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Abstract—In a modern video conferencing application, the
people participating at each client can be detected, tracked
and placed in a virtual scene where all persons are of equal
size and occupy a predefined rectangular space. This virtual
scene can then be rendered on screen instead of a whole
room with several people. As a result, a more immerse video
conferencing impression is created. At a Multipoint Control
Unit (MCU) it is beneficial to disassemble and reassemble
the video streams so as to create a custom video stream for
each client that only includes people that will be rendered
by that client in order to use the available bandwidth to
full capacity. In a conventional video coding approach, this
video reassembling operation is only possible by decoding all
incoming video streams, mixing in pixel domain and then
encoding all outgoing video streams. However, this operation
makes very high demands on the computational power of the
MCU. In this paper, we demonstrate how in the upcoming
video coding standard High Efficiency Video Coding (HEVC)
the encoder can be modified to enable a reassembling operation
that is HEVC compliant and works on a high syntax level in
the bitstream. Hereby, no entropy en- or decoding is necessary
which makes the operation very low complex.

Keywords- HEVC; video conferencing; video mixing; coded
domain; tiles; slices;

I. INTRODUCTION

Current video conferencing systems have the ability to
perform high quality, real time conferences between different
parties all around the world. However, the demand for
high video quality and a more immersive experience is
often opposed by the available bandwidth and computational
power at the central Multipoint Control Unit (MCU). In
order to achieve these goals, an immerse conference scenario
is considered in this paper that allows for a low complex
video reassembling operation at the MCU.

In classical video conferencing approaches each con-
nected endpoint has one camera. The captured video is then
encoded into two video streams: One with a high resolution
(e.g. 720p) and a second one with a lower resolution which
is used as a thumbnail. Both streams are transmitted to
the MCU, that decides which is the most active party and
forwards the high resolution video stream of this party to
all the other parties. The thumbnail views are always routed
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Figure 1. Each person in the scene is extracted from the captured video,
scaled and placed side by side.
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Figure 2. Three clients transmit their processed video stream to the MCU.
The last most active people in the conference are E, B, C and I, descending
in this order.

to all endpoints. Of course, the active party does not receive
the high resolution video of itself but the high resolution
video of the last active party. Hereby, each party can see a
high resolution video of the active speaker and thumbnails
of the other parties.

In this scenario, a combination of face detection, tracking
and audio analysis is used in order to process the input video
and extract persons from the captured video. Each person
is then scaled and placed side by side (See Figure 1). This
video is then only encoded in high resolution and transmitted
to the MCU and from there to all clients (See Figure 2).
Each client decodes the incoming video streams from the
other clients and crops out only the last most active people
to render them on screen. In Figure 3 an example is shown in
which each client only renders the last most active speakers.

However, in this scenario the MCU transmits a lot of in-
formation to each client that the client discards after cutting
out the people that it is going to render on screen. It is obvi-
ous that the required bandwidth can be significantly reduced,
if the MCU supports a reassembling operation that allows
outputting individual streams for each client containing only
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Figure 3. Each client receives and renders only the last most active and
relevant people on screen. The last most active people in the conference
are E, B, C and I, descending in this order.

relevant parts of the video. In the conventional approach the
MCU would decode the incoming video streams, rearrange
the video in the pixel domain and re-encode a new stream
for each client. While this approach is simple, it has two
disadvantages: Running decoders and encoders requires a lot
of computing power at the MCU and has a negative impact
on the overall compression performance [1] [2].

In the following Sections, we introduce a method that uses
the upcoming video coding standard High Efficiency Video
Coding (HEVC) [3] and the concept of Tiles [4] in order to
logically split the video stream into sub-streams, with each
sub-stream containing exactly one person. The video stream
for each client can then be easily assembled in the MCU
by only copying packets from the input video streams and
altering some flags in the headers. After this operation, the
output streams are still compliant to the HEVC standard and
can be decoded by and device supporting HEVC.

Naturally, the proposed approach is not limited to
video conferencing applications. It can be utilized in all
applications where a video can be logically split into
separate areas and only some of these areas need to be
transmitted or the stream needs to be reassembled during
transport.

In the following Section II, selected topics from HEVC will
be presented that are used in the scope of the approach,
before stream reassembling operations (Section III) and
required encoder restrictions carried out in this approach
are explained in Section III and IV. Afterwards, the arising
compression loss due to the usage of Tiles and Slices
and due to the encoder restrictions is measured in Section
V. Finally, a conclusion about the approach is drawn in
Section VI.

II. HEVC

In order to split the video stream into sub-streams, Slices
and Tiles are combined in this approach to enable a high
syntax level reassembling operations. This Section will give
a brief overview of the HEVC tools and techniques that are
used and/or modified in the proposed method.

Tile 1 Tile 2

Tile 3 Tile 4

Slice 1

Slice 2

Slice 3

Figure 4. Subdivision of a picture with 24 CTUs into Tiles (left) and
Slices (right).

Tile/Slice 1 Tile/Slice 2

Tile/Slice 3 Tile/Slice 4

Figure 5. The picture is divided into 24 CTUs and into 4 Slices as well
as 4 Tiles of equal size. Each Tile and each Slice contains 6 CTUs.

A. Slices and Tiles

Both Slices and Tiles can subdivide a frame into logically
separate parts that can be decoded independently. Tiles are
defined via a number of Coding Tree Units (CTUs) for the
width and the height of the Tile and are therefore always
rectangular, while Slices simply contain a number of CTUs
that are laid out in raster scan order (See Figure 4). Slices
and Tiles can be used at the same time so that a Slice can
contain Tiles or a Tile can contain Slices. A special situation
can occur, when Slices and Tiles contain the same number
of CTUs. In this case, each Tile contains exactly one Slice
and the borders of Slices and Tiles match (See Figure 5).

Since Slices and Tiles do not allow prediction across
Tile/Slice boundaries or entropy coding dependencies, they
are independent with respect to the encoding and decoding
process [4]. Thus, Slices and Tiles can be processed in
parallel which can be utilized in parallel implementations
and lower the latency of the en-/decoding process [5] [3].

B. Bitstream Syntax

As in H.264/AVC, in HEVC all coded content is em-
bedded into Network Abstraction Layer (NAL) units, which
are byte aligned and have a header identifying the kind of
payload. A NAL unit can contain a Slice, but also different
kinds of parameter sets. Several NAL units form an Access
Unit (AU), where decoding an AU results in one decoded
picture and must thus contain at least all Slices of that
picture. Parameter sets contain information about the whole
sequence or one picture and are not entropy coded. Each
bitstream must contain at least one Sequence Parameter Set
(SPS) and one Picture Parameter Set (PPS), which are valid
until another parameter set of the same kind is referenced
(example in Figure 6) [3].
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Figure 6. Bitstream containing a Sequence Parameter Set, a Picture
Parameter Set and some Slices. More Access Units can follow of course.
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Figure 7. Structure of the Bitstream when using one Slice in each Tile
(colored parts are entropy coded).

In the bitstream each Slice is composed of a header and
a payload. While the header contains general information
about the Slice in high level syntax, the payload is entropy
coded and may contain several Tiles, if used. The end of a
slice is signaled using the end of slice flag which is the last
symbol coded for each CTU and is set if the current CTU
is the last CTU in the Slice. If the Slice contains Tiles, all
Tiles are either separated by fixed byte sequences in the
Slice payload or the byte positions in the Slice payload are
given in the corresponding Slice header. When using one
Tile per Slice, the payload of each Slice NAL unit contains
exactly one Tile, but no information about the Tile entry
points in the Slice payload is necessary (see Figure 7). Thus,
the bitstream appears to contain rectangular Slices that are
laid out in raster scan order in the Frame. Still, the definition
of column and row boundaries of the Tiles is present in
the sequence and/or picture parameter set and the Slices are
identified using the slice address given in the Slice header,
which is the raster scan index of the first CTU in the Slice
[3].

C. Inter-Prediction in HEVC

In HEVC, each frame is subdivided into Coding Tree
Units (CTUs) and each CTU can be subdivided into Coding
Units (CUs) of different sizes. Each CU can then be split into
one, two or four Prediction Units (PUs), which are predicted
using either motion compensation or intra prediction. An
example for the partitioning of a CTU into CUs and PUs is
shown in Figure 8 [3].

There are two different ways of signaling motion infor-
mation for inter prediction to the decoder:

1) A PU can use the so called merge mode where the
reference frame index and the motion information for
the current PU are inferred from a neighboring PU.
In order to merge a PU, a candidate list is filled
and only the index of this list is encoded into the
bitstream. The order in which neighboring PUs are
added is standardized so the decoder can build an
identical merge candidate list. A candidate is only

Figure 8. Example for a partitioning of a CTU in CUs (black) and PUs
(grey).

added when the corresponding PU exists, has inter
prediction related information and fulfills several more
conditions (e.g. if it is located within the same CTU,
Tile or Slice). There are two types of candidates (See
Figure 9): The ones taken from a PU within the same
frame (spatial candidates) and the ones taken from a
PU in a collocated frame (temporal candidates). While
the spatial candidates need to be in the same Slice/Tile
as the current PU, temporal candidates do not have this
restriction in general; the only restriction is, that the
candidate must be located in the same CTU line [3].

Current PU
Current PU

HCTU-Boundary

Figure 9. The spatial (left) and temporal (right) candidates that are checked
for motion vector prediction as well as merge mode.

2) When the merge mode is not used for a PU the
reference indices and motion information needs to be
explicitly encoded into the bitstream. However, also
in this case the motion information is not directly
encoded but it is predicted and only the motion vector
difference is encoded. In HEVC, Advanced Motion
Vector Prediction (AMVP) is used which works quite
similar to the merge mode. A list of possible prediction
candidates is created using neighboring candidates as
well as temporal candidates. Afterwards the chosen
index as well as the motion vector difference is
encoded into the bitstream [3].

III. STREAM REASSEMBLING

In this Section a high level reassembling operation is
proposed. The usage of Tiles and the reassembling operation
are similar to the proposed method in [6]. However, in
[6] the definition of Slices and Tiles is changed in order
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to enable the reassembling operation. This results in an
output videostream that is not HEVC compliant and requires
changes on the decoder side. The reassembling operation
that is presented in this Section however, only utilizes
changes on the encoder side and thus is always HEVC
conforming. This allows any HEVC compliant decoder to
decode the resulting bitstream.

As described in Section II, Tiles can be used to split the
video stream into rectangular areas with each Tile containing
one person. However, if only multiple Tiles are used, the
Tiles cannot be rearranged as freely as the application
requires. The problem is the end of slice flag, which is only
set for the last CTU in the last Tile. If we were to insert
the last Tile with the end of slice flag set at a different
position than that of the last Tile, the set end of slice flag
would be received before all CTUs of the Slice are decoded.
This results in a bitstream that is not conforming to the
HEVC standard and might not be decodable. In addition
the end of slice flag is entropy coded in the bitstream and
cannot be changed without entropy de-/encoding the Slice
payload.

In order to circumvent this limitation we use Tiles that
contain exactly one Slice as described in Section II-A. Since
the concepts of Slices and Tiles coincide in this situation,
we will use them synonymously hereafter. This way, each
person is contained in exactly one NAL unit that contains
one Tile/Slice. The people in the video stream can now be
reordered by simply inserting the correct NAL units into
the new bitstream while modifying the Slice headers and
some parameter sets. In the Slice header the slice address
has to be modified to match the position of the Tile in the
new video stream. Also the first slice in pic flag in the
Slice header has to be set or reset. Furthermore, several
parameters in the sequence and/or picture parameter set
have to be adjusted for the new arrangement of Tiles.
Concretely these are the pic width in luma samples
and pic height in luma samples values as well as
the num tile columns minus1, num tile rows minus1,
uniform spacing flag, colum width and colum height
syntax elements [3].

Overall, this reassembling operation is very low complex.
Only a few values in the slice headers have to be changed
and the entropy coded slice payload is simply copied to
the output stream while in the conventional approach a full
encoder as well as a full decoder is needed to create a similar
result.

IV. REQUIRED ENCODER RESTRICTIONS

The definition of Tiles and Slices in HEVC allows for
independent decoding of each person. The entropy coder
is reset after each Tile and prediction is generally not
allowed across Tile boundaries. However, this is only true
for dependencies within one frame. Some dependencies on
other Tiles in past frames that are in the reference buffer can

Figure 10. Decoding error after switching two Tiles due to dependencies
between the Tiles (right) and the original sequence (left).

HTile 1 Tile 2

Current PU

potential temporal
candidates

Figure 11. Temporal candidates of PU located at the edge of a Tile.

still exist. If these remaining dependencies are not removed,
decoding errors as shown in Figure 10 can occur when
information is referenced that changed in the reassembling
operation.

A. Modified Candidate Lists in AMVP and Merge

While creating the candidate lists for either AMVP or
Merge, the possible temporal candidate H is located outside
of the current PU and may be located outside of the current
Tile (See Figure 11). If information from candidate H is
used and H is located outside of the current Tile and that
Tile was removed or replaced by the reassembling process,
the information from candidate H cannot be determined by
the decoder. In this case, candidate H must not be used
for prediction. Also, it is possible that no Tile is present at
position H while decoding. This makes all candidates after
H unusable as well since the encoder cannot know if H will
be available at the decoder or not and thus cannot predict
how the candidate list after H is constructed at the decoder.
If no Tile is present at the position of candidate H at the
encoder, all candidates following the potential position of
candidate H are unusable as well, since a Tile at the position
of candidate H could be added during the reassembling
process.

A special case occurs when the PU is located near a Tile
boundary and merge mode is used to merge the motion
information from a neighboring PU. In this case the encoder
must not choose a PU for merging that has a motion vector
which would cause the current PU to be predicted from a
different Tile in the reference Frame.
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Tile 1
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Figure 12. Motion vectors allowed by the standard (black) and the limited
motion range taking into account the PU size (red).

B. Resticting Inter Prediction to Tiles

In HEVC, motion vectors are allowed to cross Tile or
Slice boundaries. However, the information that is referenced
by a motion vector that crosses these boundaries may have
changed after reordering the Tiles. In order to only utilize
information that is also available at the decoder side we
limit the encoder search range near Tile boundaries. At the
boundary the dimension of the PU has to be taken into
account so that no part of the PU crosses the Tile boundary
(See Figure 12).

V. EXPERIMENTAL RESULTS

Using Tiles in a video as well as our restrictions on
motion vectors and prediction candidates results in a loss
in compression efficiency. In this Section we will evaluate
the loss resulting from these modifications.

A. Sequences

Corresponding to the scenario described in Section I, the
test sequences are composed of smaller sub-sequences that
each contain one person that has been cropped and scaled
from the original sequence. An example can be seen in
Figure 13. Each test sequence contains three or four sub-
sequences with a spatial resolution of 256×256 pixels which
corresponds to 4× 4 CTUs.

B. Experiments

The proposed encoder modifications were implemented
into the HEVC reference software HM version 6.0 [7].
The reassembling operation of the bitstream file was imple-
mented in Python and the rearranged bitstream was decoded
using the reference decoder to test HEVC conformance. For
the test set, three different configurations were tested:

1) The whole sequence without Tiles
2) The sequence using one Tile for each sub-sequence
3) The sequence using one Tile for each sub-sequence

and using the encoder modifications as described in
Section IV

The simulations were performed using the low delay main
configuration from the common test conditions [8], which

Figure 13. The test sequence Vidyo2 after cropping and scaling.
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Figure 14. RD-plot of the results for the simulations of sequence “Vidyo2”.

defines a set of coding parameters that are suited for low
latency video conferencing applications. The Quantization
Parameter (QP) range of 22, 27, 32 and 37 was used,
which spans the range of bitrates used in video conferencing
applications. In Figure 14, the Rate-Distortion (RD) plot of
the result for the simulations of the sequence from Figure
13 is displayed, where the other test sequences exhibit very
similar results. In Table I, the Bjøntegaard Delta-rate (BD-
rate) [9] overhead for the different scenarios, sequences and
color components are displayed and Table II shows the
average BD-rate overhead.

C. Evaluation

In general, Tiles as well as our modifications have a higher
impact on the performance at lower rate points (high QP).
This can be explained by the distribution of the bitrate in the
coded stream. While at high QP values a high percentage of
the available bitrate is used for the prediction information,
this distribution is shifted for low QP values where the
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Table I. BD-rate overhead when using Tiles or Tiles and our proposed
encoder modifications for each test sequence.

Sequence Y U V
SideBySide Tiles 5.26% 4.13% 6.96%

Tiles+Mod 8.69% 8.39% 7.28%
Vidyo1 Tiles 4.73% 2.13% 4.81%

Tiles+Mod 8.47% 6.03% 8.31%
Vidyo2 Tiles 2.92% 0.06% 0.10%

Tiles+Mod 5.02% 3.07% 1.66%

Table II. Average BD-rate overhead when using Tiles or Tiles and our
proposed encoder modifications.

Y U V
Tiles 4.3% 2.11% 3.95%
Tiles+Mod 7.39% 5.83% 5.75%

main part of the available bitrate is used for coding of the
transform coefficients. Table II shows the average rate losses
for using Tiles and for using Tiles in combination with our
encoder restrictions.

VI. CONCLUSION

In this paper, a method for reordering of Tiles in an HEVC
coded bitstream is proposed, that works on a very high
syntax level and does not require any entropy de-/encoding
of the bitstream. The resulting bitstream again conforms to
the HEVC standard and can be decoded by any conforming
decoder. In order to achieve this flexibility, Tiles were used
in combination with Slices and some modifications to the
encoder were applied to remove all remaining dependencies
between neighboring Tiles.
Using Tiles and the proposed encoder modifications yields
a small compression loss as shown in Section V. However,
it adds the ability to arbitrarily reorder Tiles in a low
complexity manner to create new bitstreams with different
layouts that conform to the HEVC standard. In addition, it
allows for parallel processing at the encoder as well as the
decoder.
The limitations of this method result from the definition
of Slices and Tiles. Since Tiles always contain a defined
number of CTUs, the resolution of the Tiles has to be a
multiple of the CTU size (usually 64 × 64 or 32 × 32). In
addition, Tiles are defined using a grid layout, so with the
proposed reordering operation, all Tiles must have the same
dimensions.
Although the implementation and experiments were done
using HEVC draft 6 [3], the key concepts used in the
scope of our approach underwent only small changes up
to the latest draft 9 [10] in a way that implementing the
described approach using draft 9 is still possible. This will
most likely also be true for the finished standard since only
small changes are to be expected from working draft 9.
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