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Abstract—In the paper, we consider the problem of allocation
of network resources in telecommunication networks with respect
to both utility and reliability goals. We suggest a solution method
based on decomposition and gradient methods for this problem.
We present numerical results for the suggested method on test
examples.

Index Terms—Telecommunication networks; allocation of
links; decomposition method; gradient method.

I. INTRODUCTION

The current development of information technologies and
telecommunications gives rise to new control problems related
to efficient transmission of information and allocation of
limited network resources. All these problems are determined
on distributed systems where the spatial location of elements
is taken into account. Due to strong variability and increasing
demand of different wireless telecommunication services, fixed
allocation rules usually lead to serious congestion effects and
inefficient utilization of network resources despite the presence
of very powerful processing and transmission devices. This
situation forces one to replace the fixed allocation rules
with more flexible mechanisms, which are based on proper
mathematical models; see e.g., [1]– [3]. For example, solution
methods for network resource allocation based on optimization
formulations of network manager problems and decomposition
techniques were presented in [4] [5]. In these problems, the
goal function is the total network profit obtained from the total
income of users payments and the implementation costs of the
network. Otherwise, the total network users utility can serve
as a goal function.

At the same time, wireless networks should be reliable
with respect to various attacks. The most commonly seen in
wireless networks are eavesdropping in which attackers aim at
acquiring important/private information of users, jamming and
Distributed Denial of Service (DDoS) attacks, which attempt
to interfere and disrupt network operations by exhausting the
resources available to legitimate systems and users. These
attacks may lead to degrading the network performance and
Quality of Service (QoS), as well as losing important data,
reputations, and revenue; see e.g. [6]–[9]. Hence, the network
resource allocation problem should take into account reliability
estimates.

In [10], we considered a problem of telecommunication
network link resources allocation among users under reliability
control of network connections with the pre-defined non-
reliability level. For this problem, it was were suggested
a penalty method. This method attained a solution, but its
convergence does not allow one to attain high accuracy of
solutions.

In this paper, we consider also the problem of allocation
of link resources in telecommunication networks with respect
to both utility and reliability goals. However, unlike [10], we
do not indicate any pre-defined non-reliability level. Our cost
function is a difference of the total network utility and non-
reliability. By using the dual Lagrangian method with respect
to the balance constraint, we replace the initial problem with
an unconstrained optimization problem, where calculation of
the cost function value leads to independent solution of single-
dimensional problems. We present results of computational ex-
periments which confirm the applicability of the new methods.

In Section 2 we describe the link resources allocation
problem in telecommunication networks with respect to both
utility and reliability constraints. In Section 3 we describe
how to apply the dual Lagrange method for solving the
original optimization problem. Finally, in Section 4 we give
computational results which confirm rather stable performance
of the method.

II. PROBLEM DESCRIPTION

We first take the optimal link distribution problem in
computer and telecommunication data transmission networks,
which was suggested in [11]. This model describes a net-
work that contains a set of transmission links (arcs) L and
accomplishes some submitted data transmission requirements
from a set of selected pairs of origin-destination vertices I
within a fixed time period. Denote by xi and αi the current
and maximal value of data transmission for pair demand i,
respectively, and by cl the capacity of link l. Each pair demand
is associated with a unique data transmission path, hence
each link l is associated uniquely with the set Il of pairs of
origin-destination vertices, whose transmission paths contain
this link. For each pair demand xi, we denote by ui(xi) the
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utility value at this data transmission volume. Then, we can
write the network utility maximization problem as follows:

max→
∑
i∈I

ui(xi)

subject to ∑
i∈Il

xi ≤ cl, l ∈ L;

0 ≤ xi ≤ αi, i ∈ I.

If the functions ui(xi) are concave, this is a convex optimiza-
tion problem.

Let us now consider the same telecommunication network
where the reliability factor should be taken into account.
Namely, we associate the reliability to each arc flow and
determine µl(fl) as the non-reliability of the l-th arc having
the flow fl for l ∈ L. Then

∑
l∈L µl(fl) is the total network

non-reliability and we formulate the network manager problem
as follows:

max→
∑
i∈I

ui(xi)−
∑
l∈L

µl(fl), (1)

subject to ∑
i∈Il

xi = fl, l ∈ L; (2)

0 ≤ fl ≤ cl, l ∈ L; (3)
0 ≤ xi ≤ αi, i ∈ I. (4)

If the functions ui(xi) and −µl(fl) are concave, this is a
convex optimization problem with the polyhedral feasible set.
However, solution of problem (1)–(4) is not so easy due
to large dimensionality and inexact data. In this paper we
consider the case where the functions ui(xi) and −µl(fl)
are strictly concave. Then, we can apply the known dual
decomposition technique.

III. DUAL DECOMPOSITION METHOD

Let us define the Lagrange function of problem (1)–(4) as
follows:

L(x, f, y) =
∑
i∈I

ui(xi)−
∑
l∈L

µl(fl) +
∑
l∈L

yl

(∑
i∈Il

xi − fl

)
for

x ∈ X =
∏
i∈I

[0, αi] and f ∈ F =
∏
l∈L

[0, cl] .

By duality, we can replace problem (1)–(4) with the dual
unconstrained optimization problem:

min→ ϕ(y), (5)

where
ϕ(y) = max

x∈X,f∈F
L(x, f, y). (6)

Clearly, the dual cost function ϕ is convex. Moreover, under
the strict convexity of the functions µl and the strict concavity
of the functions ui it is differentiable. Calculation of its

value and its gradient is rather simple and decomposed into
independent solution of single-dimensional problems. Denote
by Li the set of links belonging to the path associated with
the origin-destination pair i. By definition,

ϕ(y) = max
x∈X,f∈F

L(x, f, y)

=
∑
i∈I

max
0≤xi≤αi

{
ui(xi) + xi

∑
l∈Li

yl

}
−

∑
l∈L

min
0≤fl≤cl

{µl(fl) + ylfl}

=
∑
i∈I

{
ui(xi(y)) + xi(y)

∑
l∈Li

yl

}
−

∑
l∈L

{µl(fl(yl)) + ylfl(yl)} ,

where xi(y) and fl(yl) are unique solutions of the single-
dimensional optimization problems

max
0≤xi≤αi

{
ui(xi) + xi

∑
l∈Li

yl

}
and

min
0≤fl≤cl

{µl(fl) + ylfl} ,

respectively. Next, we obtain

∂ϕ(y)

∂yl
=
∑
i∈Il

xi(y)− fl(yl), l ∈ L.

These properties enable us to apply the usual Uzawa gradient
method to find a solution of the dual problem (5):

yk+1 = yk − λkϕ′(yk), λk > 0.

IV. COMPUTATIONAL EXPERIMENTS

As part of the work, a numerical study of the suggested
method was carried out. The method was implemented in C++
with a PC with the following facilities: Intel(R) Core(TM) i7-
4500, CPU 1.80 GHz, RAM 6 Gb.

In the experiments, we used quadratic functions of utility
of origin-destination pairs (QuadC)

ui(xi) = u1,ix
2
i + u0,ixi, u1,i < 0, u0,i > 0, i ∈ I,

quadratic functions of non-reliability of arcs (QuadA)

µl(fl) = µ1,lf
2
l + µ0,lfl, µ1,l, µ0,l > 0, l ∈ L,

logarithmic functions of utility of origin-destination pairs
(LogC)

ui(xi) = u2,i ln(u0,i + u1,ixi), uj,i > 0, j = 0, . . . , 2, i ∈ I,

and logarithmic functions of non-reliability of arcs (LogA)

µi(xi) = µ0,lfl − ln(1 + µ1,lfl), µ0,l, µ1,l > 0, l ∈ L.

All the arcs and origin-destination pairs were indexed as l =
0, . . . , |L|−1 (|L| is the cardinality of L) and i = 0, . . . , |I|−1
(|I| is the cardinality I), respectively.
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The coefficients µ1,l, µ0,l, u0,i, u1,i, and u2,i were formed
on the basis of trigonometric functions:

(i) for the functions QuadC

u0,i = 2| sin(2i+2)|+2, u1,i = −| cos(2i+1)|−1,

(ii) for the functions QuadA

µ0,l = | cos(l + 1)|+ 3, µ1,l = 2| sin(2l + 2)|+ 1,

(iii) for the functions LogC

u0,i = 2| sin(2i+ 2)|+ 1, u1,i = | sin(i+ 2)|+ 1,

u2,i = 3| sin(2i+ 2)|+ 1,

(iv) for the functions LogA

µ0,l = 10| cos(l+1)|+10, µ1,l = 2| cos(2l+2)|+1.

The maximal arc flow capacity cl was selected in [1] [10]
as follows:

cl = 10| cos(l + 3)|+ 1.

The maximal path flow capacity αi associated with a origin-
destination pair was selected in [1] [7] as follows:

αi = 7| sin(i)|+ 1.

The stepsize parameter λk in the dual gradient method was
fixed and equal to 0.6.

In our tests, we used the following combinations of func-
tions: QuadA-LogC, QuadA-QuadC, LogA-LogC. The distri-
bution of the available arcs across the origin-destination pairs
was carried out either uniformly or according to the normal
distribution law. In the gradient method, we used two different
initial points: the vector e of units and vector 100e.

We now introduce additional notations:

1) ε is the accuracy of finding solution of the problem,
2) Tε,1 and Tε,100 are the time (in seconds) of the method

with the starting point e and 100e, respectively,
3) Iε,1 and Iε,100 are the numbers of iterations spent

searching for a solution to the problem with the starting
point e and 100e, respectively.

The gradient method was stopped if the norm ‖ϕ′(yk)‖
appeared less than ε. In Tables I–IV we give the results of
finding a solution of the problem with QuadA-LogC combi-
nation of functions. In Table I, we give the results for the case
where |I| = 620, |L| = 310 and for different values ε. In
Table II, we give the results for the case where |I| = 310,
|L| = 620 and for different values ε. In Table III, we give
the results for the case where ε = 10−2, |L| = 310 and for
different values |I|. In Table IV, we give the results for the
case where ε = 10−2, |I| = 310 and for different values |L|.
In this series of numerical experiments the solution time was
less than one second. The experiments for the cases QuadA-
QuadC and LogA-LogC gave similar results, which are given
in Tables V–VIII and IX–XII, respectively.

V. CONCLUSIONS

We presented a general problem of allocation of network re-
sources in telecommunication networks using both utility and
reliability factors. We suggest to apply the dual decomposition
method to this problem. The results of computational experi-
ments confirmed rather stable performance of the method.
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TABLE I
COMPUTATIONS FOR |I| = 620, |L| = 310 (QUADA-LOGC)

ε Tε,1 Iε,1 Tε,100 Iε,100
10−1 0.016 50 0.078 200
10−2 0.028 57 0.094 220
10−3 0.031 70 0.125 248
10−4 0.047 91 0.172 407
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TABLE II
COMPUTATIONS FOR |I| = 310, |L| = 620 (QUADA-LOGC)

ε Tε,1 Iε,1 Tε,100 Iε,100
10−1 0.016 35 0.235 466
10−2 0.027 65 0.344 629
10−3 0.032 67 0.375 703
10−4 0.035 77 0.377 733

TABLE III
COMPUTATIONS FOR ε = 10−2 , |L| = 310 (QUADA-LOGC)

|I| Tε,1 Iε,1 Tε,100 Iε,100
620 0.028 57 0.094 220
930 0.047 84 0.078 157

1240 0.078 84 0.109 139

TABLE IV
COMPUTATIONS FOR ε = 10−2 , |I| = 310 (QUADA-LOGC)

|L| Tε,1 Iε,1 Tε,100 Iε,100
620 0.027 65 0.344 629
930 0.047 63 0.563 716

1240 0.062 70 0.750 783

TABLE V
COMPUTATIONS FOR |I| = 620, |L| = 310 (QUADA-QUADC)

ε Tε,1 Iε,1 Tε,100 Iε,100
10−1 0.016 24 0.094 198
10−2 0.023 51 0.093 229
10−3 0.031 77 0.109 268
10−4 0.047 124 0.172 408

TABLE VI
COMPUTATIONS FOR |I| = 310, |L| = 620 (QUADA-QUADC)

ε Tε,1 Iε,1 Tε,100 Iε,100
10−1 0.015 32 0.234 467
10−2 0.031 58 0.365 691
10−3 0.032 61 0.370 770
10−4 0.047 97 0.374 793

TABLE VII
COMPUTATIONS FOR ε = 10−2 , |L| = 310 (QUADA-QUADC)

|I| Tε,1 Iε,1 Tε,100 Iε,100
620 0.023 51 0.093 229
930 0.032 48 0.094 159

1240 0.031 51 0.094 150

TABLE VIII
COMPUTATIONS FOR ε = 10−2 , |I| = 310 (QUADA-QUADC)

|L| Tε,1 Iε,1 Tε,100 Iε,100
620 0.031 58 0.365 691
930 0.047 53 0.640 815

1240 0.078 66 0.797 856

TABLE IX
COMPUTATIONS FOR |I| = 620, |L| = 310 (LOGA-LOGC)

ε Tε,1 Iε,1 Tε,100 Iε,100
10−1 0.016 31 0.078 161
10−2 0.032 57 0.084 186
10−3 0.047 93 0.125 262
10−4 0.062 129 0.156 334

TABLE X
COMPUTATIONS FOR |I| = 310, |L| = 620 (LOGA-LOGC)

ε Tε,1 Iε,1 Tε,100 Iε,100
10−1 0.016 28 0.187 265
10−2 0.041 69 0.203 313
10−3 0.047 93 0.265 491
10−4 0.063 118 0.344 649

TABLE XI
COMPUTATIONS FOR ε = 10−2 , |L| = 310 (LOGA-LOGC)

|I| Tε,1 Iε,1 Tε,100 Iε,100
620 0.032 57 0.084 186
930 0.047 71 0.094 127

1240 0.063 72 0.125 163

TABLE XII
COMPUTATIONS FOR ε = 10−2 , |I| = 310 (LOGA-LOGC)

|L| Tε,1 Iε,1 Tε,100 Iε,100
620 0.041 69 0.203 313
930 0.047 64 0.312 434

1240 0.094 70 0.328 342
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