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Abstract—Recognition of the facial visual properties 

(physiognomy) and its static and dynamic behavioral patterns 

(action units) has proved to be an important part in many 

multimedia retrieval and analysis applications. Apart from the 

previous studies, where methods to extract part of the action 

units from an image or video have been developed, in this 

ongoing research project we work on a model for more 

accurate and detailed facial activity semantic description 

adaptable to new behavioral patterns and real conditions. In 

this paper, we address challenges of building this model and 

suggest its basic multilevel concept. On the low level, we 

propose using wavelet-based multiresolution representation of 

video data. On the middle level, several multiclass classifiers 

are being examined for the purpose of attribute learning, and a 

custom multiple metric is provided. On the high level, facial 

elements, behavioral patterns and their attributes can be 

connected and further extended using the ontologically-

compliant architecture of this model. On the abstraction layer, 

all three levels of this model are seamlessly integrated via 

graph-based hierarchies of metavertices, metaedges and their 

mappings. Having this structure, the proposed model can be 

trained and employed to solve the problems of human behavior 

retrieval and human-computer multimodal interaction more 

efficiently. Current results, however, reveal that to be reliable, 

this model requires further research studies and their 

comprehensive experimental evaluation. 

Keywords-facial behavrior recognition; semantic annotation; 

video multiresolution representation; metagraph modeling 

I.  INTRODUCTION 

Human appearance and nonverbal behavior, particularly 
facial visual properties (physiognomy) and its static and 
dynamic behavioral patterns (action units), convey a lot of 
overt and covert data [1, 2]. Mining of these data is inherent 
to tackle the problems of human intelligent monitoring and 
facial expression analysis more efficiently. It has also proved 
to be useful in psychophysiological and neurological 
diagnosing, e.g., autism, schizophrenia and other disorders 
[13], in synthesis of virtual agents [28], examining 
correlation between face asymmetry and brain disharmony 
[14] and enhancing human-computer multimodal interaction 
as a whole. If this mining is automatic, accurate and detailed, 
then its results – objective data or ground-truth – could be 
supplied to an expert, clinician or some logical rule-based 
model for the purpose of making important real-life 

decisions, e.g., preventing car crashes caused by drowsiness, 
as well as for entertainment. 

The automatic behavior recognition engine could also be 
a core component of either general-purpose [15] or more 
specific [16, 17] multimedia annotators. The primary intent 
of this type of software is to provide means, usually via 
graphical user interface, to spatiotemporally bind annotations 
with other modalities, like audio, and with context, which 
may have a huge impact on interpreting behavior and making 
a more reliable decision [2]. 

This research is aimed to further develop previous studies 
on the automation of facial behavioral patterns recognition 
(e.g., [3-5]) and is inspired by the works on wavelet 
multiresolution decomposition [6], Gabor and Dual-Tree 
complex wavelets [7-9], on graph-based models [10, 11], 
attribute learning [12] and body segmentation [27]. 

The contribution of this paper is a model recognizing 
more action units (AUs) based on the Facial Action Coding 
System (FACS) [21, 23] and able to extract the new ones, 
including body AUs [24] and those defined by an expert. 
Additionally, this model is integral on the abstraction layer 
and expected to provide easier learning procedures, return 
semantic annotations improving expert-computer interaction 
and produce more precise results in more real conditions.  

The goals of this paper are to address challenges of the 
development of this model, suggest its basic concept, give its 
basic experimental results and propose the directions of its 
further development. 

In Section 2 of this paper, the four-level structure of the 
proposed model is introduced. In Section 3, we discuss the 
alphabet of human behavioral patterns and facial action units 
in particular, and suggest extracting only a specific set of 
attributes of these actions. Section 4 is devoted to the low 
level of our model, in which general properties of a 
metagraph, its vertices and edges are presented. In Section 5, 
the ways of training our model are shortly overviewed and 
basic evaluation results are given and discussed. 

II. MODEL OVERVIEW 

At this stage of research, we do not concern context-
based video retrieval and real-time requirements, as well as 
cluttered environments and multiple persons, so that this 
model accepts videos (or image sequences) with only one 
human on a simple background as in the databases [18, 19, 
20]. But, this model should be adaptable to real application
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Figure 1.  Model overview. Metagraph multilevel representation and relationship between human kinematics and video representation. The WT is faster 

calculated in the frequency domain applying the convolution theorem and the inverse Discrete Fourier Transform (IDFT); ˆ denotes the Fourier transform.

environments. Our model’s structure is a three-level pipeline 
usually implemented in a visual recognition and 
understanding system plus a fourth, integration level (Fig. 1). 

(1) On the low level, it maps an input video signal to a 
finite combination of 3D (or 2D) complex wavelets, a 
naturally multiresolution way to describe an N-dimensional 
non-stationary signal, such as a video. In addition to 
capturing changes in texture on different scales and 
orientations, a number of geometric and color properties can 
be computed. 

(2) On the mid-level, we investigate several multiclass 
machine learning methods, including the unsupervised ones, 
such as k-means, and supervised, such as Random Forests 
(exemplified in Fig. 1), and suggest a multiple weighted 
metric to separate classes. The classes to be learned are facial 
primitives, attributes of the AUs as well as more abstract 
entities. 

(3) On the high level, we propose describing facial 
primitives, behavioral patterns and their attributes merging 
existing human ontologies with our own being created on the 
basis of FACS, a broadly accepted facial coding scheme. 

(4) To provide integrity on the abstraction layer, that is 
to encapsulate the three above levels making a model more 
flexible and scalable, metagraph-based representation of 
these levels is introduced.  

Graphs and their extensions allow intuitive describing of 
hierarchical data and processes. Furthermore, graph-based 
models often give competitive results in vision applications, 
e.g., [11], [22]. One of their extensions is a metagraph, 
proposed in [10], which is a universal structure to describe 
properties (attributes), logical relations and complex 
mappings and, therefore, may be effectively employed to 
represent humans and their behaviors on the different levels. 

One of the benefits of this approach is that since patterns 
recognition and description are two tightly related processes, 
detailed comprehensive description should boost the 
recognition of the patterns and vice versa. Even though the 
problem of signal reconstruction is not directly related to this 
study, it might be extremely important for further 
developments. 

On the other hand, among the weaknesses of this model 
is its computational overload, and it is mostly the low level 
where optimization techniques should be applied. In spite of 
this cost, our experience has demonstrated that the benefits 
of accurate automatic description significantly overweight 
this negative side effect. In fact, unreliable recognition 
results mean double work for an expert-annotator: checking 
plus editing.  In any case, the dependency of the accuracy of 
the results on the extent of detailing should be evaluated. 

III. CLASSIFICATION OF BEHAVIORAL PATTERNS 

Classification of human nonverbal patterns is challenging 
to be complete because there are many specialized versions, 
e.g., [32]. Nevertheless, there is a quite reliable coding 
system for a face, FACS, and a more recent development for 
a body, The Body Action and Posture Coding System (BAP) 
[24], which represent behavioral patterns as combinations of 
simple AUs and their intensities (A-E) in case of a face. 
These AUs can be further combined to extract more complex 
patterns, such as facial expressions in [5]. 

Training a classifier for each action unit separately is 
time consuming and is not straightforwardly adaptable to 
new action units. To remedy this, based on existing coding 
systems and human anatomy and kinematics, we can define 

all action codes using a more primitive set(s): υ, c, , 

Δvis, where υ – a facial primitive, c – change of its 
centroid (translation), or other measure of spatial relocation, 

 – change of its spatial orientation (rotation) or movement 
direction, Δvis – change of its visibility (as in AUs 43, 45, 46 
and others).  The latter argument must also capture 
appearance and disappearance of texture features like 
furrows, e.g., for AU 4 (Brow Lowerer) in the glabella area. 
To reduce biases in these changes, their values must be 
normalized and compared to a reference state. This state 
should include the current orientation and position of an 
upper level node (in our case, it is a face or a head), person’s 
individual features and context.  

Movement directions  can be quantized in the human 
anatomic planes: left-right (intersection of the F and T 
planes), superior-inferior (intersection of the F and S planes) 
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and anterior-posterior (intersection of the T and S planes), 
where F, T, S – frontal (coronal), transverse (horizontal) and 
sagittal (medial) planes respectively (Fig. 1). 

The intensity of an action unit is a measure of how 
distant is a certain facial primitive from a reference position, 

which may be weighted in c and how much texture is 
changed, which may be weighted in Δvis. 

To quantize υ, facial primitives should be divided into 
smaller ones and include teeth, tongue and other elements 
involved in some facial activity [21]. To provide more 
flexibility, though, in addition to verbal description the facial 
primitives should be also defined as a collection of geometric 
and texture attributes.  

Although, some complex action units, e.g., AU 9 – Nose 
Wrinkle, AU 23 – Lip Tightener, AU 28 – Lip Suck, AU 32 
– Bite, AU 37 – Lip Wipe, etc., and their intensities (A-E) 
are laborious to be expressed in this way, this representation 
is more complete from a physical point of view and it is still 
possible, even though one of the hardest, yet tractable, 
challenges seems to be quantization (sampling) of the 

parameters υ, c, and Δvis. 

IV. METAGRAPH-BASED MODEL 

A. General Model 

So far, metagraphs have no unified theory and in this 
study we adhere to the definition close to [10]: 

 MG = V, E, vi V, ek E, 

where MG – a metagraph, V – a set of vertices 
(metavertices), E – a set of edges (metaedges), vi – a vertex 
of the metagraph and ek – its edge. In contrast to simple 

graphs, the vertices are defined as vi = {vm},{ek}, vm V, 
and can be in turn considered to be a metagraph, so these two 
terms are interchangeable. We should also distinguish 
metagraphs from other graph extensions. Compared to 
hypergraphs, for example, vertices of a metagraph can 
include both vertices and edges, forming a logical pyramid (a 
hierarchy). Next, metagraphs can have their own application 
specific properties. In our study, this pyramid is limited to a 
video pixel on the one side and by a spatiotemporal voxel 

M, N, T with facial activity on the other side. In other 

words, each metavertex vi
j
 resembles an abstract basic type, 

instances of which include, but are not limited to, a single 
video pixel; group of interest pixels joined in time, space or 
other domains (superpixels); input video as a whole, where j 

– is a level of a metavertex  vi
j
, and:  
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This abstraction is very convenient because one can work 
with metavertices in the same fashion as with base abstract 
types in programming frameworks, i.e., manage objects 
being unaware of their exact content and values of 
properties. 
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Figure 2.  Connection between metagraph-based and wavelet 

multiresolution reprsentation. For simplicity parental relationships and all 
edges are not visualized. 

In this research, first, a video signal s(x,y,t) defined on 

M, N, T is represented as a set of abstract metavertices, then 
mappings to several domains are iteratively constructed in a 
partially supervised way (see Section 5). The next 
subsections of this section contain details about the vertices 
and edges of the proposed metagraph and their properties. 

B. Metavertex 

Each metavertex has values in at most four domains: 
spatial, wavelet, color and semantic. These values are 

essential for further classification of υ, c, and Δvis. 

1) Spatial domain (S) 
From the kinematics point of view, a human, as well as a 

human face, can be approximated to a set of objects, the 
coordinates of their centers of mass and three angles in 
space. Instead of mass, we can only compute a geometric 
center (centroid).  Important is that the centroid of a more 
complex object is a linear combination (an average) of its 
lower level elements. 

2) Wavelet (W) 
 The value of a metavertex in the wavelet domain must 

reflect behavioral features in the spatial, temporal and 
frequency domains, where raw video data are difficult to be 
analyzed. An input signal is transformed to a higher 
dimensional space, in which video features are more 
discriminative. 

There is no certain algorithm to choose a transform, also 
referred to as an image/video descriptor or visual words, 
since there are a couple tradeoffs to consider. 

On the one side we want a smooth (continuous) and shift, 
rotation and scale invariant transform with optimal signal’s 
time and frequency resolutions (limited due to the 
uncertainty principle) and perfectly reversible, on the other – 
we want a fast, non-redundant transform requiring less 
computational power. As was stated above, more accurate 
results are more valuable for our purpose, and, moreover, we 
provide optimization techniques. Thus, we suggest to be 
focused on the wavelet representation of a video signal for a 
couple of reasons. First, the wavelet transform (WT) is, 
generally, a type of a complete, i.e., reversible, transform [7] 
and does not lose information about facial behavior. Second, 
the wavelet theory provides methods to analyze a signal, 
such as a video or an image, at different scales, called 
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multiresolution analysis [6], which is a crucial ability for our 
metagraph-based model.  

Numerous equations of 1D, 2D and 3D wavelet mother 
functions (wavelets), their Fourier transforms (FTs) and the 
wavelet criteria can be found in various forms in [6-9, 25], 
and  are  omitted  here  due  to their lengthiness. A fast FT 
(FFT) and its inverse (IDFT) allow computing the WT faster 
applying the convolution theorem (Fig. 1). Gaussian-
modulated complex exponentials, such as the Morlet and 
Gabor functions, are preferable to be employed as a series of 

wavelets ys, since they are continuous complex wavelets 
with optimal temporal and frequency resolutions [7], as well 
as some extensions of B-splines. We suggest binding each 
level j of the metagraph pyramid with a wavelet scaling 

(dilation) factor s (in case of 3D it is sx,sy,st) by definition 

included into ys. Together with (2) we obtain: 

 vi
j
,ys V

j
j-1
 

where V2
j
 – a space of approximate mappings, O2

j-1
 – a 

complementary to V2
j-1

 space of detailed mappings; a power 
of 2 means a dyadic WT [6]. Thus, the pyramidal structure of 
our metagraph is fixed, but the values of its vertices are 
assigned in respective spaces (Fig. 2). 

In other words, a video volume M, N, T with facial 
activity is expressed as a sum of a “blurred” facial video plus 
detailed facial parts plus more detailed features of the facial 
parts and so forth up to single pixel values. More general 
approximate areas around the facial features (areas around 
forehead, nose, eyes, lips, etc.) and coarse movements (head 

shaking) can be detected and described on the high scales s 
(low temporal and spatial frequencies and level j), while 
smaller elements (eyes, iris, mouth corners, etc.) and subtle 
movements (lip twitching, tics, eyes movements) can be 

detected and described more precisely on the lower scales s 
(higher frequencies and level j). In practice, though, we do 
not need to build both V2

j
 and O2

j
 spaces on each level j, and 

as a result, can make scaling of the WT adaptive: 

1. Apply the WT with high σ values to the whole video 
(or one frame) and scale down until a face low-
frequency pattern is not found on the video. 

2. Analogously apply the WT with lower σ values only 
to the facial video voxel (or image block) and scale σ 
down until distinct facial elements are not classified. 

3. Recursively repeat step 2 with lower s values only 
to specific video voxel and further scale down 
adaptively until all details are not extracted. 

The exact s values depend on the facial primitive and 
should be empirically estimated. For instance, they can be 
calculated on the basis of the entropy-based information 

gain, similar to [27]. Orientations  of the wavelets might 
also vary in a similar sense. 

To keep such strengths of the complex WT (CWT) as 
approximate shift invariance and directional selectivity, 
while acquiring the ability of perfect reconstruction of the 
real-valued discrete WT (DWT), the Dual Tree Complex 
Wavelet transform (DC CWT) could be employed at no extra 
computational cost compared to the CWT [8]. For both the 

CWT and DC CWT redundancy is 4:1 for 2D and 8:1 for 
3D, whereas the DWT has no redundancy. 

3) Color domain (V)  
Data in the color domain are useful for facial 

segmentation. If color details are disregarded in wavelet 
coefficients, a separate color scheme must be kept, e.g., color 
histogram. Otherwise, it must be derived from the wavelet 
coefficients computed for each color channel independently. 

4) Semantic domain (S) 
The semantic structure of our model should mirror the 

metagraph pyramidal structure except the semantically 
meaningless, abstract metavertices, such as some facial 
regions. Semantic (verbal) terms are necessary for a more 
natural interaction between a clinician and lower level parts 
of the model. We suggest integrating existing ontologies, 
such as Virtual Human Ontology, Foundational Model of 
Anatomy Ontology and Mental Functioning Ontology to 
define facial AUs and more complex patterns based on a 
primitive set defined in Section 3. 

C. Metaedge 

A metaedge is an attributed multiple edge wrapping 
distances between two metavertices vm 

j
 and vk 

j
 of the same 

level j in respective domains: 

 e(vi
j
v

j
) = rS

,rW
,rV

,rO
 , 

where e(vi
j
,vk

j
) must satisfy the three distance axioms, 

described in [26]. In addition, e(vi
j
vk

p
) =  for j ≠ p, which 

means that a metaedge can connect only vertices within one 
level of hierarchy (one scale).  

The distance in the spatial domainrS
 is the Euclidean 

distance between the centroids of two vertices in the (x,y,t) 
space. The distance in the wavelet and color (visual) domains 

rW
, rV

 can be one of the distance learning metrics or similar 

torS
, because the values both in the wavelet and visual 

domains are already in the feature space. However, 
compared to the spatial one, in the case of nonlinear wavelets 
it is less trivial to compute the distance between metavertices 
of a lower level j (e.g., face) as a combination of the 
distances between the ones of a higher level j (e.g., eye, lips, 

nose). The distance in the semantic domain rO
 measures the 

difference between the entropies of two vertices, as proposed 
in [26]. 

D. Metagraph Projection  

Metagraph projection can be perceived as convolution to 
a metagraph of a lower dimensional space, where the values 
of its projected metavertices are computed separately for 
each of the four domains either on the basis of its children 
vertices or independently:  

 vi
j,d

 = f 
d 
(vi

j+1,d
), 

where d – is one of the four domains S, W, V and O. The 
cumulative value of a metavertex is a weighted sum of the 
children values in the four domains:  
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Similarly, the cumulative value of an edge between two 
metavertices is a weighted sum of the edges in the four 
domains: 
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The weights wv
d
 and we

d
 control the impact of a value and 

distance (edge) in a certain domain d on the overall result. 

E. Metagraph construction 

In this work, construction of a metagraph, which 
represents our model, is conducted in a frame-by-frame 
way, however, there are no limitations to implement a 
voxel-by-voxel way.  

First, the frame is divided into 2-4 square blocks 
depending on the frame size. These blocks automatically 
become the lowest level (highest in terms of a hierarchy) 
blocks. For each such block we then apply the WT adaptive 
algorithm (see above). After each its step the blocks are 

further divided into 2-4 blocks together with lowering s. In 
result, we obtain the metagraph MG1, in which some 
branches of its hierarchy become deeper, whereas for some 
of them this algorithm interrupts after two-three iterations. 
Simultaneously, for each metavertex independently on its 
level we calculate: in the spatial domain, its centroid 
relatively to the lower (upper in terms of a hierarchy) level 
metavertex and positions of the local maxima of the 

responses to the wavelet filters ys; in the wavelet domain, 

a distribution of the sums of these responses for different ; 
in the color domain, a color distribution in the HSV color 
space. Currently, values in the semantic domain we keep 
blank (wv

O
 = 0) and to evaluate preliminary results of our 

model we also assign constant values to the weights in other 
domains: {we

S
, we

W
, we

V
, we

O
 } = {1, 1, 0.5, 0}. Clearly, their 

assignment requires more investigation, and in experimental 
studies various influences of each domain on the correct 
result depending on a metavertex and its level have been 
observed. 

The next frame is processed analogously in order to 
construct the metagraph MG2. In addition, for each its vertex 
we must determine whether it matches to the vertex at the 
same position in MG1 or does not. In the latter case, we 
calculate the difference in terms of the transformations in 

respective value domains. Translation (c) is calculated by 

the shift of the local maxima of the responses, rotation () 
– by the difference in sums distributions, Δvis – by 
appearance (disappearance) of new (old) strong responses. 
Scale change is a change of the metavertex level in the 
metagraph hierarchy. However, scaling less than two times 
is not detected due to the dyadic WT we applied, whereas in 
practice, the scaling varied in a broader range (although, 
mostly in the range of 1.1 – 2 times), so update of our WT’s 
power base should be considered. 

AU = change (transformation) 

between metagraphs

In
te

n
si

ty

Time
MG1

MG2 MGt

t

} } ...

 
Figure 3.  An action unit in terms of metagraphs. Dashed is a possible 

transformation to the same metagraph (MG2). 

Thus, for each frame, we construct a metagraph. All the 
metagraphs, excluding the first one are temporal, which 
means that when the difference between the first (MG1) and 
the other (MGt) metagraphs is found (see (8) below), the 

transformations (c, and Δvis) to get this difference are 
clustered to appropriate metavertices of (MG1). 

For each of the vertices of the metagraphs for the 
following frames we try to find the transformations from 
either the previous frame only, or from some combination of 
the previous frames. 

In this sense, an action unit is a transformation of a 
certain metavertex corresponding to a facial element (Fig. 
3). Formally, having only one frame in the middle of the 
frame sequence we cannot certainly infer the current AU, 
previous states must be known to avoid ambiguities. 

Facial activity at some timestamp t is then a set of action 
units’ intensities (a set of transformations) at this timestamp. 

V. TRAINING AND EVALUATION OF THE MODEL 

Training of our model implies solving the following 
optimization problem: 

 ),(minarg 1
,,

t
Tww

MGMGe
i

d
e

d
v

 

where MG1 – a metagraph of the first frame, MGt – a 
metagraph of the frame at the timestamp t, Ti – a 
transformation (mapping). Thus, we need to find such 
mappings and weights, which can transform MG1 to some 
MG*1, so that e(MG*1, MGt) would be a minimum. In 
general, this is a complex graph matching problem. In this 
study, to solve it we assume small changes between frames 
and as a result, metavertices at the same positions do not 
differ too much and can be matched more confidently. 

Our solution of (8) is composed of two trainings: training 
the model to recognize attributes and to recognize AUs by 
these attributes. 

A. Learning the attributes 

The first training is inspired by the works on attribute 
learning, such as [12], as one of the ways to deal with the 
zero-shot learning problem emerged in this research. In our 
case, it means that no training data for new action units is 
available. To classify a newly defined AU, the model has to 

be able to multiclassify its attributes: υ, c, and Δvis (see 

Section 3) during t, given metavertices and metaedges 

associated with a video voxel x,y,t (or, at least, two 
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frames) (Fig. 1). Consequently, we need to implement either 
a supervised or unsupervised multiclass learning method; 
afterwards, feed the model with training attributive data. In 
both approaches, weights must be first assigned manually or 
randomly before a training procedure for the cumulative 
value (6) and/or for the edge measure (7).  

1) Supervised mode 
The advantage of Random Forests (exemplified in Fig. 1) 

among supervised multi classifiers is that their trees are 
hierarchical by definition and might be associated with the 
hierarchy of our model further integrating it. Additionally to 

assigning the weights in (6), thresholds  for every node of 
each tree must be also assigned, e.g., as in [27], and then 
respectively compared with projected values. Training 
assumes iterative changing of these weights and thresholds 
for every node of each tree until accuracy is increasing, the 
trees are not too deep and the gain in information is not 
sufficient. 

2) Unsupervised mode 
Among unsupervised methods, k-means, self-organizing 

maps and other classifiers can be trained. In any case, 
training assumes an iterative grouping of metavertices with 
smaller distances (7) between each other closer until no 
improvement (in the sense of some error function) can be 
reached. The advantage of these methods is a less tedious 
training process, since no labeling is required; and facial 
segmentation can be more objective if a metric is properly 
chosen, because a human expert is less involved.  

B. Learning the AUs 

There are two ways to solve the second task, i.e., to 
recognize AUs by their attributes. First, after semantic values 
for all facial elements are assigned in a supervised way, each 
AU can be defined as a set of rules in an xml/owl file. These 
rules must be written in close accordance with the FACS 
manual. Another prospective way of learning AUs is to 
recognize the same attributes from videos of the MMI 
dataset [33], in which a lot of AUs are labeled, and to infer 
these rules automatically. 

At this stage, all attributes and action patterns (APs) were 
just clustered in an unsupervised way and we can apply 
either of the methods in the next works. Note, that feature 
extraction using the family of unsupervised methods can be 
tuned to be reliable, but, as it will be shown below, 
unsupervised classification of AUs themselves is not as 
reliable, because it is difficult to relate output clusters (APs) 
with the required classes (AUs). 

C. Dataset 

Our model can be trained and tested using a labeled 
dataset with real video [18, 19], images sequences [20] or a 
synthetic one with inherently labeled action units, for 
instance generated by the means of [29-31]. In [27], real and 
synthetic datasets complemented each other, which led to 
high recognition scores of body pose recognition, and 
therefore, this approach should be adopted in this study in 
the future studies.  

 

TABLE I.  RESULTS OF THIS WORK FOR THE DATASET [18] 

Session 

Id 
Subject Id 

No. of 

AUs 

(TP) 

No. of 

APs 

(TP) 

No. of 

false APs 

(FP) 

Overall 

No. of 

positives 

21 
2 (Operator) 6 21 15 36 

3 (User) 9 24 12 36 

29 
3 (Operator) 9 23 12 35 

16 (User) 7 17 19 36 

64 
7 (Operator) 11 16 8 24 

11 (User) 9 15 13 28 

D. Evaluation 

This work is in progress and to determine and, perhaps, 
correct the further direction of its development we collected 
qualitative results of a demo version of the model presented 
above for several subjects from the Semaine Database [18], 
which seemed to be closer to real environment compared to 
other datasets. 

A simple .NET Framework (ver. 4.5) application 
integrated with the MATLAB API (ver. 2012a) was 
developed. The first part was used for object oriented 
metagraph implementation and abstract manipulation, and 
the second part was used for wavelet decomposition and 
calculations of transformations and was compiled for .NET 
using NE Builder. 

The number of facial action patterns (No. of APs, Table 
1) that our model clustered turned out to be far more than the 
number of facial AUs from FACS (No. of AUs), even 
though they overlapped partially, e.g., 6 from  21. 

The coincidences mostly occurred when a particular 
expression and a respective AU was very intensive, whereas 
during substantial periods of time expressions were unclear, 
but it does not mean there was no AU. Another set of 
ambiguities were observed when a person was talking, 
which resulted in a lot of APs, which we could not always 
correspond to one of the AUs. Since the database that we 
used is labeled only using feeltrace annotations, it was 
difficult to check our results correctly, therefore we 
measured them categorically. To calculate the categorical 
error rate we counted the overall number of action unit types 
present in a video by watching it, and compared it to the 
number of output clusters returned by our model, which we 
could attribute to some AU with high confidence, even 
though the exact AU was unclear. 

TABLE II.  RESULTS OF SOME PREVIOUS WORKS 

AUs Method Dataset CR/F1/PR, % 

15+ 
Multi-state geometric face 

model [3] 
CK 82-96.7/-/- 

27 
Free-form Deformations 
(FFD) + GentleBoost + 

Hidden Markov 

Model (HMM) [4] 

MMI 94.3/65.1/59.7 

18 CK 89.78/72.14/70.25 

15 
Viola-Jones + ASM + Gabor 
filters + GentleAdaboost [5] 

private 
95.9 (agreement 

rate)/-/- 

9+ This work Semaine -/-/58.3 
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We also counted the number of false positive APs (No. 
of false APs) which included mismatched metavertices or 
invalid transformations. Having no results about negatives, 
we were only able to calculate the precision rate (PR), 
Altogether, the challenges described above led to an 
indecent number of false positive errors and PR compared to 
some previous works (Table 2, in which CR is the 
classification rate, AUs – the number of analyzed AUs), 
even though we did not measure them frame by frame.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, a concept of the model for multilevel facial 
activity recognition and description is presented, and 
emerged technical and scientific challenges are discussed. 
Even though the model is not formalized and not explained 
in detail here, it promises to fulfill the requirements of this 
research: (1) recognize more FACS-based action units more 
accurately and in more real conditions compared to the 
previous studies; (2) be able to recognize the new ones, 
including body AUs and those defined by an expert using 
primitive attributes from the ontological network; (3) be 
integral and scalable for multiple persons. Among the 
hardest challenges are reliable quantization of classes and 
attributes and the complexity of classifying posterior-anterior 
movements, since they are not intrinsic to a video.  

The suggested four level model should not be perceived 
as an overcomplete application of heavy methods. On the 
contrary, the metagraph model allows representing low-, 
mid- and high-level methods using mappings of metavertices 
making the model more homogeneous and flat. Indeed, this 
is an important theoretical implication, that many models can 
be represented using metagraphs and their mappings, even 
though the mappings are not always trivial.  

The preliminary evaluation results demonstrated that our 
model needs further development, tuning and more 
comprehensive evaluation to solve the problems of human 
behavior retrieval and human-computer multimodal 
interaction more efficiently, which must be the focus of 
further research studies. 
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