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Abstract—In this paper, we evaluate other features different
from the waveforms to classify seismic sources. Classification
of sources of the deep moonquakes is an important issue for
analyzing the focal mechanisms and the lunar deep structures.
It was found that deep moonquakes that occur from the same
source have similar waveforms. Some studies have been conducted
to identify the deep moonquake sources using the waveform
similarities. However, classifying some deep moonquakes using
only the waveforms is difficult due to large noise and the small
amplitude. If we could show that other features different from
the waveforms are effective for classification of deep moonquakes,
we can increase the number of classifiable moonquakes even if
moonquakes include noise and small amplitude of the waveforms.
Therefore, we use other features to classify deep moonquakes
(position and velocity relative to the Earth, Sun, Jupiter, and
Venus, as seen from the Moon). We apply these features to classify
deep moonquakes that are not classified based on only waveforms,
and it is useful to analyze the deep moonquake occurrence
mechanisms. Our experiments showed that the position and
velocity relation between the Moon and the Earth or Jupiter
are effective for classification.

Keywords–Planetary Science; Machine learning; Geophysical

I. INTRODUCTION
The Apollo Lunar Surface Experiments Package (ALSEP)

was deployed on the Moon to investigate the lunar surface, in-
ternal structure and surrounding environment through NASA’s
Apollo missions. The Passive Seismic Experiment (PSE) in the
ALSEP has been performed to observe the lunar seismicity.
The observations revealed that seismic events called moon-
quakes occur on the Moon. All observed data are acquired
and viewed on the Web [1] [2]. The moonquake data are very
important to analyze the lunar internal structure and the focal
mechanisms of moonquakes, even after 40 years since PSE
finished [3] [4].

Earlier studies have revealed that moonquake character-
istics differ widely from those of earthquakes. For instance,
contrary to earthquakes, moonquakes do not occur due to
plate tectonics. Additionally, moonquakes have several types:
’Deep Moonquakes’, ’Shallow Moonquakes’, ’Thermal’, and

’Meteoroid Impact’, which are classified based on the oc-
currence factor or depth of seismic sources. About 13,000
events have been found to date including about 7,300 deep
moonquakes, about 30 shallow moonquakes, and about 1,700
meteoroid impacts. Deep moonquakes account for over half of
all moonquakes.

Deep moonquakes that occurred from the same source
are similar waveforms [5] [6]. Earlier studies have classified
deep moonquakes based on the similarities [7] (sources of
deep moonquakes are labeled as Axx e.g., A1, A6, A200.).
The purpose of this study is the classification of unclassified
deep moonquakes to elucidate the deep moonquake focal
mechanisms. Goto et al. [8] classified deep moonquakes,
specifically examining frequency spectra of deep moonquakes
using machine learning. Machine learning has advantages to
classify deep moonquakes such as automation of analyses and
the great reduction of human cost.

Although the waveforms are effective features to infer
moonquake sources, determination of sources of some moon-
quakes is difficult due to large noise and the small amplitude.
Previous studies have not applied any features other than
the waveforms. Therefore, we specifically examine features
other than the waveforms. If we show that feature such as
velocity is effective for classification of deep moonquake,
classification using a combination of the feature and wave-
forms may increase the number of classifiable moonquakes
even if moonquakes include noise and small amplitude of
the waveforms. Deep moonquakes occur periodically from
the same source related with the tidal stresses [9]–[11]. As
described herein, we extract features from the occurrence time
of deep moonquakes. Then, using machine learning, we verify
the effective features to classify sources of deep moonquakes.
A principal benefit of our approach is that we can infer sources
of deep moonquakes, irrespective of noise and amplitude of the
waveforms.

This paper is organized as follows. Section II presents
a review of related works including moonquake analyses.
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Section III presents a method of feature evaluation. Section
IV presents both experimental and analytical results. Finally,
concluding remarks are presented in the last section.

II. RELATED WORKS
Generally, time differences among arrival times of the seis-

mic phases observed at several seismic stations are available
to determine the moonquake sources. If we cannot use the
time differences to estimate sources due to the noise and small
amplitudes in the waveforms, then similarities of waveforms
are useful to classify sources. In 1970, the moonquakes were
classified manually by visual observation [12].

With the evolution of computers, Nakamura et al. [7]
classified deep moonquakes using hierarchical clustering based
on cross correlation of waveforms. This classified result of
deep moonquakes is cataloged as a standard criterion for
classification in this study. The improvement of the prepro-
cessing methods, which use cross-correlation analyses, enables
us to discover new events and to classify the unclassified
deep moonquakes [13]. Furthermore, the paper written by
Endrun et al. [14] proposed a method for event detection and
classification using a Hidden Markov Model. Goto et al. [8]
developed a web system for visualizing moonquakes consid-
ering waveform similarity using Self-Organizing Map (SOM)
to advance the study of moonquake classification. This study
showed that noise and small amplitudes of the waveforms
affect classification criteria. Therefore, we propose an approach
to classify deep moonquakes, not using the waveforms.

III. METHODS
To verify the features for classification of deep moon-

quakes, we apply Balanced Random Forest [15] extended
from Random Forest [16], which is a representative supervised
learning method. We verify whether seismic sources can be
reproduced or not using Balanced Random Forest.

A. Features
We extract the position (x, y, z), velocity (vx, vy, vz),

distance (
√

x2 + y2 + z2), and the magnitude of the velocity
(
√
vx2 + vy2 + vz2) of each planet (the Earth, Sun, Jupiter

and Venus) relative to the Moon in the IAU MOON coordinate
system, calculated using SPICE [17] at the deep moonquake
occurrence time. We apply the orbit parameters as the features.
The IAU MOON coordinate system is the Moon fixed coor-
dinate system. The z-axis is the North Pole direction of the
Moon. The x-axis is the meridian direction of the Moon. The
y-axis is to the right of the x-z plane.

B. Balanced Random Forest
Random Forest [16] is a classification algorithm that fits

a number of decision tree classifiers on various sub-samples
of the dataset. This algorithm can compute feature impor-
tance. However, Random Forest has a serious problem: the
classifier might overfit with imbalanced data. Generally, when
we apply Random Forest, we assign weights based on class,
with the minority class assigned a larger weight to make the
classifier more suitable for the imbalanced data. However, this
approach can cause over-learning of minority data if the data
are extremely imbalanced. We must apply a method for the
imbalanced data to analyze of deep moonquakes because a
different number of events occurs at each seismic source.

As described herein, we apply Balanced Random Forest
[15], which equalizes the number of samples per class for

TABLE I. NUMBER OF EVENTS AT EACH SEISMIC SOURCE.

Source Number of events
A1 441
A5 76
A6 178
A7 85
A8 327
A9 145

A10 230
A14 165
A18 214
A20 153
A23 79
A25 72
A35 70
A44 86
A204 85
A218 74

each iteration in random forest. The decision tree of Balanced
Random Forest uses a Gini coefficient to find splits. We then
compute the feature importance by calculating the average
reduction ratio of the Gini coefficient in the tree split for each
feature.

IV. RESULTS AND DISCUSSION
In this section, we present the results obtained from appli-

cation of our method to the dataset. The procedures used for
our proposed method are presented below.

• We extract the orbit parameters as the features at the
occurrence time of deep moonquake event.

• We create a Balanced Random Forest classifier for
every pair of seismic sources.

• We verify the relation of seismic sources and the
features based on the classification performance and
feature importance of each classifier.

In these experiments, we applied one-vs.-one, which creates a
classifier for each pair of seismic sources.

As described in this paper, the number of iterations in
Balanced Random Forest is 1,000. Each iteration randomly
selects 30 samples for each class using bootstrap method and
3 features from 8 features. Each iteration tree is implemented
using the scikit-learn [18].

A. Dataset
The number of events in each source is given in Table I.

We chose the seismic sources with more than 70 events in the
lunar event catalog. The used dataset has 16 sources and 2,480
events.

B. Criterion
We used the classification performance and the feature

importance to evaluate the features. We performed 10-fold
cross validation, and used the minimum f-measure in each class
for the classification performance. Due to different number of
seismic events at each source, the minimum score was applied
because the scores depend on the amount of data in each class.
We calculated feature extraction from all classifier-learned data
of the target class without cross validation and the classification
performance and the feature importance among each planet.

C. Classification performance
The average of classification performance for each seismic

source and planet is shown in Table II. ”avg./total”, which is in
the last row, shows the average of all classifiers. The averages
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TABLE II. AVERAGE CLASSIFICATION PERFORMANCE.

Source Earth Sun Jupiter Venus
A1 0.67 0.46 0.55 0.35
A5 0.85 0.6 0.74 0.48
A6 0.78 0.59 0.69 0.5
A7 0.82 0.53 0.7 0.41
A8 0.72 0.48 0.64 0.41
A9 0.87 0.65 0.72 0.46
A10 0.77 0.54 0.67 0.45
A14 0.81 0.57 0.73 0.52
A18 0.8 0.58 0.74 0.48
A20 0.78 0.53 0.69 0.46
A23 0.88 0.65 0.73 0.45
A25 0.83 0.54 0.75 0.45
A35 0.76 0.52 0.68 0.46
A44 0.79 0.59 0.74 0.54
A204 0.8 0.52 0.72 0.44
A218 0.76 0.5 0.64 0.45

avg./total 0.79 0.55 0.70 0.46

TABLE III. RANKING OF CLASSIFICATION PERFORMANCE.

Source Earth Sun Jupiter Venus
A1 16 16 16 16
A5 3 3 4 4
A6 10 4 11 3
A7 5 11 9 15
A8 15 15 14 14
A9 2 2 7 6
A10 12 9 13 11
A14 6 7 5 2
A18 7 6 2 5
A20 10 10 10 8
A23 1 1 6 12
A25 4 8 1 10
A35 14 13 12 7
A44 9 5 2 1

A204 8 12 8 13
A218 13 14 15 9

of all classifiers are 0.79 for the Earth, 0.70 for Jupiter, 0.55
for the Sun, and 0.46 for Venus. A classifier using those
features for the Earth has the highest classification performance
presented in this paper. Among our selected seismic sources,
the classifier for A23 using the features for the Earth has the
highest classification performance reported in this paper. The
classification performance ranking is shown in Table III. Table
III shows that the classifier for A1 has the lowest classification
performance reported herein. For the Earth and Jupiter A5,
A23, and A25 are classified very well within the top 6.

The number of classifiers with classification performance
of 0.8 or more are 70/120 (number of classifiers is 120) for
Earth, 30/120 for Jupiter, 5/120 for the Sun, and 0/120 for
Venus in Table II. These results demonstrate that an orbit
parameter of the Earth and Jupiter relative to the Moon is
effective for deep moonquake classification. Particularly, the
features based on the Earth are the most effective. As described
in previous papers, this fact indicates that the tidal stress caused
by the Earth in the lunar interior can affect the occurrences of
deep moonquakes.

The features based on the Sun and Venus are ineffective,
as show in Table II. These results show that some features
based on the Earth and Jupiter are effective to classify seismic
sources, nonetheless some features based on the Sun and Venus
are not. There are some sources, such as A5, A23 and A25,
which are easy to classify by using orbit parameters. A subject
of future work is analysis of why these features contribute well
to the classification or not.

TABLE IV. FEATURE IMPORTANCE FOR EACH SEISMIC SOURCE:
EARTH.

Source x y z vx vy vz Distance Velocity
A1 0.13 0.11 0.13 0.11 0.13 0.16 0.14 0.09
A5 0.14 0.1 0.11 0.13 0.16 0.12 0.17 0.07
A6 0.14 0.12 0.13 0.12 0.14 0.14 0.14 0.08
A7 0.12 0.14 0.17 0.13 0.12 0.12 0.12 0.08
A8 0.15 0.12 0.12 0.11 0.14 0.12 0.15 0.09
A9 0.09 0.12 0.14 0.13 0.1 0.25 0.09 0.09

A10 0.14 0.11 0.11 0.11 0.14 0.14 0.15 0.09
A14 0.12 0.14 0.12 0.14 0.12 0.14 0.13 0.09
A18 0.12 0.13 0.12 0.13 0.13 0.16 0.13 0.09
A20 0.11 0.13 0.15 0.12 0.12 0.14 0.12 0.12
A23 0.08 0.11 0.23 0.12 0.08 0.21 0.08 0.08
A25 0.1 0.17 0.09 0.18 0.11 0.15 0.12 0.07
A35 0.11 0.15 0.12 0.14 0.11 0.15 0.11 0.1
A44 0.11 0.14 0.17 0.14 0.11 0.14 0.11 0.09
A204 0.15 0.14 0.1 0.14 0.14 0.11 0.13 0.08
A218 0.14 0.13 0.13 0.13 0.13 0.11 0.13 0.09

TABLE V. FEATURE IMPORTANCE FOR EACH SEISMIC SOURCE:
SUN.

Source x y z vx vy vz Distance Velocity
A1 0.12 0.12 0.13 0.12 0.12 0.14 0.13 0.13
A5 0.12 0.13 0.12 0.13 0.12 0.14 0.12 0.12
A6 0.12 0.12 0.12 0.12 0.12 0.14 0.13 0.13
A7 0.12 0.12 0.13 0.12 0.12 0.14 0.13 0.13
A8 0.12 0.12 0.13 0.12 0.12 0.13 0.13 0.13
A9 0.12 0.12 0.13 0.12 0.12 0.14 0.14 0.12

A10 0.12 0.12 0.13 0.12 0.12 0.14 0.13 0.13
A14 0.12 0.12 0.13 0.12 0.12 0.14 0.13 0.13
A18 0.12 0.12 0.13 0.12 0.12 0.14 0.13 0.13
A20 0.12 0.12 0.12 0.12 0.12 0.13 0.14 0.14
A23 0.12 0.12 0.13 0.12 0.12 0.14 0.13 0.12
A25 0.12 0.12 0.12 0.12 0.12 0.14 0.13 0.12
A35 0.13 0.11 0.13 0.11 0.13 0.13 0.13 0.13
A44 0.12 0.12 0.13 0.12 0.12 0.13 0.14 0.13
A204 0.12 0.12 0.12 0.12 0.12 0.14 0.14 0.12
A218 0.12 0.13 0.13 0.12 0.12 0.13 0.12 0.12

Table II and Table III show that orbit features are useful
for classification of deep moonquakes as well as waveforms
studied in an earlier paper [7]. As a result, our experimental
results show that orbit features can classify deep moonquakes.
Therefore, when we try to classify unclassified deep moon-
quakes or moonquakes with noise and small amplitude of
the waveforms, the orbit features are effective to classify
the moonquakes. In addition, the relation between the Moon
and other planets includes some knowledge to analyze the
occurrence of deep moonquakes.

D. Feature Importances
The average of feature importances in each seismic source

for each planet are shown in Table IV, Table V, Table VI, and
Table VII. Among all lists, vz of the Earth in A9 based on
the Earth is the highest score. Also, z of the Earth in A23
based on Earth is the second highest score. The velocity of
the Earth in A5 is the lowest score. In Table IV, the score
related to velocity is low in all sources. The score difference
in all sources is small in Table V and Table VII. Also, x and
vy of A204 are the highest scores in Table VI. The feature
importances of distance and velocity are low in all sources in
Table VI.

We discuss a reason of high feature importances related to
vz of the Earth in A9 and z of the Earth in A23. Figure 1 and
Figure 2 are box plots that present values of the feature for
each seismic source. Figure 1 shows that distribution of the
position in the z coordinate at occurrence time of A23 events
is from about -45,000 km to about -20,000 km. That of A7
events is from about 0 km to about 50,000 km. Other sources,
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TABLE VI. FEATURE IMPORTANCE FOR EACH SEISMIC SOURCE:
JUPITER.

Source x y z vx vy vz Distance Velocity
A1 0.14 0.14 0.13 0.14 0.14 0.12 0.1 0.1
A5 0.18 0.13 0.11 0.13 0.17 0.1 0.09 0.09
A6 0.14 0.15 0.13 0.14 0.13 0.12 0.1 0.1
A7 0.12 0.16 0.13 0.16 0.13 0.11 0.09 0.09
A8 0.14 0.15 0.13 0.15 0.14 0.11 0.09 0.1
A9 0.13 0.17 0.12 0.17 0.13 0.11 0.09 0.09
A10 0.13 0.16 0.12 0.16 0.13 0.11 0.09 0.09
A14 0.13 0.16 0.12 0.17 0.14 0.11 0.09 0.09
A18 0.16 0.14 0.12 0.14 0.17 0.11 0.09 0.09
A20 0.13 0.14 0.14 0.14 0.14 0.12 0.1 0.1
A23 0.17 0.14 0.12 0.14 0.17 0.11 0.09 0.08
A25 0.14 0.17 0.11 0.18 0.14 0.1 0.08 0.08
A35 0.13 0.15 0.13 0.15 0.13 0.13 0.09 0.09
A44 0.14 0.15 0.15 0.15 0.14 0.1 0.09 0.09

A204 0.17 0.13 0.12 0.13 0.18 0.1 0.08 0.09
A218 0.15 0.13 0.13 0.13 0.16 0.11 0.09 0.1

TABLE VII. FEATURE IMPORTANCE FOR EACH SEISMIC SOURCE:
VENUS.

Source x y z vx vy vz Distance Velocity
A1 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.12
A5 0.13 0.12 0.12 0.12 0.13 0.13 0.12 0.12
A6 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.12
A7 0.12 0.12 0.14 0.12 0.13 0.13 0.12 0.12
A8 0.12 0.12 0.13 0.13 0.12 0.13 0.12 0.12
A9 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.12
A10 0.12 0.12 0.13 0.12 0.12 0.14 0.12 0.12
A14 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.12
A18 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.12
A20 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.12
A23 0.12 0.12 0.14 0.12 0.13 0.13 0.12 0.12
A25 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.12
A35 0.12 0.12 0.13 0.12 0.13 0.13 0.13 0.12
A44 0.12 0.13 0.13 0.13 0.12 0.13 0.12 0.12

A204 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.12
A218 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.12

such as those of A1, A8, and A10, have a wider range than
A23 or A7. Conversely, Figure 2 shows that the distribution
of the velocity in the z coordinate at occurrence time of A9
events is from about 0.06 km/s to about 0.13 km/s. That of A5
is from about -0.13 km/s to about -0.02 km/s. Other sources,
such as A8, A20, and A35, have a wider range than A9 or A5.

Figure 1 and Figure 2 show differences in the distribution
of the features for each seismic source. We can show that the
features with high importance have a narrow distribution and
that seismic sources have features which have high feature
importances; A1 does not have these features.

Moreover, the position and velocity in z coordinate at
occurrence time of each seismic event in a few sources are
shown in Figure 3 and Figure 4. Figure 3 shows that fluctuation
of z position at occurrence time of A23 events is small through
the observation period and that the occurrence frequency of
A23 from about 1975 to about 1976 is less frequent than
in other periods. The distribution of z position at occurrence
time of A1 events changed from about 1973 to about 1975.
Conversely, Figure 4 shows that fluctuation of z velocity at
occurrence time of A9 events is small through the observation
period. The distribution of z velocity at occurrence time of A1
events changed from about 1973 to about 1975.

The results show that there is a time variation of the fea-
tures for each source. Therefore, the classification performance
of A1 might be improved if features with time variation could
be considered.

Next, we discuss the velocity of the Earth and the distance
of Jupiter as examples of the features with low feature im-

A1 A5 A6 A7 A8 A9 A10 A14 A18 A20 A23 A25 A35 A44 A204A218
seismic sources of deep moonquakes
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Figure 1. Box plots showing the position of z coordinate for each seismic
source,

where red line is the median, and the box is a value of 25%–75 %, where
top and bottom bars are the maximum and minimum, and ”+” is an outlier,

which is more than 1.5 times the interquartile range.

A1 A5 A6 A7 A8 A9 A10 A14 A18 A20 A23 A25 A35 A44 A204A218
seismic sources of deep moonquakes
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Figure 2. Box plots showing Earth velocity of z coordinate for each seismic
source.

portance. Figure 5 and Figure 6 are box plots that indicate
values of these features for each seismic source. Figure 5 and
Figure 6 show that the low feature importances are caused by
small difference among values of the features for each seismic
source.

Time variations of the velocity of Earth and distance of
Jupiter are presented in Figure 7 and Figure 8. Figure 7 shows
that the velocity of Earth greatly varies with time. Figure 8
shows that the period of distance is about 1 year. Figure 7
and Figure 8 show that it is difficult to extract tendencies of
the features because, this time, the variation is very different
from Figure 3 or Figure 4. These results show that we may be
able to improve classification if we apply methods and features
considering the time variation or periodicity.

E. Methods and Features
Using Balanced Random Forest, we easily calculated the

feature importance in addition to the classification perfor-

54Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia



1970 1971 1972 1973 1974 1975 1976 1977
date

60000

40000

20000

0

20000

40000

60000

z 
[k

m
]

A1
A23

Figure 3. Time series of Earth position of z coordinate for each seismic
source.
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Figure 4. Time series of Earth velocity of z coordinate for each seismic
source.

mance. As a result, some orbit parameters are useful for
the classification of deep moonquakes. However, we did not
do fine-tuning to improve the classification performance. We
need to apply other machine learning methods, fine tuning of
parameters, and waveforms to classify more precisely.

We avoided analyzing all features to limit multicollinearity.
Therefore, it is difficult to declare decisive features to charac-
terize seismic sources. Additionally, in this paper, it is difficult
to estimate causal relationship.

Accordingly, we must verify new features or preprocess
features with multicollinearity considering features leading to
elucidation of the causes of deep moonquakes. However, the
features in our approach are effective for new analyses and
for creating knowledge of experts. Our findings show the
causal relations between seismic sources and outer space for
occurrence of deep moonquakes.

V. CONCLUSION
This study evaluated the spatial and temporal features for

classification of deep moonquake sources using Balanced Ran-
dom Forest. The findings reported in this paper are presented

A1 A5 A6 A7 A8 A9 A10 A14 A18 A20 A23 A25 A35 A44 A204A218
seismic sources of deep moonquakes
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Figure 5. Box plots showing Earth velocity for each seismic source.
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Figure 6. Box plots showing the Jupiter distance for each seismic source.

below.
• Seismic sources are classifiable using temporal and

spatial features without using the waveforms used in
conventional classification.

• Results of the classification performance using orbit
parameters of objects in our Solar System (Earth, Sun,
Jupiter, and Venus) suggest that the Earth orbit param-
eter is the most effective feature among them. The
Jupiter orbit parameter is effective for classification
of some seismic sources.

• Features of seismic sources with low time variation
have high feature importance.

Our experimental results show that the orbit features are effec-
tive when we try to classify unclassified deep moonquakes or
moonquakes with noise and small amplitude of the waveforms.
These findings are expected to be useful for new analyses and
for knowledge creation by experts. Further progress of this
study can generate new knowledge about deep moonquake
occurrence mechanisms. Future works are described below.

• Verification considering correlation and confounding
among some features.
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Figure 7. Time series showing Earth velocity for each seismic source.
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Figure 8. Time series of the Jupiter distance for each seismic source.

• Analysis considering time variation and interplanetary
relations.

We can address future issues and problems from the standpoint
of planetary interpretation.
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