Then, 1 ... kE E E C    , where C  is 
the set of «border» edges whose vertices belong to the 
different cells. 

IV. PLANAR VORONOI DIAGRAM  

Graph G  can be considered not only as a topological 
structure, but its vertices and edges determine geometrical 
objects: points and lines within . Hence, each edges subset 

mE  determines the lines set 2' .mE   Let us consider 

' { ' }, 1..mE E m k   as seeds for a planar Voronoi diagram 
in   with the Euclidean distance. Such metric function 
choice is based on the following assumption. The motion 
between transportation lines is carried out along a straight 
line in the direction to the nearest network segment. 
Practically, the construction of ( ')V E  is based on the search 
for the metric spheres intersection for each pair 
( ' , ' ).m nE E With the sphere radius variation, the points of 

these intersections form bisectors ( ' , ' )m nB E E  and 

corresponding half-planes ( ' , ' ).m nD E E  Thus, each Voronoi 

cell ( ' , )mVR E E  can be computed as an intersection of all 

half-planes containing 'mE . This process is described in 
detail in the next section.  

V. COMBINED ALGORITHM  

The computational algorithm can be performed with the 
following steps: 
1. The city transportation network representation as a 

graph ( , )G V E  is obtained from the OpenStreetMap 

project geodata [6]. 
2. The set of meeting points 1{ ,..., }kS s s   is added to the 

graph vertices ;V  

3. Construct the Voronoi diagram ( )V G graph. If the graph 

order lets it, brute-force can be used: v V  find the 
distance on the graph ( , )G iv s i   using the Dijkstra 

algorithm. If js  satisfies ( , ) min ( , )G j G i
i

v s v s   then 

( ).jv VR s  Using a more optimal algorithm with the 

trees can improve the computational performance, if 
necessary. 

4. From the constructed Voronoi cells from the previous 
step, mV  we get mE — the subsets of edges that belong 

to the cell. 
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5. Each set mE  is transformed into 'mE   — the set of the 

planar lines with their coordinates. 
6. Construct the Voronoi diagram graph ( ')V E  using 

{ ' }mE as seeds and the Euclidean distance 2 as metric 
functions: 
6.1. ( ' , ' )m nE E in order to find the bisector: 

(0; )

( ' , ' ) ( ' ) ( ' )m n r m r m
r

B E E S E S E
 

   

interpolate points obtained from this formula for a 
finite number of radii 

1 ,k kr r r    min max[ ; ].r r r Here, 
1

min 22 ( ' , ' )m nr E E  and maxr is the minimum 
radius that satisfies the condition 

( ' ) ( ' ) :r m r nS E S E   the spheres intersect 
outside of the domain. In the calculations below, a 
r of 10 meters is used; 

6.2. Determine the corresponding half-plane 
( ' , ' )m nD E E that contains ' ;mE  

6.3. Repeat steps 6.1-6.2 for all .m n The 
intersections of the obtained half-planes form the 
Voronoi cell for the seed 

' :mE ( ' ) ( ' , ' )m m n
m n

VR E B E E


  ; 

7. Making a reverse substitution ' ,m m mE E s  gets 

( , )mVR s S as the cells of the combined continuous 

Voronoi diagram based on 2 and .G  

VI.   EVALUATION 

The accuracy of the two types of Voronoi diagrams was 
compared for the central part of Oldenburg, Germany. 
Without claiming to be a full-fledged test, such comparison 
illustrates the potential prospects of the above-presented 
approach. For a given area with 1 km radius and 15 meeting 
points, we construct the standard Voronoi diagram based on 
the Euclidean Distance (DE) and the combined diagram in a 
way described above (DC) (see Figure 2).  

Comparing the two corresponding types of Voronoi cells 

1C  and 2 ,C  their area-weighted average difference can be 

calculated as: 

1 2
1 2

1 2

( )1
( ( ) ( )) 0.5

( ) ( )

i i
i i

i i
i

S C C
S S C S C

S S C C
    

  


 

 For the considered example, 0.31.S   Also, for 1000 
random locations uniformly distributed within the domain, 
we determine the nearest meeting point in three ways: a) 
from DE; b) from DC; c) by computing the routes to all the 
meeting points with the Openrouteservice engine (ORS) [4] 
and detecting the meeting point corresponding to the 
minimum route length. The results are the following: 

 The nearest meeting points obtained from DE and 
DC are equal - 792 locations. 

 otherwise - 208 locations.  
For latter 208 locations, we determine the nearest meeting 
point with ORS: 

 the meeting points obtained from ORS and DC are 
equal - 165 locations. 

 the meeting points obtained from ORS and DE are 
equal - 41 locations. 

 otherwise – 2 locations. 
 

 

 
 

Figure 2. Voronoi diagram for Oldenburg city centre: a) DE; b) DC. 
 

VII.  CONCLUSION 

There are several steps to be performed next in the 
context of this work. First, a full algorithm evaluation must 
be performed in a large area using a number of different 
criteria. Second, its computational complexity must be 
evaluated and, probably, reduced. Third, the potential of 
using additional bandwidth data must be analyzed. 

Nevertheless, at this stage, one can conclude that, despite 
the number of simplifications, the described algorithm 
provides more accurate results in comparison with a standard 
Voronoi diagram. At the same time, complex topography 
features processing requires further study since they are 
probably the main reason for the remaining imprecision. 
These include multi-level road crossings, tunnels, elongated 
geometric objects and natural obstacles. 
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