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Abstract—The automotive domain, with its more and more
increasing number of comfort and infotainment functions, offers a
field of opportunities for learning and context-sensitive functions.
In this respect, personal and frequent trips of drivers provide
very promising and interesting contexts. To identify frequent
driving contexts in a set of recorded GPS tracks, this paper
presents two different clustering algorithms: First, a hierarchical
Drive-Clustering, which combines drives based on their number
of common GPS points. Second, a Start-Stop-Clustering, which
combines trips with the same start- and stop-cluster utilizing den-
sity based clustering. Especially the Start-Stop-Clustering showed
particularly good results, as it does not depend on the concrete
routes taken to a stop position and it is able to detect more
trip clusters. To predict these trip contexts, a Bayesian network
is presented and evaluated, with logged trip data of 21 drivers.
The Bayes classifier uses context information such as the time,
weekday and the number of persons in the car, to predict the
most likely trip-context and thus achieves a good accuracy in the
prediction of the different trip contexts.

Keywords–Context-aware Vehicle; Spatial Clustering; Drive
Context Prediction

I. INTRODUCTION

Context-awareness is an important building block in the
development of intelligent systems as it can significantly
improve the interaction between a user and a system. Any
information that enables a system to provide the user with
useful, context-related information or intelligent behavior, can
be considered a context. Knowledge about a specific context is
normally gathered by sensor readings and their interpretation
[1][2].

With its steadily increasing number of comfort and info-
tainment functions, the automotive domain offers a unique field
of opportunities for learning and context-sensitive functions.
In recent years, many different context-aware advanced driver
assistance systems (ADAS) have already been introduced.
They are based on information which is provided by dedicated
sensor systems, especially in the areas of safety and comfort,
like the lane departure warning system (LDW), adaptive cruise
control (ACC) or intelligent speed adaption (ISA).

Another interesting and promising context to advance ve-
hicle personalization is the drive itself. Above all, the repeated
drives of a person offer a lot of potential for finding consistent
usage patterns and subsequently the possibility of automating
recorded user behavior after a certain learning period. For
example, if a driver usually checks his mail on the way to
work or likes to listen to the news, the vehicle could adapt to
his preferences by recognizing the drive context as a regularly
drive to work and by automating the desired functions. This
automation of functions could improve safety as well as

comfort because the driver is no longer forced to adjust his
personal settings by himself.

In the following, we will describe and evaluate different
methods for the detection and prediction of repeated drives
of individual drivers. To develop and evaluate our proposed
methods, we had the possibility of utilizing recorded vehicle
sensor data of 21 drivers collected over several months by a
data logger. The collected data included many different sen-
sor signals exchanged between the different in-car electronic
control units (ECU) over the Controller Area Network (CAN)
bus, ranging from Global Positioning System (GPS) position
to seat belt status.

The contributions of our paper are two novel clustering
methods for detecting repeated trips of individual drivers, a
novel distance measure based on the Jaccard distance for
comparing GPS tracks and a hybrid Bayesian network for
predicting frequent drive contexts right away from the start
of the trip based on contextual information like the time of
the day or the number of passengers in the car.

The paper is structured as follows. Section II gives an
overview on existing work in the fields of route prediction,
route recognition, destination prediction and place mining.
Section III outlines two new spatial clustering methods for
detecting the frequent drive contexts of a particular driver. In
Section IV, we present a hybrid Bayesian network to predict
the frequent drive contexts of an individual driver right away
from the start of the trip. The results we obtained running
the before presented algorithms individually on the collected
drive data of every single driver are described in Section V. We
close our work in Section VI with a summary and an outlook
on possible future work.

II. RELATED WORK

Route recognition and prediction systems have been pro-
posed in many different works [3][4][5][6][7]. In the majority
of these publications, the general way to predict respectively
recognize the current route is based on the comparison of the
current driving trajectory against previously recorded trajecto-
ries using a distance measure. As comparing GPS tracks can
not be done with classic Lp metrics due to their length related
inequality, dimension and noise, novel more elastic distance
measures are needed. Already proposed distance measures,
were for example, based on the longest common sub-sequence
(LCSS) algorithm [3][8][9], the Hausdorff distance [4] or
the Jaccard distance [10]. In [8], this simple instance based
learning approach of comparing the current route to already
recorded routes is further enhanced by the inclusion of con-
textual information (e.g. time of the day) to better differentiate
overlapping routes.
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Probabilistic approaches for route and destination pre-
diction have been presented amongst others in [10][11][12]
and [13]. The investigated prediction methods hereby often
underlie a Bayesian approach and include additional contextual
information like the time of the day, the particular weekday
or even background information about locations to infer the
most likely route or destination [13]. In [12], a Markov model
is used instead of a Bayesian approach to predict the next
location of a user.

Identifying personally important places of users in
recorded GPS data has for example been investigated in
[14][15][16][12] and [7]. Density based clustering hereby
proved more efficient than classic partitioning algorithms like
k-means [17][18][14][15], as the final clusters only consist of
dense regions in the data space. Regions of low object density
are not included in the final clusters and are considered as
noise.

Our work differs from existing publications, as we focus
on the personal repeated drives of individual drivers and their
prediction. We thereby consider a set of similar drives included
in a repeated drive cluster as a certain drive context and as
a basis for learning and automating user settings to advance
comfort and safety.

III. DETECTING FREQUENT DRIVES

To detect frequent drive clusters of an individual driver, we
present and evaluate two different spatial clustering methods
explained in the following two Subsections. Drive-Clustering
is based on the Jaccard distance and compares whole tra-
jectories using hierarchical clustering, whereas Start-Stop-
Clustering focuses on semantically similar routes based on the
before determination of frequent start and stop positions of
the particular driver. The goal of both algorithms is to identify
repeated patterns in the set of recorded GPS tracks in order
to detect repeatedly occurring drive contexts, e.g., drives from
home to work. In Section V, we compare the obtained results
of both algorithms applied to our test data set.

A. Drive-Clustering

An important factor in cluster analysis is a distance mea-
sure to determine the distances between elements contained in
the data, for the purpose of grouping similar elements together
in clusters. In trajectory data the standard way for identifying
patterns is to compare whole trajectories. In our case, the
trajectory data of each drive is stored as a sequence of GPS
points Si = {pi,1, pi,2, ..., pi,n}, with pi,1 being the start point
of the drive and pi,n being the end or stop point.

To compare two point sequences we use a dissimilarity
measure based on the well known Jaccard distance, which
measures dissimilarity between sample sets [19] (see equation
1):

d(X,Y ) = 1− |X ∩ Y |
|X ∪ Y |

. (1)

Our dissimilarity measure thereby calculates the intersec-
tion of the two GPS sequences Si and Sj by counting the
number of common points NOCP (Si, Sj) contained in both
sequences starting from the shorter sequence (see equation
2). This number of common points value is then divided
by the number of points contained in the shorter sequence

min(Si, Sj). In order to obtain a dissimilarity measure the
whole term is subtracted from 1, so that a result of 0 signifies
maximum similarity and a value of 1 maximum dissimilarity.

d(Si, Sj) = 1− NOCP (Si, Sj)

min(Si, Sj)
. (2)

GPS points of two geometrically similar trajectories are
very unlikely to have the exact same coordinates, due to
different driving speeds and other noise. Hence it is necessary
to define a threshold Θ from which two points are considered
as equal or contained in both sequences (common points), e.g.,
50 meters. The threshold needs to be defined dependent on
the logging frequency. In our case the logging frequency is
f = 1Hz. So when we for example consider 135 km/h as
the maximum vehicle speed, the maximum distance between
two succeeding points will be (135∗1000)m/3600s = 37.5m.
In the evaluation we set the threshold to 50 meters, which is
sufficient for driving speeds up to 180 km/h with a logging
frequency of f = 1Hz.

The number of common points (NOCP) algorithm iterates
over all points pi,k ∈ Si included in the shorter sequence
and tries to find at least one point in the other sequence
pj,l ∈ Sj whose distance is less or equal than the defined
threshold distance Θ. If the set of found points in range is not
empty, the number of common points counter is increased.
Consequently, the presented distance measure is more elastic
than distance measures based on dynamic programming, like
the longest common sub-sequence (LCSS) or dynamic time
warping (DTW), as it is able to match several elements of
one sequence to just one element of the other sequence. This
behavior is important in our case to handle traffic jams and
different driving speeds. The implementation of the number of
common points (NOCP) function can be significantly sped up
by storing the queried sequences’ points in a k-d tree [20].

To calculate the distance between two-dimensional GPS
points we use a simplification of the haversine formula [21]
based on the euclidean distance, which in contrast to the
standard euclidean distance allows metric parametrization of
our algorithms (φ latitude, λ longitude) (see equation 3).

dist(φ1, λ1, φ2, λ2) = (((111.3 ∗ cos (
φ1 + φ2

2
)∗

(λ1 − λ2)2) + (111.3 ∗ (φ1 − φ2)2))
1
2 ∗ 1000.

(3)

In order to avoid the problem of a very much shorter
sequence being contained in a longer sequence and to speed
up the comparison, the number of common points in the two
sequences is only calculated, when the start and stop points of
the two sequences are sufficiently similar, e.g., their respective
distances do not exceed 250 meters (pi,1 ∼ pj,1 and pi,n ∼
pj,m). Otherwise the maximum dissimilarity value 1 is re-
turned without any further calculation (see equation 4).

dopt(Si, Sj) =


1− NOCP (Si,Sj)

min(Si,Sj)
, if pi,1 ∼ pj,1
∧ pi,n ∼ pj,m

1, otherwise
. (4)

To group similar drive contexts in clusters, we use ag-
glomerative hierarchical clustering, starting from single GPS
sequences. To stop the calculation when no sequence anymore
undercuts a distance ε to another sequence we need to define
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a similarity threshold, e.g., ε = 0.05. The smaller the value
ε the more similar are the trips contained in a cluster. This
threshold will cut the dendrogram at a certain level and lead
to the final drive clusters. To predefine the minimum cluster
size we use another parameter MinDrives, referring to the
MinPoints parameter in density based clustering [18].

B. Start-Stop-Clustering

Another way of determining frequent drive contexts of a
certain driver is based on his frequent start and stop positions.
In contrast to the above presented trajectory clustering method
this method rather focuses on semantically similar drives with
the same start and stop positions than on geometrically similar
drives or routes.

As the vehicle is typically not parked at the exact same
coordinates, it is necessary to merge similar parking positions
to start-stop-clusters. To obtain these frequent start and stop
position clusters of a particular driver, we use density based
clustering, to be exact the DJ-Cluster algorithm presented in
[14], which is a simplification of DBSCAN [18] [22]. Density
based clustering has the advantage of explicitly eliminating
outlier points compared with partitioning clustering, e.g., k-
means [17] [22]. As we are only interested in dense regions
included in the set of start and stop positions of an individual
driver in order to identify frequent drive contexts, density based
clustering is suitable for our task.

Consequently, the first step in Start-Stop-Clustering is to
calculate dense regions of start and stop positions in the set
of GPS sequences and to store the cluster IDs of every GPS
sequences’ start and stop points. Therefore, it is necessary to
specify the two parameters MinPoints and ε, representing the
minimum cluster size and search radius respectively. Figure 1
shows an example of a dense point cluster found in the drive
data of a particular driver with ε = 100m.

Figure 1. Visualization of the start (red) and stop points (blue) of a driver.
All shown points are included in the same point cluster.

The binary dissimilarity measure for Start-Stop-Clustering
then looks as follows (see equation 5):

d(Si, Sj) =


0, if Cs(pi,1) = Cs(pj,1)

∧ Ce(pi,n) = Ce(pj,m)

1, otherwise
. (5)

Two GPS sequences Si and Sj are considered as equal,
when their corresponding start (pi,1, pj,1) and stop points (pi,n,
pj,m) lie in the same start Cs respectively end cluster Ce.

Trip A

Trip B

Start-Cluster End-Cluster

Figure 2. Illustration of a route-independent Start-Stop-Cluster.

Hence, the final drive clusters are comprised of GPS sequences
whose start and stop points lie in the same dense region or
point cluster and therefore have the same cluster IDs. The
found frequent drive contexts are direction-dependent just like
those obtained with the above presented Drive-Clustering ap-
proach. However, the drives included in a Start-Stop-Clustering
drive context cluster do not necessarily follow the same routes.
In contrast to Drive-Clustering they are route-independent (see
Figure 2). To predefine the minimum cluster size we also use
the MinDrives parameter.

IV. PREDICTING FREQUENT DRIVE CONTEXTS

To predict frequent drive contexts that have been identified
with one of the above presented methods, we propose a hybrid
Bayesian network. The structure of the network is shown in
Figure 3.

The goal is to predict a present frequent driving context,
e.g., a drive to work, as early as possible during the drive.
Therefore we make use of contextual information associated
with a certain drive context cluster. The contextual information
used to infer the current drive context includes the start point
of the drive, the number of passengers in the car, the weekday,
the start time and the fuel level.

Start Point

Frequent 
Drive/

Context

Passengers

Passengers

Day

Start Time

Fuel

Figure 3. Topology of the hybrid Bayesian network fo predicting the most
likely frequent drive context.

Using the start point of the drive we are able to eliminate
impossible contexts, e.g., a drive from work to home if the
start point is home, which significantly reduces the possible
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contexts, prevents false positives and speeds up the imple-
mentation. The variable Frequent Drive/Context represents
the a priori probability distribution over the set of identified
drive contexts, already constrained by the current start point.
The variables Day, Passengers and Fuel are conditionally
independent of each other given the class variable Frequent
Drive/Context. The variables described so far all underlie a
discrete probability distribution.

In contrast to the other probability variables, we model
the variable Start Time as continuous. By the edges between
Frequent Drive/Context, Day and Start Time we receive a drive
context dependent start time probability density function (PDF)
for every single day. This enables a stronger differentiation
between the drive contexts, as the start time probabilities for
the different contexts are also day dependent.

To approximate the probability density function for the
start times associated with a certain drive context we use
kernel density estimation (KDE) (equation 6) with a Gaussian
kernel (equation 7) and Scott’s rule of thumb (equation 8) for
bandwidth selection h [23]:

f̂(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

). (6)

K(x) =
1√
2π

exp (−x
2

2
). (7)

hscott = n−1/(d+4). (8)

By using kernel density estimation we receive continuous
day and context dependent probability density functions for
the start times, with high probabilities during day times the
drive context normally occurs (see figure 4).
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Figure 4. Example of a probability density function for the Start Time variable
of a particular drive context.

We deliberately do not use Laplacian correction to deal
with zero probabilities. When a drive context has not occurred
before, at a certain day or time, the probability for the whole
context will be zero. This helps in preventing false positives.

The probability for a certain context C, given the start point
s, the weekday d, the time t, the number of persons in the car p

and the fuel level f , can then be calculated with the following
formula:

P (C|s, d, t, p, f) ∝
P (C|s)P (d|C)P (t|d,C)P (p|C)P (f |C). (9)

The context Ci leading to the highest probability value
P (Ci|s, d, t, p, f) is then assumed to be the present context:

arg max
Ci

{P (Ci|s, d, t, p, f)}. (10)

V. EVALUATION

To evaluate the described methods, we had access to a data
set collected by 21 drivers over several months. The logger
used for collecting the data records all kinds of data bus traffic,
also when the car is not moved, e.g., when the electronic key
is pressed. To filter out this unwanted noise, we only used
recorded data for our evaluation where the vehicle was at least
moved 1 kilometer (air-line distance). The minimum number
of filtered drives of one driver was 216, the maximum number
986. The majority of the probands ranged between 400 to 600
recorded drives.

A. Drive clustering

Figures 5 and 6 show the results obtained applying Start-
Stop-Clustering and Drive-Clustering to the data set. Figure
5 illustrates the average number of found clusters for dif-
ferent minimum cluster sizes (MinDrives={3,5,10}). Figure
6 presents the average share of repeated drives of the total
quantity of drives.

MinDrives = 3 MinDrives = 5 MinDrives = 10
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Figure 5. Average number of found clusters with Start-Stop- and Drive-
Clustering dependent on the minimum number of drives contained in the
clusters (MinDrives).

As one can see, Start-Stop-Clustering is on average able
to identify more clusters than Drive-Clustering (see Figure 5).
However, with increasing the minimum cluster size, the differ-
ence between the average number of found clusters by Start-
Stop-Clustering and Drive-Clustering decreases. This leads to
the assumption that for frequent drives (MinDrives=10), drivers
usually have a preferred route that they normally take, whereas
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Figure 6. Percentage of repeated drives identified with Start-Stop- and Drive-
Clustering dependent on the minimum number of drives contained in the
clusters (MinDrives).

for less frequent drives (MinDrives=3) they also take different
routes to the same destination. In addition to the number
of found clusters, Start-Stop-Clustering is on average able to
assign a larger fraction of the overall number of drives to a
repeated drive cluster compared to Drive-Clustering, as it also
includes all route alternatives (see Figure 6).

As we are rather interested in detecting frequent drive
contexts than the frequent routes taken by a driver, Start-Stop-
Clustering is more appropriate for our use case. Especially
large clusters (MinDrives ≥ 10) may provide promising and
interesting contexts, on the basis of which usage patterns may
possibly be learned and automated. The average fraction of
trips repeated at least 10 times by the participants during the
survey amounts to approximately 30% of the overall trips (see
Figure 6).

To keep the set of frequent driving contexts up-to-date one
could use a shifting time frame and only consider drives for
the cluster calculation that for example occurred during the last
6 months. This would lead to a slow exclusion of no longer
appearing driving contexts over time and also limit the amount
of data used for the context identification.

B. Prediction

To evaluate our proposed Bayesian inference system for
predicting frequent drive contexts, we made use of cross-
validation and focused on clusters identified by Start-Stop-
Clustering with a cluster size larger than 10 drives.

Figure 7 shows the overall prediction result for all drives,
including also non-frequent drives, as well as the prediction
result for solely frequent drives belonging to a cluster. The pre-
diction result improves significantly, to almost 100% (∼97%),
when a prediction result is considered correct when lying
within the top 3 predictions.

The differentiation between the different drive contexts
is relatively accurate (∼ 89% respectively ∼97% for top
3 matches). Moreover, in Figure 8 one can see that, when
considering all drives, the main share in false predictions not
lying within the top 3 matches is produced by false positives.
A large fraction of false positives could be detected correctly
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Figure 7. Prediction result for all drives and only frequent drive contexts
(MinDrives=10).

(∼60%), but as there might be highly frequented start and stop
positions like home, with overlapping context information, e.g.,
time and weekday, some infrequent drives were predicted as
belonging to a frequent drive context.

In the evaluation we used a binary probability distribution
for the day variable (workday, weekend) due to the relatively
small minimal cluster size of 10 drives. It might be possible to
achieve a better recognition of infrequent drives by assuming
a discrete probability distribution for every day (Monday,
Tuesday, Wednesday, etc.), which would also lead to time
probabilities for every day for each drive context. However,
this would only make sense with a higher minimal cluster
size, in order to get representative probability distributions for
every day.
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Figure 8. Overall prediction error rate and the share of false positives at the
overall error rate.

Compared to the rate of false positives the rate of true
negatives is extremely low and underlines the accuracy of our
inference system related to the prediction of frequent drive
contexts (see Figure 8). However, eliminating false positives
is crucial in order to not annoy the driver with unwanted
function automation and might only be solvable with little
driver interaction. A solution could be providing the driver
with the top 3 most likely contexts and letting the driver decide
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if one is appropriate for him in the current situation. If none
is selected by the driver after a certain driving time the system
assumes that in the current situation no function automation is
wanted by the driver.

VI. CONCLUSION

In this paper, we investigated the detection and prediction
of frequent drive contexts as an important building block
for vehicle personalization. We proposed two different spatial
clustering approaches for identifying frequent drive patterns
in a GPS data set. Especially the route independent Start-
Stop-Clustering is promising, as it is able to detect frequent
drive patterns independently of the chosen route. The presented
Bayesian inference systems accuracy in differentiating frequent
drive contexts was about 89% respectively 97% for a top 3
match. Future work will consist of linking context information
and adaptive function automation together, as well as in in-car
field and acceptance tests.
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