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Abstract—The use of audio, video and text modalities to
simultaneously analyze human interactions is a recent trend in
the field of deep learning. The multimodality tends to create
computationally expensive models. Our in-vehicle specific context
requires recording a database to validate our approach. Twenty-
two participants playing three different scenarios (”curious”, ”ar-
gued refusal” and ”not argued refusal”) of interactions between a
driver and a passenger were recorded. We propose two different
models to identify tense situations in a car cabin. One is based
on an end-to-end approach and the other one is a hybrid model
using handcrafted features for audio and video modalities. We
obtain similar results (around 81% of balanced accuracy) with
the two architectures but we highlight their complementary. We
also provide details regarding the benefits of combining different
sensor channels.

Keywords—Human interactions, multimodality, data fusion, au-
dio & video features, end-to-end.

I. INTRODUCTION

Today, most of the data available on the Internet is saved
under a video or an audio format. Sight and hearing are the
main channels used by the brain to understand and decode hu-
man interactions. Voice is implicitly processed into words by
the brain. In case of multiple speakers, improving the process
of interaction analysis could lead to increase performances
of sentiment, emotion and dialog analysis. These multiple
speaker situations are common in the industrial context, i.e. the
necessity to improve social media filtering, human-machine
interaction understanding, brand monitoring, etc. In the auto-
motive context, it will answer safety concerns (i.e. taunting,
bullying or, in the worst case, aggression) linked to the new
usages of cars (i.e. socializing, vehicle sharing, autonomous
cars, etc.). Our aim is to detect the signals leading to these
situations in order to anticipate and avoid them.

To address this issue, we can analyze the passengers’
interactions thanks to cameras and microphones on boarded
in the car cabin. These two sensors generate three modalities
(video, audio and the text transcribed from the audio), which
can be combined to significantly improve the performances of
human tense situation predictions.

Today, these modalities are usually analyzed with deep
learning approaches. We use Bidirectional Encoder Represen-
tations from Transformers (BERT) architecture [1] (English
language), Roberta and CamemBERT models [2] (French
language) for text analysis. They have improved the global
performance in question answering, text summarizing tasks,
etc. Recent work uses the transformer model for text dialog
analysis [3] [4].

For the video modality, 2D and 3D [5] [6] convolutional
approaches are the predominant architectures to analyze im-
ages and video.

The most common technique regarding audio analysis is the
extraction of audio features over a short sliding window with
a framework, such as open SMILE [7]. Then, they are usually
fed to a sequential model like Long Short-Terme Memory
(LSTM) [8].

One way to improve performances of such models is to
combine the audio, video and text analysis. This approach
contains more information than the video and audio modalities
separately [9]–[13].

The automotive context is an embedded system with some
associated constraints: execution time, limited computational
resources, memory access, etc. Processing and analyzing three
modalities with deep learning algorithms tend to induce large
models. To deal with the multimodality and the embedded
constraints, one solution is to design a hybrid model with
one compact model based on handcrafted features running on
embedded hardware and one larger model with an end-to-end
architecture running on a cloud platform.

The four challenges identified are the following:
• The availability of a public in situ dataset.
• The fusion between non-heterogeneous modalities like

video, audio, and text.
• The complexity to model human interactions.
• The embedded constraints.
Actually, to the best of our knowledge, the literature does

not deal with all of these issues at the same time. We are
addressing them hereafter. This research focuses on recording
an exploitable dataset for industrial applications and then
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designing two different approaches showing the benefits of
the multimodality for detecting tense situations in the car’s
cabin.

We differ from the literature by our realistic in-situ dataset
and our two complementary multimodal models. We also
present two different strategies of late fusion.

Section II introduces a literature review on multimodal
dialog analysis. In Section III, we detail the protocol used
to record our own dataset and its specifications. Section IV
provides details and compares our two multimodal approaches
for the classification of tense human interactions. Finally,
Section V present our results.

II. RELATED WORK

The modern dialog, interaction and conversation analyzing
models are based on text [14], [15]. Recent investigations,
with new approaches such as multimodality, show the bene-
fits of exploiting information from different channels. Every
multimodal model on sentiment analysis fields outperforms
unimodal architecture ones [9], [16]. Due to the heterogene-
ity of the modalities (audio, video and text) used in these
architectures, the features are extracted per modality. Then, a
final, more or less complex, late fusion is applied to obtain
better results. The end-to-end models extracting the features
tend to be computationally expensive compared to handcrafted
approaches. They also need more data to be trained. Most of
the time, handcrafted and end-to-end models are compared
only on prediction performances. In the context of human
behavior understanding, we can capitalize on the full potential
of both techniques. Indeed, the study of human interactions,
sentiment analysis or emotions represents some knowledge
that we can directly inject in a model. Conversely, we can
automatically let end-to-end models find features. These two
opposite techniques can be complementary in some scenarii.

Our preliminary works are based on a public dataset like
MOSI [12] [17]. We identified work on multimodal conver-
sation analysis such as [18] [19] that train on this previous
dataset. Additionally, they are only focusing on sentiment and
emotion conversation analysis.

Hierarchical Attention Network (HAN) architecture [20] is
performing very well as the Transformer [1] on document ana-
lyzing. Recent approaches, such as [3], are using Transformer
for dialog analysis. As we are working on oral text and a small
dataset, the HAN approach seems to be the most appropriated.

Regarding interaction analysis, the speaker’s previous be-
haviors are crucial to hold. Nowadays, the deep learning
architecture is not able to process extensive videos. The use
of stateful temporal models [8] in our approach will allow us
to keep track of the information over scenario duration.

The investigations concerning the car cabin passenger inter-
actions are very scarce and remain a scientific challenge.

III. MULTIMODAL DIALOG CORPUS IN VEHICLE

In this section, we detail the protocol used to record our
multimodal dataset. The aim is to classify three different
types of interactions. The first one is the ”normal/curious”

category where two participants have a cordial discussion. The
second one is the ”argued refusal”, where the rear passenger
refuses cordially the driver’s proposition. The last one is a full
refusal of the driver proposition, called: ”not argued refusal”.
The insistent seller scenario has been chosen instead of an
aggression scenario for two reasons. The first one is our
objective to find discussion resulting in aggression and not
physical aggression. The second is due to protocol reliefs
reasons. Indeed, willing to play realistic aggression scenarios,
obliging to follow a psychological protocol setup for the
different subjects would be very restrictive.

A. Purpose of the dataset

We recorded the interactions between two passengers in a
car’s cabin (see Fig. 1). One driver and one rear seat passenger
(right side) are playing predefined non-scripted scenarios.
Subjects are French volunteers without any acting skills.

Each pair of participants is recorded for 7 minutes, sched-
uled in a session of four continuous stages. This paper only
focuses on the acting stage:

1) 60s of silence,
2) 180s of acting,
3) 60s of silence,
4) 120s of interaction with the In-Vehicle Infotainment

(IVI).

During the acting stage, the driver always plays the same
role of an insistent seller and the passenger plays one of the
three following behaviors:

• ”be curious about the driver proposition”,
• ”refuse the proposition with argumentation”,
• ”refuse categorically the proposition”.

We set up a double-blinded scenario. The driver and the
passengers never knew the situation that has to be played
beforehand. In this configuration, we can say that the driver
undergoes the situation.

B. Acquisition setup

We equip a Dacia Duster with six cameras, four micro-
phones and one screen placed on the hood of the car. The
screen is in front of the driver view and also visible by the
passenger. Its use is motivated to indicate when the subjects
have to change the acting phase and stream a video of the
road to captivate the driver’s attention due to the stationary
car. The interactions with the car are available (wheel, gear
lever, etc.).

1) Video steaming: All the cameras present in the setup
have different resolutions, angles of view and lenses. Our
approach privileges the camera #2 because it has the best view
and lighting quality. It is a manual-focus camera of recording
resolution 1920× 1080 pixels. It is placed in order to have a
front angle of view, see Fig. 1.

The other cameras will be considered for future investiga-
tions.

2Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-942-3

MMEDIA 2022 : The Fourteenth International Conference on Advances in Multimedia



Fig. 1. Field-of-view of the camera #2.

2) Audio streaming: Four identical microphones
Brüel&Kjaer prepolarized 1/4 inch Type 4958 are set
in different vehicle areas recording the audio stream. Our
approach only uses the ceiling driver’s microphone because
it is the only area used by the car manufacturer.

We recorded all the video and audio streams in RAW format
(no live compression) in the concern of not using too much
computational power.

C. Preprocessing and annotation of the dataset

Once recorded, a step of post-processing is mandatory.
Indeed, the recording process generates a temporal delay
between video and audio streams. The six videos and four
audio streams are synchronized with Adobe premiere pro.
Ultimately, the videos are compressed in MPEG-4 format.

The third modality (text) is obtained by transcribing the
audio stream. After some experiments, we avoid the automatic
speech transcription (ASR) such as Amazon transcribe or
Google speech to text due to their very high word error
rate. In our oral context, repetitions, interjections and isolated
words are the most important parts of the dialog. Furthermore,
the sentences are potentially poorly constructed (subject-verb-
complement). ASR techniques are inefficient in that case.

We use the ELAN software to transcribe the dataset. It is
a manual annotation tool for video and audio data. The audio
stream is transcribed into utterances for each actor, resulting in
a total number of 2026 utterances. An utterance is a continuous
unit of speech beginning and ending with an explicit pause.
The transcript is reviewed by a peer.

To reduce the annotation time, we annotate at the scenario
level in comparison to other datasets [17], where the annota-
tions are at the utterance level. An entire recording sequence
is annotated at the beginning of the recording. This choice
has some repercussions: for instance, it induces wrong labels
if the subjects play their roles not in adequacy with the asked
one. We will come back to these issues later in the qualitative
analysis (see Section V-B).

D. Specifications and understanding of the corpus

Finally, the dataset contains 44 videos for 22 participants (4
women/18 men). Each pair of participant plays once as a driver
and once as a passenger in a random order. The accumulated
interactions give on average 46 sentences per video, for a total

of 2026 sentences. This represents 21 966 words containing
2082 unique words. We get 54 min for the ”curious” class,
27 min for the ”argued refusal” class, and 27 min for the
”not argued refusal” class, which represent a total of 1h48.
An asymmetry in the amount of data recorded is added to take
into consideration the fact that in real situations the curious
class would be the usual behavior.

By examining the video, we notice that the video modality
is less informative than the audio and text ones. Indeed, the
passengers are mostly static due to the car context and the belt
as well as the driving task restricting the movements. We also
detect this outcome in sentiment or dialog analysis based on
multimodal datasets [16] [21].

The analysis of the dataset over time shows patterns in the
drivers’ and passengers’ behaviors. Humans are not swapping
their emotions or behaviors at a high frequency. Taking this
information into account, we decide to plot the features as a
function of time for a 15s analyzing window; values higher
than 30s result in flat curves with no possible deduction.
This Github link1 makes available the plotted chart. The local
descriptor plots are inspired from [22].

After examining the audio-video streams and analyzing the
charts, we are able to focus on seven hand-crafted features,
as indicated below. Four of them are generated by ”the mean
talking” and ”mean duration” for the two passengers and the
three remaining are the ”mean silence”, the ”eye contact” and
the ”passenger visibility”:

• Mean talking - In a normal conversation, the average
talking tends to be equitably distributed among the par-
ticipants.

• Mean duration - It is the average duration of the utter-
ances. Complementary to the mean talking, the length of
a speech is a good indicator of who is dominating the
conversation and who wants to close the dialog.

• Mean silence - The mean silence is an indicator of the
intensity of a dialog. The more silence there is, the more
the discussion is poor and tends to be in the refusal
situation.

• Eye contact - It is the frequency at which the driver is
looking into the interior rear-view mirror. Eye contact is a
natural behavior when talking to someone. As the driver
is focused on the road and on the driving task, he has no
other choice but to look at the rear-view mirror to see its
interlocutor.

• Passenger visibility - It is the frequency at which the
passenger is seen by the camera. It is a good indicator of
the passenger’s interest in the conversation. We naturally
reduce the distance with our interlocutor when we are
engaged in a discussion. In the car discussion context,
the rear passenger can move forward between the two
front seats. On the video stream, it results in seeing (or
not) the rear passenger.

For the text modality, we calculate the frequency distribution
of words and the term frequency-inverse document frequency

1https://github.com/QuentinPrts/MMEDIA 2021
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(TF-IDF) [23] to find if there are specific distributions of
words associated with a given scenario. These approaches are
very common in text mining and analyzing. The TF-IDF delta
between the two opposite classes (”curious” and ”not argued
refusal”) exhibit the 10 following most important delta words:
je (I), pas (not), vous (you, second-person plural), ouais (ok),
tu (you, second-person singular), non (no), moi (me), oui (yes),
donc (so) and the ah interjection. The text modality is not rich
(as a reminder, we have 2082 different words).

In the chart, we observe two transition phases. The first
one is the setting up: the subjects could not be insistent or
categorical in their refusal to lead a ”bad acting” in the first
30s of each scenario. The second is at the end: subjects run
out of inspiration, causing shortness of breath for the last 20s
of each scenario. This changeover is due to the individuals
playing the scenarios: they are volunteers and not real actors.

IV. MULTIMODAL ANALYSIS

After analyzing the dataset, we implement two different
approaches, one end-to-end model (noted E2E) and one based
on handcrafted features (noted H). They have to process data
to classify the input stream into three classes corresponding to
our three scenarios (”curious”, ”argued refusal”, ”not argued
refusal”). The two architectures are detailed in the following
sections. Fig. 2 illustrates our two approaches. First, we im-
plement a dedicated model for each modality and evaluate their
performances after fusing their outputs. Then, the modalities
are converted into a generator of features for a multimodal
fusion purpose.

As the basic analysis of the text modality is not performing
very well, we decided to implement a deep learning model. It
will be used for both approaches presented in the following
section.

A. Text analysis

We face a major problem in the text modality. Indeed,
every framework and pre-trained models such as Spacy [24],
NLTK [25], BERT [1] are well suited for English analysis
but perform very badly on the French language. The existing
French alternatives are very limited because they are based

Fig. 2. The two approaches implemented: E2E (left) and H (right).

on old or written French. Thus, we did not obtain sufficient
results on the transformers model named Camen-BERT [26]
which is trained on Wikipedia text. The poverty of our text
makes the basic approach (TF-IDF and embedding + LSTM
model) inefficient.

Ultimately, we implement the Hierarchical Attention Net-
work (HAN) [20], which was originally designed for text
document classifiers. We choose this architecture because it
has the ability to focus on both word and sentence levels thanks
to its attention mechanism.

We modify the original implementation by replacing the
basic Gated Recurrent Unit (GRU) layer of the sentence level
by a stateful GRU. This modification allows the model to
keep track of the hidden state over time, improving the global
performances.

The hyper-parameters of this model are tuned empirically.
The input of the embedding is of size 500 which is the number
of words the most represented in the dataset, and the output
is of size 100. Each one of the two GRUs has 16 cells.

B. Handcrafted approach

This first approach consists of combining text and high-
level audio-video hand-crafted features. We extract a total of
32 features with the text model and four features from the
seven aforementioned raw handcrafted features.

1) Audio-video analysis: Among the seven features, two
are extracted from the video stream. The first one, named ”eye
contact”, is calculated using the extracted face with Dlib [27]
and openCV [28] then hyperface [29] to generate the Euler
angles of the head. This process is applied to each frame of the
dataset. Finally, a K-means clustering algorithm on the Yaw
and Pitch axis determines the couple of Euler angles when the
driver is looking in the rear-view mirror. The tilt axis does not
provide additional information in the car context.

For the ”passenger visibility”, we use Dlib and openCV
to detect the face of the rear passenger on each frame. It is
a binary feature, set at 1 if we detect the face of the rear
passenger, 0 otherwise.

The five remaining features are the ones detailed in Sec-
tion III-D: ”the mean talking” and ”the mean duration” for
the driver and the passenger, and the ”mean silence” which is
common to both of them.

Finally, these seven features fed a Multi-Layer Perceptron
(MLP). It is designed with two hidden layers of four neurons
each and one output layer generating the prediction.

2) Temporal fusion of our cues: Adding a temporal late
fusion is necessary in our case because the stateful HAN is
not sufficient to capture all the temporal information. The
Perceptron model has no ability to capture temporality in the
data. Furthermore, a late fusion is the usual strategy in case
of non-heterogeneous modalities.

The fusion concatenates all features extracted from the three
modalities (see Fig. 3). The unimodal models are modified to
extract 32 features from the text and four from the audio-video
model. It results, after concatenation, in a vector of size 36.
Then, they are stacked for each analysing window of 35s to
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Fig. 3. The temporal fusion for the model H.

finally feed a stack of two stateful temporal Recurrent Neural
Network (RNN) named GRU. See [8] for a complete review
of the RNN. Finally, a Fully Connected (FC) layer predicts the
label. The concept of stateful model is detailed in the Section
IV-D.

C. End-to-end approach

This section details the end-to-end approach where the raw
data are given in input of the model to directly make the
prediction.

1) Audio analysis: In this new approach, we use OpenS-
MILE [7] with the configuration file emobase2010 [30] to
automatically extract the features. We only use the audio
stream of the passenger for more than one second. This
process filters the interjections like: ’euh’, ’ok’, ’okay’ and
the repetitions of words very common in oral language. They
are filtered because they do not increase the performances and
can even degrade them. Moreover, the stress on the word is
very weak in our corpus and more generally in the French
language compared to the English language. The stress is
more noticeable at an utterance level rather than at the word
one in the French language [31]. OpenSMILE allows us to
calculate the average value over a period of time. As a result,
we have 1581 features per utterance. Finally, these features
are stacked for each utterance in the window analysis and sent
sequentially to a stateful recurrent network of two layers of
12 cells GRU. Then, a fully connected layer makes the final
prediction. The matrix feeding the model is the size of the
number of utterances in the 35s of the analysis window by
the 1581 features.

2) Video analysis: Recall that the video modality is the
least informative feature in our context and is also the least
informative in the sentiment and emotion analysis literature [9]
[11] [16]. In fact, only the head, the eyelid and the mouth
movements give us information. This information is also
limited because the driver must not deviate from his driving
simulation task. As a reminder, the simulation task is a driving
video in the first person view shown on the screen placed on

the hood of the car. From our experience acquired with the
MOSI corpus use [12], we first experiment the R3D approach
[6]. The results were not conclusive. We then implement
several other models with the ability to model the temporality:

• convLSTM [32],
• 2D Convolutional Neural Network (CNN) + LSTM,
• R3D + LSTM,
• optical flow [33] + R3D,
• optical flow [33] + 2D CNN + RNN.
All these architectures cited did not give satisfactory results.

The models are able to converge during the training phase,
but the results collapse during the validation phase. There
are several hypotheses explaining this phenomenon: maybe an
overfitting problem, an insufficient amount of data, or maybe
the models are not able to catch the right features for the
classification task.

These results lead us to test two last solutions. The first
one uses a vector of 128 features to encode the driver’s face
in each image. We use the Dlib library [27] to extract them.
Then, the features are stacked in 35s windows and sent to a
GRU or LSTM model. The results are still not convincing.

The second method extracts the key points of the face. The
principle is to retrieve 68 facial landmarks (the contour of the
eyes, the face, the nose, etc.) defined by its image coordinates.
They are computed for each frame using the Opencv and Dlib
libraries. This approach gives good results compared to all the
other implementations. We add the head orientation angles as
described in Section III-D to improve the performance. Finally,
a total of 142 facial features including the three head angles
encode the driver’s face.

Once the data are processed, they feed a neural network of
two layers stateful GRU of four cells each. The matrix feeding
the model is the size of the number of frames in the 35s of
the analysis window by the 142 features.

3) Fully connected fusion of our cues: In this approach, the
temporality is taken into account at the modality level (with the
use of stateful GRU) in contrast to the handcrafted approach
where it is at the fusion level. We modify the unimodal model
to extract features. As each different modality does not have
the same impact on the prediction performance, we empirically
determine the number of features per modality to obtain the
best performances. A total of 10 features are concatenated,
four regarding text and audio features and 2 for the video
one. Then, a fully connected (FC) layer built of 30 parameters
makes the final prediction. See Fig. 4 for a representation of
this approach.

D. Implementation Details

Setting the free parameters of the architecture and the train-
ing process are really important to deal with the multimodality
and temporal context.

Foremost, we empirically set the sliding analyzing window
to T = 35s.

During a dialog, the situation can evolve and catching this
gradation gives a lot of information. As long as videos must be
processed by algorithms with smaller analyzing windows, it is
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Fig. 4. The fully connected fusion for the model E2E.

important to keep track of the context between each analyzing
window. We implement this concept by using stateful GRU.
RNN only remembers what happened within a sequence. A
sequence can be a set of sentences, a set of features, etc. At the
initial time point of every passed sequence, the hidden states
are initialized at 0, which means that the previous information
is lost. In our approach, we initialize at each iteration the
hidden state with the one generated at the previous analyzing
window. This process keeps track of the evolution of all the
features from the beginning to the end of the video.

Stateful RNN must be trained video by video. Each video
is cut on the fly into approximately 180/35 = 5 subsequence
video clips. Then, they are fed chronologically one by one to
the model. This training approach generates only 44∗5 = 220
training samples. In order to increase the training set, we shift
the beginning of the analysis window to generate 400 samples.
This consists in passing multiple times over each video. At
each iteration, the starting point of the analyzing window is
shifted.

Recall that the limit of our dataset forces us to discard the
first 30s of our training samples. We delete on the fly these
files during the training and validation phases.

The last method used to train the multimodal model is
the pre-training techniques. All unimodal models are firstly
trained to reach their best accuracy point and be saved.
Then, at the beginning of the multimodal training phase, each
previously saved model is loaded to initialize the multimodal
one. This method is mandatory in our approach, otherwise
the multimodal model is not able to converge. Freezing the
weight of the loaded model (except for the fusion model) is
considered, but it leads to poorer performance results.

On a multi-class problem, we use the cross entropy loss
defined as in equation (1).

loss(ŷ, class ) = − log

(
exp(ŷ[ class ])∑

i exp(ŷ[i])

)
(1)

where ŷ is the output score of the model for the corresponding
class.

V. EVALUATIONS AND ASSOCIATED ANALYSIS

In this section, we present the quantitative evaluations for
both approaches and a qualitative analysis.

A. Quantitative Evaluations

When we work on behavior or emotion analysis, the speaker
dependency is a key point. The idea is to evaluate the abilities
of the algorithm to generalize when it deals with a new
speaker. For this purpose, we generate five different cross-
validation sets by selecting 80% of the speakers for the training
phase and 20% for the validation phase. More specifically,
there are in the train set: 36 videos representing 1620 utter-
ances generated by 18 speakers and for the validation set: eight
videos totaling 405 utterances generated by four speakers.

The balanced accuracy is defined in equation (2). It is
mandatory when we do not have a balanced number of samples
in each class.

balanced-accuracy (y, ŷ, w) =
1∑
ŵi

∑
i

1 (ŷi = yi) ŵi (2)

It is the macro-average of recalled scores per class i with
associated weight ŵi relative to the inverse prevalence of its
true class yi. The ŷi is the inferred value of the sample i.

We obtain the following results (see Table I). This is the
mean of the five cross-validation sets.

The results obtained with these two approaches are quite
similar. Indeed, we obtain 81.6% of balanced accuracy with
the end-to-end model and 81% with the handcrafted approach.
The approach using the handcrafted (H) features is more
consistent with a standard deviation below the end-to-end
approach (E2E). The (H) architecture does not contain enough
parameters on the video or audio alone to allow a classification
by modality. The standard deviation of (E2E) is likely due to
the audio and video modalities which are difficult to exploit.
As a reminder, we were able to obtain convincing results by
using only the rear passenger data for audio and the driver’s
face for video. Additionally, the literature [34] shows the
existence of a threshold in the quantity of data for which
the end-to-end approaches outperform classical approaches
(statistical, machine learning, etc.). Below this threshold, the
classical techniques obtain the same or better performances
as the end-to-end one. Our results and the size of our corpus
seem to indicate that we are in this situation. Increasing the
amount of the data could therefore solve the issue.

The case of speaker dependency in the selection of train/test
data is the least favorable for a neural network and not
representative of real-world applications. Indeed, in the case

TABLE I
RESULTS AND COMPARISON OF THE TWO APPROACHES. SD REFERS TO

SPEAKER DEPENDANT.

Model Modalities Balanced accuracy

End-to-end
(E2E)

Video 65.6% ± 4
Audio 70.6% ± 4,9
Text 70% ± 0.8

Audio + video 61% ± 3.9
Video + Audio + Text 81,6% ± 5.9

Video + Audio + Text SD 88.2%

Handcrafted
(H)

Text 70% ± 0.8
Audio + Video 60% ± 1.12

Video + Audio + Text 81% ± 1.2
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of a smartphone assistant, a ”world” model is specified to a
new user with a new training phase based on some samples of
his voice. For example, on a new Android device, when the
user starts to use Google assistant, it asks the user to repeat a
few times ”Ok Google”. To reproduce this configuration, we
train our end-to-end model on the first 90s of each video and
test it on the remaining 90s. This approach gives a balanced
accuracy of 88.2%. It shows the benefit of a specialization
phase and partially shows our shortage of data.

B. Quantitative evaluations and Juxtaposition of the two ap-
proaches

After analyzing the miss-classified files, we observe some
issues leading to these miss-classification. A few participants
did not play their role in adequacy with the asked scenario
or they took a very long time to engage in the discussion.
Two specific issues also lead to bad results: (i) on one video
the voices of the two speakers are very low compared to the
other’s recording; (ii) on another video, the driver has a very
bad posture resulting in a half-visible face.

Typically, in literature, the performances of the different
approaches are compared. We argue that the two presented
approaches are complementary. If we examine the wrong/right
classifications of each model for the same test file, we notice
that errors are not made on the same analysis window. These
two models can be complementary in their decision-making.

Fig. 5 shows the confusion matrices for our two models
on the same cross-validation file. The end-to-end approach
has a better ability to classify the videos of the ”curious”
and ”categorical refusal” classes which are the most opposed
classes. The handcrafted based model performs well on the
”argued refusal” class.

In our application context, one hybrid solution could be to
use the embedded model, i.e. Handcrafted (H), to establish a
first diagnosis of the situation and then send the video data to
a cloud platform to inference with the end-to-end model. This
choice lead to reduce the cost of data transmission to a cloud
platform.

Fig. 5. Comparison of the two confusion matrix for a same cross-validation
set. (H) refers to the handcrafted model and (E2E) to the end-to-end one. cur
denotes the ”curious” class, ref arg describe the ”argued refusal” and ref cat
stands for the ”not argued refusal” class.

VI. CONCLUSION

This paper compares two multimodal approaches for the
analysis of interaction in a real vehicle context. The perfor-
mances obtained with these models are promising with 81%
of balanced accuracy for the handcrafted model and 81.6%
for the end-to-end approach. We also show the benefits of the
fusion of different modalities and the complementary of our
two approaches.

The embeddability capability of neural networks and the
real application context is often omitted in the literature and
even more in multimodal systems. Our future work will focus
on integrating the two detailed architectures on a specific
automotive platform to evaluate the embedding performances.
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Clergerie, D. Seddah, and B. Sagot, “CamemBERT: a Tasty French
Language Model,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for
Computational Linguistics, Jul. 2020, pp. 7203–7219.

[3] B. Santra, P. Anusha, and P. Goyal, “Hierarchical Transformer for Task
Oriented Dialog Systems,” arXiv:2011.08067 [cs], Mar. 2021.

[4] D. Chen, H. Chen, Y. Yang, A. Lin, and Z. Yu, “Action-Based Conver-
sations Dataset: A Corpus for Building More In-Depth Task-Oriented
Dialogue Systems,” arXiv:2104.00783 [cs], Apr. 2021.

[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in The IEEE
International Conference on Computer Vision (ICCV), Dec. 2015.

[6] K. Hara, H. Kataoka, and Y. Satoh, “Learning spatio-temporal features
with 3d residual networks for action recognition,” arXiv:1708.07632
[cs], 2017.
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