
H.264 Parallel Optimization on Graphics Processors

Elias Baaklini∗, Hassan Sbeity† and Smail Niar∗

∗ University of Valenciennes, 59313, Valenciennes, Cedex 9, France
{elias.baaklini,smail.niar}@univ-valenciennes.fr
† Arab Open University, Beirut 2058 4518, Lebanon

hsbeity@aou.edu.lb

Abstract—Multimedia applications are present in most mobile
hand-held devices. The H.264 standard is currently dominating
the video compression world. H.264 has high computational
complexity requiring large amount of processing resources. Many
techniques emerged that optimize H.264 using parallelization
on multicore systems ranging from groups of pictures until the
smallest block of pixels. We propose a parallelization technique
based on rows of macroblocks with a light dependency detection
algorithm that optimizes data parallelization and minimizes
dependency synchronization stall time. The parallel H.264 imple-
mentation is tested on 2, 4, 8, and 16 cores processors using CIF
and HD video resolutions benchmarks. The experimental results
show that, in terms of execution time and parallel scalability, CIF
video sequences peak at 4 cores with a speedup of 3.1 and HD
video sequences peak at 8 cores with a speedup of 6.2. The H.264
parallel implementation is then tested on a graphics processor
simulator of the Evergreen family of AMD GPUs reaching a
speedup up to 12.1 times without communications overhead. Our
results shall aid to find the best parallel configuration of the
H.264 standard with the most suitable multicore platform to use
in terms of time complexity and parallel efficiency.

Keywords—Multimedia; H.264/AVC decoder; Video Compres-
sion; Optimization; Parallel Computing; Graphics Processors

I. INTRODUCTION

Multimedia hand-held devices are nowadays becoming
more and more pervasive in many of modern world societies.
Smart phones and tablet devices are equipped with high screen
resolution and with relatively fast multicore embedded pro-
cessors. DVD and blu-ray players, digital cameras, and LCD
TVs support high resolutions like HD and Full-HD. However,
few multimedia applications benefit from the computational
potentials that multicore processors offer in these emerg-
ing powerful embedded devices. Furthermore, video coding
standards like H.264/AVC [2] and HEVC [3] are adopting
complex algorithms like context-adaptive binary arithmetic
coding (CABAC) and variable length coding (CAVLC) in order
to achieve better compression and thus lower transmission
bitrates for high resolution video sequences. The additional
complexity of these algorithms has a major impact by increas-
ing execution time and energy consumption.

In our research, we intend to solve the problem of high
complexity of the H.264 decoder using parallelization on
multicore embedded processors and on graphical processors.
Even with new cutting-edge processors, video resolutions are
increasing rapidly, which require more processing time and
consequently more energy consumption. Many solutions based

on parallel execution exist ranging from macroblocks (fine-
grain) till groups of pictures (coarse-grain) parallel decod-
ing. Macroblock parallel decoding is highly scalable since
many macroblocks can be processed in parallel. However,
dependencies and huge overheads are created as a result
of communication and synchronization between macroblocks.
Parallel decoding of groups of pictures require large memories
for high definition video sequences. In addition, they have a
lower scalability than macroblock decoding because of the
limited number of groups of frames that can be decoded
in parallel. Our solution is to decode macroblock rows in
parallel. This level of parallel execution is considered between
the coarse-grain and the fine-grain parallelization approaches.
It also offers a balance between large overheads and high
scalability of previous solutions.

Our main contribution in this paper is the design of a new
approach for the parallelization of the macroblock rows of the
H.264 decoder with an algorithm that detects dependencies
on-the-fly based on isolating intra-prediction macroblocks (I-
MBs). Experiments are conducted using simulations on 2, 4,
8, and 16 cores processors. We further experiment our parallel
implementation on a graphical processor simulator of the Ev-
ergreen AMD GPU. We compare CPU and GPU experimental
results. Our results define the best multicore processor with
the highest speedup and the best parallel efficiency. For CIF
resolutions, video sequences benchmarks reach their maximum
throughput using 4 cores with a speedup of 3.1. For HD video
sequences, 8 cores processors offer the best time and energy
efficiency combined with a speedup of 6.2. On a GPU with
16 parallel computational units, the speedup reaches 12.1 for
HD resolutions and 7.4 for CIF resolutions.

In our H.264 parallel implementation, the motion com-
pensation (MC) stage for each row of inter-prediction mac-
roblocks (P-MB) is executed in parallel on different cores. We
experiment the parallel version using low and high definition
resolutions, CIF and HD respectively, on multicore processors.
Macroblock dependencies in the same picture slice are avoided
by decoding intra-prediction macroblocks (I-MBs) when all
other macroblocks are decoded. Overheads emerged as a result
of shared memory communications and synchronization be-
tween cores. We simulated the parallel execution on multicore
processors and graphical processors using a multicore simu-
lator, Multi2Sim [8]. We further investigate the scalability of
the multiple cores implementation, which shows the existence
of a virtual threshold depending on the resolution when large
numbers of cores are used.

109Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

The remainder of the paper is organized as follows. In
Section 2, we present the related work concerning H.264 par-
allel optimizations. In Section 3, we describe our approach for
parallel execution of macroblock rows of the H.264 decoder.
In Section 4, we present the experimental results for execution
time on CPUs and GPUs using a simulator for multicore
processors. Final conclusion and future work are given in
Section 5.

II. RELATED WORKS

Ever since the H.264/AVC standard [2] was published
in 2003, researchers started to solve the high complexity
issue of the new standard mainly using parallelism. Several
modifications were suggested for the H.264 encoders and
decoders in order to improve the performance in terms of ex-
ecution time and memory usage. Parallel decoding techniques
of H.264 exist from the highest level, which is the group
of frames or pictures (GOP), the coarse-grain level, till the
lowest level, which is the block inside a macroblock, the fine-
grain level. Kannangara [12] reduced the complexity of the
H.264 decoder (19-65%) by predicting the SKIP macroblocks
using an estimation based on a Lagrangian rate-distortion
cost function. Gurhanli [14] suggested a parallel approach by
decoding independent groups of frames on different cores. The
speedup is conditioned with the modification of the encoder in
order to omit the start-code scanner process. Any modification
to the encoder will require a long process for modifying the
H.264 specification in order to be compliant with the standard.
The exclusion of previously encoded video sequences is also
an effect for modifying the H.264 encoder. Nishihara [18]
proposed a load balancing mechanism among cores where par-
titions sizes are adjusted during runtime. He also reduced the
memory access contention based on execution time prediction.
Among frame-level and MB-level parallelization, the 3D-wave
technique proposed by Azevedo [15] decodes independent
MBs in parallel on different cores. A good scalability is
proved for HD resolutions where macroblocks are scanned in
zigzag mode and decode independent macroblocks in parallel.
Chong [16] added a pre-parsing stage in order to resolve
control dependencies for MB-level parallelization. Van Der Tol
[20] mapped video sequences data over multiple processors
providing better performance over functional parallelization.
He groups macroblocks in a way that minimal dependency
between cores is required. Horowitz [17] compared different
H.264 implementations including FFmpeg [4] and the H.264
reference software JM [1]. He also analyzed the complexity of
the H.264 decoder subsystems. Sihn [19] proposed a multicore
pipeline for the deblocking filter based on the group of pictures
data level partitioning. He also suggested software memory
throttling and fair load balancing techniques in order to im-
prove multicore processors performance when several cores are
used. In our research we optimize the H.264 decoder knowing
that our approach can be also applied to the H.264 encoder.
We focus on improving the efficiency of the H.264 decoder
using multicore processors. We decode rows of macroblock
in parallel where rows are mapped to a number of cores.
Dependencies between macroblocks are avoided by decoding
intra-prediction macroblocks sequentially at the end of the
decoding stage. We map our implementation on 2, 4, 8, and
16 cores. Speedup of the parallel implementation is calculated
using simulated execution time. We further implement an

Figure 1. H.264 decoding process

OpenCL [5] version of our parallel H.264 implementation.
Simulation experiments on graphics processors are conducted
using a CPU-GPU simulation Multi2Sim [8].

In the following section, we describe in detail our parallel
implementation of the H.264 decoder. In addition, we describe
our environment configuration for the execution simulations on
normal processors and graphics processors.

III. H.264 PARALLEL IMPLEMENTATION

In this Section, we describe our parallel implementation of
the H.264 video decoder. We start with a brief overview of
the decoder, then we explain how we parallelize the decoder,
and finally we compare our approach to other similar parallel
implementations.

A. Parallel Execution and Synchronization

Parallel execution is considered as a major potential so-
lution for complex applications where sequential execution
bounds the performance of these applications. Most processors
that are currently available in the market have multiple cores
and support many threads. Applications with low execution
efficiency may benefit from a high potential speedup when
data or functional parallelization is applicable. Even optimized
implementations can still take advantage from parallelization
techniques. In our research, we choose the H.264/AVC video
decoder as our multimedia application benchmark for which
we provide a parallel implementation using our approach. We
further gather execution statistics and we compare results to
other relatively similar implementations.

B. H.264 Standard

The Moving Picture Experts Group (MPEG) and the Video
Coding Experts Group (VCEG) developed jointly in 2003 the
”Advanced Video Coding” (AVC) standard published as ITU-T
Recommendation H.264 and as part 10 of MPEG-4. Since the
first commercial implementations, several multimedia device
manufacturers adopted the new video codec. About 7 years
after the first release of the final draft of the standard, H.264
is the mostly used video compression standard in most multi-
media devices according the PCWorld.com [6]. Cameras, smart
phones, PDAs, CCTV recorders, blu-ray disc players and many
other devices use H.264 for encoding and decoding videos.
H.264 achieves better compression and higher quality at the
expense of more complex algorithms. Thus more computation

110Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

Figure 2. Decoding macroblock rows in parallel on n cores

resources are exploited and more energy is consumed in order
to increase compression ratio of video files.

C. H.264 Decomposition

The H.264 decoder can be divided into five main func-
tional parts: Entropy Decoder (ED), De-Quantization and
Inverse Transform (IQT), Motion Compensation (MC) and
Intra-Prediction (IP), and Deblocking Filter (DF). The H.264
decoder stages are illustrated in Figure 1. A slice of a picture
is partitioned into blocks of 16 x 16 pixels called Macroblock
(MB). The number of horizontal macroblocs and vertical
macroblocks varies with the resolution of the frame picture
that is being decoded. Entropy decoding is performed for all
bits in a slice of a frame. Motion compensation or intra-
prediction is applied for every macroblock of size 16 x 16
pixels. A macroblock can be also divided into sub-blocks of
16 x 8, 8 x 8, 8 x 4, and 4 x 4 pixels. The encoder chooses
the sub-blocks sizes depending on the image complexity of
the video sequences being decoded. The motion compensation
stage uses a reference buffer in order to calculate the values
of macroblocks in the current frame. The reference buffer
contains a list of previously decoded frames. Macroblocks that
are inter-predicted and motion compensated from previously
decoded frames are either of type P or B (P-MBs and B-
MBs). Macroblocks that depend on macroblocks in the current
frame (called I-MBs) are intra-predicted. Deblocking filter is
executed at the end of the decoding process in order to reduce
the edging effect between macroblock borders.

D. Parallel Execution

The H.264 reference software, JM [1], is an open source
implementation used as a reference implementation for the
H.264 standards. In our research, we modified the JM [1]
source code of the H.264 decoder in order to decode rows
of macroblocks in parallel using the PThread library in C
programming language. As shown in Figure 2, each core
handles the motion compensation stage for macroblocks in
a group of rows. Motion compensation and intra-prediction
phases should be completed before applying the DF phase.
Data parallelization is applied to the motion compensation
phase of different macroblocks. The maximum numbers of
parallel data execution is equal to the number of macroblock
rows. One of the available cores is needed to coordinate the
execution of the parallel decoding process on different cores.
The coordinating core may be one of the cores that are used
for parallel execution since parallel cores are only used for
part of the decoding process. The level of parallel decoding of

Figure 3. Decoding rows of macroblock with intra-prediction
dependency check algorithm

macroblock rows may be considered between coarse-grain and
fine-grain approaches. High level approaches process multiple
slices or frames in parallel. Low-level approaches decode
macroblocks or blocks inside a macroblock in parallel. This
balance between both approaches is also reflected between
synchronization overheads and memory requirements. Coarse-
grain methods need high memory usage in order to decode
multiple frames in parallel. Fine-grain methods cause an enor-
mous synchronization overhead affecting deeply the speedup.
Our approach is aimed to benefit from the balance between
both advantages and disadvantages. Macroblock rows require
less memory than a frame and more than one macroblock.
The number of rows is much less than the total number of
macroblocks. For example, in HD resolution (1280 x 720),
each frame has 3600 MBs, 80 horizontal MBs and 45 vertical
MBs. Thus, the number of macroblocks rows is less by a
factor of 80 than the total number of macroblocks. As a result,
the overhead for synchronization and communications between
cores is also reduced by a factor of 80.

E. Dependencies between Macroblocks

In H.264, there are 3 types of macroblocks: I, P, and
SKIP. I-MBs depend on other macroblocks in the same slice
of a frame. P-MBs depend on macroblocks from previously
decoded frames. SKIP-MB uses the same macroblock from
a reference frame without transmitting the motion vector
information. I-MBs require dependent macroblocks, which are
in the same slice, to be previously decoded. So a dependency
identification procedure is needed in order to satisfy I-MB
dependencies. In order to overcome these dependencies, we
start by decoding all P-MBs and SKIP-MBs rows in parallel.
When this operation is completed, the remaining macroblocks,
which are I-MBs in the current slice, are decoded sequentially.
With this simple ordering, dependencies between macroblocks
in the same slice are satisfied. The average number of I-MBs
in P-Frames and B-Frames is 2.5% for CIF resolution and 4%
for HD resolution. A video sequence always starts with an I-
Frame (IDR), which is composed completely of I-MBs. This

111Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

Figure 4. Speedup of the motion compensation and
intra-prediction stages on multicore processors

type of frames is available typically every 150 to 200 frames
(3 to 8 seconds depending on frame rate) in a video sequences
in order to overcome communication problems when some
frame data are lost during communication transmission. We
can increase or decrease the frequency of IDR frames in
the encoder configuration. However, a high frequency of IDR
frames, for example one I-frame every 30 or 50 frames, will
significantly decrease the compression ratio of the decoder.
The number of I-MBs in a P-Frame or a B-Frame depends
on the complexity of the image and on the objects in the
image and their rate of movements in the video sequences.
P-Frames and B-Frames are mostly composed of P-MBs and
SKIP-MBs with a small number of I-MBs. So the number of
I-MBs does not significantly affect the overall speedup for the
parallel decoding of MBs. Figure 3 shows the pseudocode for
the macroblock dependency check algorithm in addition to the
iteration over macroblock rows in a slice of a frame and the
assignment of macroblock rows to different threads or cores
of a processor. The list of all macroblocks and the number of
cores are given as input data. A main loop iterates over groups
of macroblocks assigned for each core. This loop is mapped
onto the assigned cores in order to be executed in parallel. An
inner loop checks every macroblock. I-MBs are added to an
empty list. The remaining macroblocks are decoded. After the
main loop, a second loop iterates over all I-MBs that are in
the new list and decodes all the macroblocks in the list.

F. Macroblocks Partitioning

In a frame slice, while iterating over macroblocks, we skip
intra-prediction macroblocks (I-MBs) and we decode P-MBs
and SKIP-MBs in parallel on multiple cores as described above
in the algorithm in Figure 3. Depending on the number of
available cores, we group rows of macroblocks in order to be
decoded in parallel. The slice is divided by the number of cores
horizontally. In [7], 6 parallel representations are experimented
in terms of stall time and core usage. Among the presented data
partitioning approaches, our partition is similar to the slice-
parallel splitting approach that is described in [7]. As shown
by the author, this approach has a high stall time overhead.
This stall time is caused by synchronization procedures in
order to satisfy macroblock dependencies. However, with our
approach for avoiding dependencies between macroblocks, the
stall time overhead does not apply. We chose this method

Figure 5. Speedup of the motion compensation and
intra-prediction stages on multicore processors

TABLE I. Speedup of video sequences on multicore
processors

Resolution MB Rows 2 4 8 16
HD (1280 x 720) 45 1.959 3.710 6.207 7.636
CIF (352 x 288) 18 1.861 3.142 4.065 3.517

because of data locality and because of minimal data transfer
initiation overhead. For example, in order to execute a slice
of 80 rows of macroblocks on 4 cores processor, each core
decode a chunk of 20 rows of macroblocks. Using this partition
method, data is only transferred 4 times to the cores, which
is the minimal number of transfers because it is equal to the
number of available cores. In Figure 4, we show en example
of a frame of size 64 x 64 pixels, 8 x 8 MBs, mapped onto
4 cores. The numbers inside the squares are the numbers of
cores. Macroblocks in Figure 4 are assumed to be all P-MBs
or B-MBs. I-MBs are not displayed for illustration purposes.

G. GPU Parallelization

The H.264 decoder parallel implementation is further mod-
ified to execute motion compensation process of P-MBs and
B-MBs on graphics processors (GPUs). Part of the code is
modified in order to comply with OpenCL [5] language, which
is a unified framework for defining and controlling a GPU.
Kernels, functions in C language, written in OpenCL are
executed on a graphics device. Parallel execution of groups of
macroblock rows are processed by work-groups. Slice data is
first transferred to the graphics device and transferred back to
the memory of the processor in order to complete the decoding
process. Parallel execution of the motion compensation stage
is performed as illustrated in Figure 2 where work-groups
are considered as cores. Experimental results and comparisons
with processor execution are discussed in the following sec-
tion.

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

Figure 6. Speedup to number of cores ratio

IV. EXPERIMENTAL RESULTS

In this Section, we test our H.264 parallel implementation
using multicore x86 processors and graphics processors. We
gather simulation statistics and we compare our results with
other results for parallel H.264 implementations.

A. Simulations

Our H.264 parallel implementation described in Section 3
is executed by Multi2Sim [8], a cycle-accurate simulator for
multicore x86 and graphics processors. Cache and memory
configurations comply with common x86 processors that are
available nowadays in many Intel [11] or AMD [9] processor
chips. Each core has a private L1 cache of 512 KB and All
other cores have a shared L2 cache of 2 MB. We simulate
the execution of our parallel H.264 decoder using 2, 4, 8,
and 16 cores processors. We perform simulation experiments
of the H.264 OpenCL version on the AMD Evergreen GPU
family with the configurations of the AMD Radeon 5870 GPU
[10]. We gather statistics using 3 video sequences with CIF
resolution (bus, waterfall, and flowers) and 3 video sequences
with HD resolution (Intotree, Parkrun, and Shields). Simulation
is performed for the H.264 decoding process of 60 frames for
each video sequence.

B. Results

Execution times with different number of cores using CIF
and HD resolutions for the motion compensation stage are
listed in Table I. The number of parallel rows of macroblocks
increases with the video resolution. Thus HD resolution scales
better than CIF resolution with the number of core. Experi-
ments are conducted using simulations on 2, 4, 8, and 16 cores
processors. Speedup results for the motion compensation stage
are illustrated in Figure 5. For CIF resolutions, the maximum
speedup of 4 is attained using 8 cores. With 16 cores, the
speedup decreases to 3.5 due to large data communication
overhead. For HD video sequences, a 7.6 speedup is reached
with 16 cores processor. These optimization speedups are not
efficient when compared to the number of cores used. Figure

Figure 7. Percentage gain for the complete decoding process
on multicore processors

6 shows that the ratio between the number of cores and the
speedups is very high when using 16 cores. The best efficiency
ratio is 4 cores with a speedup of 3.1 for CIF resolution and
8 cores with a speedup of 6.2 for HD resolution. The ratio
of the speedup to the number of cores using 4 cores for CIF
and 8 cores for HD is around 0.8. Doubling the number of
cores drops the ratio to 0.5, which cannot be considered as
efficient as we expect when running a parallel application on
a multicore processor. In [13], the highest speedup is 5 on 8
cores and 8.1 on 16 cores. Our results have a better ratio, for
less than 16 cores, related to the number of cores. For 16 cores
and above, the results in [13] are better. However, decoder
implementation, processor configurations and video resolutions
vary between both approaches. Thus, exact comparisons are
not applicable. The overall performance gain for all stages
of the H.264 parallel decoder is illustrated in Figure 7. CIF
resolutions reach 48% increase in performance using 4 cores
and HD resolutions attain 53.1% using 8 cores.

C. Parallel Execution on Graphics Processor

We experiment our parallel implementation on a graphical
processor simulator of the Evergreen AMD GPU. Figure
8 shows the speedups attained with the GPU devices. HD
resolutions have a speedup of 12.1 and CIF resolutions a
speedup of 7.4. These results exclude the data transfer time
between the main processor and the graphics processor. This
overhead limits the usability of the GPUs when the gain is
low. In our case, the ratio of the speedup to the number of
work-groups is around 0.75. Speedup simulation results for
CIF and HD resolutions decoding on GPU are displayed in
Table II. Graphics processor have high potential of parallel
optimization. The number of work-groups and work-items is
increasing significantly in new devices. Hundreds of work-
groups and thousands of work-items can have a huge impact
on applications with with high parallel data processing.

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

Figure 8. Speedup of H.264 parallel execution on Evergreen
GPU

TABLE II. Speedup of video sequences on graphics
processors

Resolution MB Rows 2 4 8 16
HD (1280 x 720) 45 1.983 3.884 7.301 12.095
CIF (352 x 288) 18 1.928 3.560 5.839 7.417

V. CONCLUSION AND FUTURE WORKS

We have introduced a novel parallel technique for H.264
video decoder. Our approach decodes in parallel macroblock
rows of the H.264 decoder with an algorithm that detects
dependencies on-the-fly based on isolating intra-prediction
macroblocks (I-MBs). Experiments using CIF and HD video
sequences show that every resolution has a virtual threshold for
the speedup when increasing the number of cores. This limit
is due to the increase of data transfer between cores. The best
speedup with the highest ratio to the number of cores is 3.1
for CIF resolutions using 4 cores and 6.2 for HD resolutions
using 8 cores. A speedup of 12.1 is attained the H.264 parallel
implementation is executed on a graphics processor. Additional
research and experiments need to be conducted on the OpenCL
implementation for GPUs. We plan to test our implementation
on real boards and gather more statistics like memory usage
and power consumption in addition to execution time and
optimization efficiency in general.

REFERENCES

[1] K. Suhring. H.264 reference software. http://bs.hhi.de/ suehring/tml/.
[2] AISO/IEC. International standard. Part 10: Advanced video coding,

14496-10, 2003.
[3] JCT-VC. High efficiency video coding (HEVC) text specification draft

8. 10th Meeting: Stockholm, SE, 1120 July 2012.
[4] FFmpeg project. http://www.ffmpeg.org/.
[5] OpenCL: The Open Standard for Parallel Programming of Heteroge-

neous Systems. http://www.khronos.org/opencl.
[6] IDG Consumer & SMB. PCworld Magazine. http://www.pcworld.com/.
[7] F. Seitner, M. Bleyer, M. Gelautz, R. Beuschel. Evaluation of data-

parallel H.264 decoding approaches for strongly resource-restricted
architectures. Multimedia Tools and Applications, 1(2010), S. 1 - 27.

[8] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A
Simulation Framework for CPU-GPU Computing. Proc. of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, Sep., 2012.

[9] AMD Opteron Processor Family. http://www.amd.com/.
[10] AMD Evergreen Family Instruction Set Arch. (vl.Od).

http://developer.amd.com/sdks/amdappsdk/documentation/.
[11] Intel Core Processor Family. http://www.intel.com/.
[12] C. S. Kannangara and I. E. G. Richardson and M. Bystrom and J. Solera

and Y. Zhao and A. Maclennan Complexity reduction of H.264 using
Lagrange Optimization Methods. IEE VIE 2005, Glasgow, UK, 2005.

[13] M. A. Mesa, A. Ramirez, A. Azevedo, C. Meenderinck, B. Juurlink,
and M. Valero. Scalability of Macroblock-level Parallelism for H.264
Decoding. Proceedings of the 2009 15th International Conference on
Parallel and Distributed Systems, pages 236–243, ICPADS, 2009.

[14] A. Gurhanli and S. Hung. Coarse grain parallelization of h.264 video
decoder and memory bottleneck in multi-core architectures. Interna-
tional Journal of Computer Theory and Engineering vol. 3, no. 3, pages
375–381, 2011.

[15] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko, J. Hooger-
brugge, M. Alvarez, and A. Ramirez. Parallel h.264 decoding on an
embedded multicore processor. HiPEAC, pages 404–418, 2009.

[16] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K. Keutzer.
Efficient parallelization of h.264 decoding with macro block level
scheduling. ICME, pages 1874–1877, 2007.

[17] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro. H.264/avc
baseline profile decoder complexity analysis. IEEE Trans. Circuits Syst.
Video Techn., 13(7):704–716, 2003.

[18] K. Nishihara, A. Hatabu, and T. Moriyoshi. Parallelization of h.264
video decoder for embedded multicore processor. ICME, pages 329–
332, 2008.

[19] K. Sihn, H. Baik, J. Kim, S. Bae, and H. Song. Novel approaches to
parallel h.264 decoder on symmetric multicore systems. Proceedings
of the 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 09, pages 2017–2020, Washington, DC,
USA, 2009. IEEE Computer Society.

[20] E. Van Der Tol, E. Jaspers, and R. Gelderblom. Mapping of h.264
decoding on a multiprocessor architecture. Image and Video Commu-
nications and Processing, pages 707–718, 2003.

114Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

