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Abstract—Recent advances in media-related technologies, in-
cluding capturing and processing, have facilitated novel forms
of 3D media content, increasing the degree of user immersion.
In order to ensure these technologies can readily support the
rising demand for more captivating entertainment, both the
production and delivery mechanisms should be transformed to
support the application of media or network-related optimiza-
tions and refinements on-the-fly. Network peculiarities deriving
from geographic and other factors make it difficult for a greedy
or a supervised machine learning algorithm to successfully foresee
the need for reconfiguration of the content production or delivery
procedures. For these reasons, Reinforcement Learning (RL)
approaches have lately gained popularity as partial information
on the environment is enough for an algorithm to begin its
training and converge to an optimal policy. The contribution
of this work is a Cognitive Network Optimizer (CNO) in the
form of an RL agent, designed to perform corrective actions on
both the production and consumption ends of an immersive 3D
media platform, depending on a collection of real-time monitoring
parameters, including infrastructure, application-level and qual-
ity of experience (QoE) metrics. Our work demonstrates CNO
approaches with different foci, i.e., a greedy maximization of
the users’ QoE, a QoE-focused RL approach and a combined
QoE-and-Cost RL approach.

Index Terms—immersive media; cognitive network optimizer;
reinforcement learning.

I. INTRODUCTION

New forms of interactive 3D media applications have lately
emerged as a result of advances in processing, 3D capturing
and imaging technologies. These applications include mixed
reality and tele-immersive platforms that allow the embedding
of real world entities into the virtual world in a real time and
interactive way, thus creating a more engaging user experience.

Media applications are justifiably known as some of the
most demanding and computationally intensive services, im-
posing tough challenges on allocation and management pro-
cedures, concerning both computing and network resources.
State-of-the-art forms of 3D media, ranging from virtual
worlds to games, necessitate the rethinking of media produc-
tion and distribution [1], with the user’s Quality-of-Experience
(QoE) playing an increasingly dominant role due to the
increased level of user immersion. At the same time, it
comes as no surprise that the production and delivery costs
are rising in order to cater for these novel forms of 3D

media content. Ergo, the composition of a real-time, QoE-
and-Cost unified, optimization approach is considered essential
for these services to remain both affordable and enjoyable.
On this ground, recent advancements in the 5G field could
provide such enhancements, unleashing the potential of 3D
immersive media content, and the media industry in general,
through dynamic, real-time refinements and/or reconfiguration
of underlying services [2].

In this work, we simulate a 3D-immersive gaming ses-
sion with all its required components, including simulated
consumers of various processing and bandwidth constraints.
Our aim is to develop a Cognitive Network Optimizer (CNO)
system that manages to balance the consumers’ QoE and
the quality-transcoding costs. The most common approach
would be to either design the CNO in a greedy manner,
leveraging statistical knowledge of the overall performance of
our targeted system, or apply a machine learning algorithm.
Nevertheless, network peculiarities deriving from geographic
and other factors, render the application of a supervised ma-
chine learning algorithm possibly untrustworthy. A supervised
model would heavily depend on the diversity of the networking
dataset that would be used, hence, the same model might not
perform adequately well across all ranges of network chara-
cteristics. On this ground, a Reinforcement Learning (RL) ap-
proach was adopted for the design of the aforementioned CNO
system, as this kinds of algorithms do not necessarily need
prior knowledge in order to perform. Once deployed, a RL
agent can learn from the environment through trial-and-error,
by receiving positive or negative rewards upon its actions. With
RL being the backbone of our envisioned CNO system, it
would be possible to present a unified approach for this type
of interactive application, possibly able to perform reasonably
under any network or processing capacity circumstances.

The rest of this paper is organised as follows: Section II
presents the related work while Section III provides insights
on the overall system architecture. Section IV depicts the
approach that was followed for the design and implementation
of the CNO along with essential details. Sections V and VI
present the experimental setup and the corresponding results
respectively. Finally, Section VII concludes this paper.
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II. RELATED WORK

The perceived quality for images and videos has been
heavily investigated in the literature and standardized by the
International Telecommunication Union (ITU) [3]. However,
these recommendations do not readily apply in the case of in-
teractive gaming and 3D reconstruction content. Various works
have attempted to model gaming QoE [4]–[7]. We chose to
adopt the model described in [7] because the metrics required
in order to determine the perceived QoE are readily available
in our platform. Although this work examines gaming in its
traditional video form, rather than 3D media content, we
decided to ignore this discrepancy for two reasons. Firstly,
the literature for 3D media quality assessment is still very
limited [8]–[10]. It is widely acceptable that formulating a
comprehensive QoE model for this kind of media is quite a
challenging task. Secondly, the main focus of our work is to
demonstrate the capabilities of our CNO system to balance the
customers’ QoE and the cost of the production platform. This
implies that, in principal, any legitimate QoE model could be
adopted by our system, thus it is not our focus.

A substantial amount of work has been conducted on
adaptive video streaming. The most established technique for
this task is MPEG-Dynamic Adaptive Streaming over HTTP
(MPEG-DASH) [11]. Recent works have exploited RL to train
systems that can accomplish adaptation and have been able
to surpass traditional methods in terms of users’ QoE [12]–
[15], yet, these efforts have solely focused on maximizing
the client’s satisfaction and have not attempted to balance
other factors like the cost of production, which is of great
importance for video service providers. Most closely related
to our work are [16] and [17], both of which aim to find a
balance between cost and QoE. However, contrary to them, we
utilize RL to optimize our system, and the content on which
our optimizations are performed is 3D reconstructed.

III. SYSTEM ARCHITECTURE

The envisioned use-case incorporates a tele-immersive in-
teractive multiplayer video game named ”Space Wars”, which
is developed by [18]. In this application, two players physical
appearance is embedded inside a common virtual environment
where they interact with each other to play a capture-the-
flag style VR game. Players silhouette and texture coverage
is being captured using a set of four color-depth (RGB-D)
cameras per player, arranged in a square around them. In
addition to the players, the system can also accommodate a
potentially large number of remotely allocated live spectators,
which can be arbitrarily distributed across a wide geographic
area. This pushes further the envelope of the underlying
infrastructure to include the need for very high bandwidth
and near real-time latency, along with highly reliable large-
scale delivery. Different parties may have different visual
quality requirements, driven by devices capabilities, network
conditions or subscription privileges. Thus, the production data
streams need to be transcoded into various quality levels in
real-time speed, and be concurrently available for consumption
in an Adaptive-Bit-Rate (ABR) manner [19].

Figure 1. The flow of 3D video frames from the players to the spectators,
along with the central decision commands and the metrics that drive them.

In contrast to a typical 3D content delivery pipeline, the
examined prototype utilizes many of the forthcoming 5G
mannerisms to mitigate the conflicting nature of certain re-
quirements in a resource-efficient, business-friendly way. The
opted architecture steps on the model described in [20],
where transcoding components are built as Virtual Networking
Functions (VNF) and deployed on the 5G-compliant cloud-
computing infrastructure (NFVI) opportunistically, in a quality
/ cost optimized manner. Optimizations may apply in both
infrastructure and software level, with only the latter being in
scope of this work in the form of management of the quality-
levels production and distribution. Optimization strategy and
all of the decision-making mechanism is embodied in the CNO
component, which translates various network and application-
level input measurements to parametrization actions that steer
virtual topology towards maximizing the global QoE / cost
ratio. A schematic representation of the architecture can be
found in Figure 1.

IV. COGNITIVE NETWORK OPTIMIZER

The role of the CNO is to decide about essential opti-
mizations and corrective actions that should be applied upon
both the production and consumption ends of the targeted
system, i.e, spectators and transcoders. The CNO, imple-
mented as a RL agent, receives a combination of infrastructure,
application-level and QoE metrics, and executes a list of opti-
mization actions. This section provides insights on the CNO’s
design and implementation, including decisions regarding the
implemented algorithm, the selected monitoring parameters
and the supported actions.

A. Reinforcement Learning: State-space, Modelling & Reward

Reinforcement Learning is a process of learning in which a
situation is mapped to an action in order to maximize either
a specific numerical or abstract reward. No advice is given
to the entity following the learning procedure, the learner,
regarding which actions to take. Instead of this, the learner
should discover the rewards that yield from the available
actions [21]. The foundation behind most RL algorithms is
a Markov Decision Process, composed of:
• a finite number of states S;
• a finite number of actions A;
• a transition function T : S × S ×A→ [0, 1] assigning a

probability distribution over states;
• a reward function R : S × A × S → IR giving the

immediate reward received after each transition.
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The goal of a RL algorithm is to learn a mapping from states
to actions, or policy, π. The optimal value of an action a taken
from state s, denoted by V ∗(s), expresses the expected sum of
rewards discounted by a factor γ, that an agent would receive
when, starting from state s, the agent performs an action a
and follows the optimal policy. The aforementioned values
are connected through the following equations:

Q∗(s, a) =
∑
∀s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (1)

V ∗(s) = max
a∈A(s)

∑
∀s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (2)

π∗(s) = arg max
a∈A(s)

∑
∀s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

(3)
The optimal values of the states are the solutions of equation
(2). Given the optimal values of the states, the optimal policy
is then defined as shown in equation (3).

State-space. In order to capture the complexity of the
system in detail, a fine-grained segmentation of the state-space
would be required, making the RL agent impractical in terms
of required computational resources and training time. Instead
of this, a more coarse-grained segmentation of the state-space
was preferred. Having gained a thorough understanding of the
overall system’s performance, leveraging statistical characteri-
stics, and having captured the full value range of the selected
monitoring parameters, levels were statically defined for each
of these parameters, thus forming a compact, computational
resource and training time efficient, state-space.

Modelling Approach. The optimal policy can be calculated
following either a model-based or a model-free approach.
The model-free approach focuses on the effectiveness of the
executed actions, with Q-learning algorithm [22] being its
most common representative, an efficient algorithm in terms of
required computational and memory resources. Nevertheless,
Q-learning performs only local updates to the values, hence
only the policy of the initial state can be updated at each step
and a large amount of experiences is required to converge
to an optimal policy. In the model-based approach, the RL
agent tries to model the exact behavior of the environment,
thus this approach with Prioritized Sweeping was preferred.
Prioritized Sweeping uses careful bookkeeping to concentrate
the computational effort on the most interesting parts of the
system [23]. After a transition, its probability estimate is
updated along with the transition probabilities of previously
observed successors.

Reward Function. The reward function is one of the most
vital elements of a RL algorithm. It should be designed
carefully as it is capable of either assisting the fast convergence
of the algorithm or leading to false optimal policies [24].
In our CNO system, the reward function is composed of
five reward components aiming for optimizations on different
parts of the system: a) GPU usage, positive if the application
is deployed on a CPU-only node, due to the substantially
low cost of such a node, or a GPU-node is used by the

majority of spectators, and negative otherwise, b) QoE of
single spectator, defined as the percentage of increment or
decrement of QoE of a spectator after the execution of a
certain action, c) Combination of QoE & transcoding cost,
positive in case the QoE sum of all spectators is greater than
the transcoding cost, or negative otherwise, d) Monitoring
parameters, depending on the percentage of increment or
decrement of selected parameters, namely, a spectator’s bit rate
and frame rate, following the execution of a certain action,
and e) Number of produced profiles, which gives a positive
reward if the number of produced profiles is reduced and
a negative reward if it is increased. Of the aforementioned
reward components (b) and (d) are focused on the experience
of a single spectator, while (a), (c) and (e) are focused on the
performance and cost of the overall system. Adjustments of the
reward components’ weights will force the CNO to focus on
specific aspects of the system while performing the necessary
optimizations.

B. Monitoring Parameters & Optimization Actions

This subsection presents the monitoring parameters that
were selected for collection and input to the CNO, along
with the optimization actions that are supported by the in-
frastructure. For the metrics related to containers running on
Kubernetes, Prometheus [25] has been employed and two
derived metrics expressing the packet loss of the transmit-
ted and received network packets were exported. Besides
the Prometheus-exported metrics, application-level metrics are
exported from both the spectators and the transcoder VNFs.
Moreover, the Mean Opinion Score (MOS) value is computed
based on the frame rate and recorded PSNR as described in [7].
Table I presents a list of all metrics used in the optimization
process, along with their origin.

The available actions that are selected and executed by the
implemented RL algorithm are summarized in Table II. These
actions can command a) a spectator to start consuming from
a specific produced profile (set vtranscoder client profile),
b) a transcoder to start or end production of specific pro-
files (set vtranscoder profile), or c) a transcoder to mi-
grate from a CPU-only to a GPU-node, or vice-versa
(set vtranscoder processing unit). Additionally, it is possi-
ble that the CNO will detect no need for optimization
(no operation). It should be clear that the CNO makes de-

TABLE I
UTILIZED MONITORING METRICS

Origin of Metric Metric Description

Prometheus (derived metrics) Transmitted Network Packet Loss
Received Network Packet Loss

Spectator

Bit Rate
Bit Rate (Aggregated)
Frame Rate
Frame Rate (Aggregated)
Consumed Profile

vTranscoder

Number of Produced Profiles
Output Data Bytes
Working Frames per Second
Theoretic Load Percentage

QoE Mean Opinion Score
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TABLE II
OPTIMIZATION ACTIONS AND SUPPORTED VALUES

Action Target Values
set vtranscoder client profile Spectator [0, 1, 2, 3, 4, 5]

set vtranscoder profile vTranscoder [1, 2, 3, 4, 5]
set vtranscoder processing unit vTranscoder [cpu, gpu]

no operation - -

cisions for an action that must be executed on a spectator,
yet it is responsible for executing all the essential prerequisite
actions as well.

C. Algorithmic Flow

With a certain level of abstraction, the operation of the
CNO is described by the algorithm presented in Figure 2.
To begin with, the necessary monitoring metrics, as listed in
Table I, are collected and the MOS value is computed. This
collection of metrics forms a feature vector and is fed to the
algorithm. This vector is unequivocally mapped to a state. The
determination of the overall system’s current state is followed
by the establishment of the corrective actions to be executed.
A little while after the optimal action’s execution, a new set of
monitoring metrics will be collected, a new MOS value will be
computed and the newly formed feature vector will once again
be mapped to a state. Consequently, the reward is computed
according to the pre-action and post-action measurements.
The latest experience in the form (pre action measurements,

1: produced profiles← [p0]
2: GPU profiles← [pk, ..., pk+n]
3: pu← CPU
4: initial metrics← get collected measurements()
5: while True do
6: s← get state(initial metrics)
7: a, p← get suggested action(s)
8: if p ∈ produced profiles then
9: set vtranscoder client profile(p)

10: else
11: if p ∈ GPU profiles and pu = CPU then
12: set vtranscoder processing unit(GPU)
13: pu← GPU

14: produced profiles.append(p)
15: set vtranscoder profiles(produced profiles)
16: set vtranscoder client profile(p)

17: produced profiles← get consumed profiles()
18: set vtranscoder profiles(produced profiles)
19: if pu = GPU and GPU not needed() then
20: set vtranscoder processing unit(CPU)
21: pu← CPU

22: sleep()
23: after metrics← get collected measurements()
24: r ← get reward(initial metrics, after metrics)
25: update model()
26: initial metrics← after metrics

Figure 2. CNO Algorithm

action, post action measurements, reward) is recorded and the
model values are updated using Prioritized Sweeping.

V. EXPERIMENTAL SETUP

To develop our CNO, we simulate the various components
required for a ”Space Wars” two-players-with-spectators game
scenario. For the players, we used an actual game recording
between two people. The 3D models and textures of the
players are recorded as two streams, one for each player. The
resulting streams contain a number of consecutive frames with
each frame consisting of four RGB images of a player captured
from different angles and a 3D mesh. During the simulation,
these two streams are published on a Kafka broker. Then, two
transcoders connect on the same broker and each one receives
a different stream to produce the extra qualities required to be
consumed by the spectators.

The non-transcoded streams deriving directly from the play-
ers, namely ”passthrough”, are produced using jpeg compres-
sion for the textures and Google’s Draco compression for the
meshes. The transcoders can potentially produce five extra
qualities. Two of them use jpeg to compress as still images
down-scaled versions of the original textures along with more
heavily quantized versions of the original meshes, and can be
produced solely using the CPU. Another three profiles utilize
the HEVC algorithm to encode textures as video sequences,
also together with more pronouncedly quantized versions of
the meshes, and deliver much higher compression ratios but
can only be produced using GPU infrastructure.

All transcoded streams, together with the ”passthrough”,
are published on the broker. The last piece, spectators, also
connect to the broker and receive one of the produced qualities.
For our experiments, we simulate the spectators so that we
can easily modify their bandwidth and processing capabilities,
creating various profiles that correspond to real viewing sce-
narios. The bandwidth of our spectators is set to three different
levels: 20, 40 and 60 Mbps, and they can have two different
processing capabilities; one corresponding to a low-end mobile
user and one to a high-powered desktop one. The processing
power of a spectator determines how fast he can decode the
incoming frames and in return the frames-per-second (fps)
with which he can watch the game. The spectators publish
live metrics (downloading bit-rate, viewing fps) on the broker.

Overall, the CNO system analyzes the spectators’ metrics
and issues a) a command to the transcoders, dictating which
qualities they have to produce and b) a command to each
spectator to indicate which quality they must consume from
every transcoder. As mentioned before, the aim of the CNO
is to balance users’ QoE with production cost. The produc-
tion cost is determined by which and how many qualities a
transcoder has to produce, directly affecting the underlying
CPU or GPU infrastructure needed. A quality that requires
GPU to be produced is much more expensive, as is the case
on actual commercial services like the Amazon Web Services
(AWS), where the leasing price of nodes equipped with GPUs
is up to 15 times higher than of nodes without.
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Figure 3. Comparison of the average score achieved at each execution
scenario for each CNO configuration

Finally, three CNO versions were examined, namely the
NRL, implemented as a greedy algorithm targeting on the
maximization of the a spectator’s QoE, the RL QoE Focused,
implemented as a RL agent with increased weights on its QoE-
based reward component, and a combined RL QoE Cost Rate
version performing joint optimizations between the spectators’
QoE and the overall production costs. These CNO versions
were executed upon three spectator scenarios. Scenario 1
included spectators of high bandwidth and processing power,
Scenario 2 included spectators on the other side of the spec-
trum, i.e., with low bandwidth and processing power, while
Scenario 3 was a mixture of both, also including spectators
with moderate bandwidth. For these experiments, we defined
the score as the QoE sum of all running spectators divided by
the production cost.

VI. RESULTS

This section presents and discusses the results of the exe-
cuted experiments. Figure 3 offers a performance comparison
of each of the CNO configurations, for all three of the
different spectator scenarios, while Figures 4a, 4b, and 4c
present the progress of score through time, for each scenario.
NRL receives the lowest average score in all scenarios, while
RL QoE Cost Rate achieves the highest score. At the same
time RL QoE Focused version is performing well only in Sce-
nario 2, while being marginally better than NRL in Scenarios
1 & 3.

The NRL’s bad performance is due to its sole focus on the
maximization of the spectators’ QoE, without consideration of
the production cost. NRL constantly commands the transcoders
and spectators to, respectively, produce and consume the most
expensive profiles, i.e., profiles that are exclusively produced
by GPUs, as these emit the maximum QoE, without consider-
ing the higher production costs induced by the GPU’s usage,
thus reducing its overall score. For this reason, NRL achieves
its lowest score on Scenario 2, as the GPU’s usage makes no
difference for these - low bandwidth and processing power -
spectators, which cannot keep up with the production under no

(a) Scenario 1: Spectators with high bandwidth and high processing power

(b) Scenario 2: Spectators with low bandwidth and low processing power

(c) Scenario 3: Combination of bandwidth levels and processing power

Figure 4. Observation of score through time
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circumstances. Since these spectators have limited potentials,
the best choice in this scenario would be to consume the low-
cost CPU-produced profiles, and stop production of the more
expensive ones.

Concerning the RL QoE Focused version, its performance
appears almost as bad as the NRL’s performance in Scenarios
1 & 3. It is thought that in both of these scenarios, the
algorithm’s decisions were dominated by the high-bandwidth
and processing power spectators. Hence, in Scenario 3, the
spectators of far inferior capabilities did not effectively affect
the CNO’s decisions. This statement is supported by the good
performance of this version in Scenario 2. Upon detecting
spectators with limited capabilities, the algorithm commanded
that one of the low-cost CPU profiles should be consumed,
thus reducing the overall production cost and increasing score.

Finally, RL QoE Cost Rate, considering the spectators’
QoE and production cost of as two factors of equal importance,
is the most balanced approach and achieves the highest overall
score in all scenarios, as originally expected.

VII. CONCLUSION

The contribution of this work is the implementation and
study on the performance of a CNO, implemented as a
RL agent aiming for the joint optimization of users’ QoE
with respect to the production costs. The suggested CNO’s
operation was validated upon a 3D media platform, in the
form of a tele-immersive interactive multiplayer video game
with live spectators, adopting many of the forthcoming 5G
mannerisms such as supporting dynamic network refinements
and reconfiguration in real-time. Three optimization algo-
rithms were examined, a greedy QoE-focused algorithm, a RL
algorithm prioritizing the QoE maximization and a combined
QoE-and-Cost RL approach. The latter one proved superior in
all executed scenarios, in terms of users’ QoE / production cost
maximization, with QoE-focused RL version being marginally
better than the non-RL greedy implementation as well.
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