
A Domain Pool Classification Method for Better Fractal Volume Compression

Mihai Popescu, Mihai Pancu, and Razvan Tudor Tanasie
Department of Software Engineering

Faculty of Automatics, Computers and Electronics
University of Craiova, Romania

Email: {mpopescu, mpancu, razvan.tanasie}@software.ucv.ro

Abstract—In this paper we solve the problem of domain pool
classification in fractal volume coding using all symmetries of
a cube. Using the algorithms described in the article we are
able to perform useful Domain-Range comparisons and achieve
better compression rates while not loosing fidelity. In this paper
we take advantage of the symmetric permutation group of
cube and decrease the number of classes (from 10080 to 840).
The same transformations are used in the compression and so
we will have a better approximation of the final compressed
volume. This paper represents a work in progress so no
experimental results can be provided at this time.

Keywords- domain pool, classification, volume compression,
fractals.

I. INTRODUCTION

Fractal compression is a coding technique originally pro-
posed by Barnsley [1] and it’s based on the fact that data
entropy is self-similar. For this, fractal compression is con-
sidered a special form of vector quantization method having
the codebook vector self-contained rather than external.

Due to a huge compression time the method was con-
sidered impractical at first achieving almost the same rate-
distortion curves as the DCT methods. The only attractive
properties of the fractal coding that also attracted a lot of
research was resolution independence (meaning that data can
be decoded at any resolution) and fast decoder convergence.

These properties made fractal compression more suited
for off-line applications rather than for real-time ones, like
video compression, even if the first attempts [2] to extend
the fractal image compression method to the 3D realm was
to treat video signal as a volume.

II. STATE OF THE ART

The majority of fractal compression techniques are based
on the method developed by Jacquin [3] and later by Fisher
et al. [4] by which data is partitioned into blocks named
ranges and domains. The bottleneck of the method resides
in the search for the optimal pairing between a range and
a domain. Even if the domain size is restricted to be twice
the range size, the overlapping lattice of the domain can
generate huge domain pools.

Moreover, to improve quality, a domain block is trans-
formed using isometric symmetry operations such that the
encoder will find nearly optimal domain-range pairing. If

maximum speed is required the symmetry operations can be
ignored but the overall quality will suffer dramatically [5].

The surest way is to use a brute force approach and to
consider the entire domain pool but the time complexity
will be O(n2) and it becomes impractical as the volume
size increases.

Opposed to faster searching, less searching is a promising
approach. If one can determine a-priori if a domain is not
likely to be used in the final fractal code, eliminating it
from the domain pool can improve performances while not
loosing fidelity.

One way to reduce the domain pool is by considering
only domains at even lattice locations. Another method is
by searching in a restricted spatial partition defined by the
parent quadrant/octant of the range block or in the near
vicinity of it. Using these methods, the spatial information
from the fractal code can be efficiently packed with a
minimum amount of bits.

Local 2D spiral search from [6] can easily be extended
to 3D using a Hilbert scan curve. Other methods can imply
just the elimination of a specified fraction of the domains
having small variance [7].

For images, Jacquin sorts the domains into three classes
(shade, edge and mid-range blocks) and restricted the search
only within the same class. On the other hand, Fisher [4]
used 72 classes taking into account not only intensities but
also the intensity variance across the domains.

The first complete research in fractal volume compression
was elaborated by Cochran [8]. He proposed a new clas-
sification method by using Principal Component Analysis
(PCA) where domains are classified by their variance. PCA
is a well known technique for finding orthogonal basis vector
that express the direction of progressively smaller variance
in a given data set.

In our approach, the volumetric fractal coding algorithm
[9] worked by segmenting the volume into domains using
an octree and classified the domains using only one rotation.
In this paper we take advantage of the complete symmetric
permutation group of cube rotations and reflections in order
to find the best candidates for Domain-Range comparisons.
We are targeting to achieve a good rate-distortion curve
disregarding the speed although experimental results cannot
be provided at this time.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-195-3

MMEDIA 2012 : The Fourth International Conferences on Advances in Multimedia

Figure 1. Cube

III. CUBE SYMMETRIES

The cube has octahedral symmetry like all the other
octahedron solids (e.g., regular octahedron, truncated octa-
hedron, truncated cube) but the cube is the only Platonic
solid (among triangular prism, hexagonal prism, truncated
octahedron) and also a hierarchical space-filling polyhedron.
The octahedral symmetry group Oh has symmetry order 48
including transformations that combine a reflection with a
rotation. It is isomorphic to S4 × C2 and has 24 direction-
preserving symmetries. The elements are:

1) 1 identity rotation that leaves the cube unchanged
2) 3 rotations (by ±π/2 or π) around the centres of the

3 pairs of opposite faces
3) 1 rotation (by π) around the centres of the 6 pairs of

opposite edges (that pass through the centre)
4) 2 rotations (by ±2π/3) around the 4 pairs of the

opposite vertices (on diagonals)
To sum up, we have 1+3∗3+1∗6+2∗4 = 24 rotations.
The other 24 symmetries do not preserve directions be-

cause the transformation include a reflection and this implies
changing the face normals along the symmetry plane. There
are two types of symmetry planes for the cube. One is per-
pendicular to the coordinate system unit vectors ~i,~j,~k (one
for each axis) and the other type is across diagonals (two
for each pair of opposite vertices). So there are 3+2∗3 = 9
planes of symmetry for a cube.

The other 24−9 = 15 symmetries are turn-reflections and
they combine a rotation and the antipodal reflection plus
the antipodal reflection itself. All 48 cube symmetries are
summarized in the Table I.

IV. CUBE SYMMETRIC PERMUTATION GROUP

As we said in previous sections, cube’s symmetric permu-
tation group has 48 elements. For example, the right-hand
rule rotations around the system axes (see Figure 1) can be
encoded in permutations using the cycle notation as: σx = (0 2 6 4)(1 3 7 5)

σy = (0 1 5 4)(2 3 7 6)
σz = (0 2 3 1)(4 6 7 5)

(1)

Table I
SYMMETRIES OF THE CUBE

identity

±π/2 face rotation

π face rotation

π edge rotation

±2π/3 diagonal rotation

axis plane reflection

diagonal plane reflection

+ ±π/2 face rotation + an-
tipodal reflection

+ ±2π/3 edge rotation +
antipodal reflection

antipodal reflection

We know that σz can be expressed as a combination of
σx and σy permutations because when rotating around the
unit vector ~k =~i×~j, both ~i and ~j are rotated as well. We
can generate the rotation permutation group using just the
canonic generators σx and σy using the following algorithm.

The GetPermutationNumber procedure just returns a
unique number identifying the permutation (for example,
the associated radix integer r =

∑
p[i] ∗ 10i) where

GetPermutationName returns the generator name (e.g.,
e, x, y).

If we supply to GeneratePermutationGroup algorithm the
PermutationGenerators = {σe, σx, σy} it will generate
the rotation symmetric permutation group, equivalent with
the finite 3D rotation permutation group SO(3). Note that
σe = (0)(1)(2)(3)(4)(5)(6)(7) is the identity permutation
that leaves the cube unchanged. Its associated Cayley graph
can be depicted in Figure 2. We can observe that the algo-
rithm has found all 24 orientation-preserving permutations
without providing σz as a generator because z = xxxyx.

To find the other 24 permutations we just have to add
antipodal reflection σr = (0 7)(1 6)(2 5)(3 4) as a generator,
G = {e, x, y, r}.

V. CLASSIFICATION OF PERMUTATIONS

We are making an isomorphism between the symmetric
permutation of the 8 vertices of a cube and the arrangement
of the density of its 8 partitioned octants. With this we can
use the 48 symmetries at the octant level.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-195-3

MMEDIA 2012 : The Fourth International Conferences on Advances in Multimedia

Algorithm 1 GeneratePermutationGroup
Require: Generators G[?]
Ensure: PermutationGroup PG[48]
{Initialize permutation group map with generators}
Q← ∅
count← Length(G)
for i = 1→ count do
n← GetPermutationNumber(G[i])
map[n]← GetPermutationName(i)
PG[i]← G[i]
Push(Q,G[i])

end for
{Generate permutations in Breadth-First order}
while Length(Q) > 0 do
p← Front(Q)
for i = 1→ Length(G) do

if G[i] 6= σe then
q ← GeneratePermutation(G[i], i, p)
if q 6= nil then
count← count+ 1
PG[count]← q
Push(Q, q)

end if
end if

end for
end while

Algorithm 2 GeneratePermutation
Require: Generator g, Generator Index i, Permutation p
Ensure: Permutation
n← GetPermutationNumber(p)
pit← Find(map, n)
if pit = nil then

return nil
end if
name← Second(pit)
q ← p ◦ g
m← GetPermutationNumber(q)
qit← Find(map,m)
if qit = nil then

return nil
end if
name← Concat(name,GetPermutationName(i))
map[m]← name
return q

Figure 2. Cayley graph

There are N = 8! = 40320 possible configurations of the
permutations of the order of density values for each octet
Ai, i = 0..7. All 48 permutations form a conjugacy class so
there are N/48 = 840 different classes.

For example the identity permutation σe is a permutation
that corresponds to the first conjugacy class and to the
ordering A0 ≤ A1 ≤ A2 ≤ A3 ≤ A4 ≤ A5 ≤ A6 ≤ A7

being a 1-to-1 correspondence to the permutation canonic
representation [10]: {0, 1, 2, 3, 4, 5, 6, 7}.

If we are rotating σe permutation along the x axis, we
will get: σx ◦ σe = {2, 3, 6, 7, 0, 1, 4, 5} that corresponds to
A2 ≤ A3 ≤ A6 ≤ A7 ≤ A0 ≤ A1 ≤ A4 ≤ A5, which will
be also in the same class.

If we do this for all 40320 permutations we will find the
class for each permutation.

The class map is symmetric with itself, having the prop-
erty that: ∀i = 1..40320, C[i] = C[40320 − i − 1].
This happens because the algorithm GetNextPermutation
(Knuth’s L-Algorithm [11]) generates permutations in lexi-
cographic order starting from {0, 1, 2, 3, 4, 5, 6, 7} and with
the antipodal reflection {7, 6, 5, 4, 3, 2, 1, 0} the permuta-
tions will be in the same class.

The volume is partitioned using an octree generating for
each level 8 octants. We must sort the octants by their
average density to find the equivalent permutation but we
are more interested for their initial indices than for the final
sorted array. For this we are going to use a simple modified
selection sort algorithm.

In Algorithm 4 we use the GetPermutationIndex func-
tion (Knuth’s P-Algorithm [12]) to find the index of the
permutation and we use it with the pre-computed array class
such that each octant will be classified.

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-195-3

MMEDIA 2012 : The Fourth International Conferences on Advances in Multimedia

Algorithm 3 GeneratePermutationClassMap
Require: PermutationGroup PG[48]
Ensure: PermutationClassMap C[40320]
k ← 1
p← {0, 1, 2, 3, 4, 5, 6, 7}
repeat
ip ← GetPermutationIndex(p)
if C[ip] 6= nil then

for i = 1→ 48 do
q ← p ◦ PG[i]
iq ← GetPermutationIndex(q)
if C[iq] 6= nil then
C[iq]← k

end if
end for
k ← k + 1

end if
until GetNextPermutation(p) = nil

Algorithm 4 FindPermutationClass
Require: Octants O[8], PermutationClassMap C[40320]
Ensure: PermutationClass
{Compute average density}
for i = 1→ 8 do
count← V oxelCount(O[i])

A[i] = 1
count

count∑
j=1

V oxelDensity[j]

end for
{Selection Sort}
for p = 1→ 8 do
min = p
for i = p+ 1→ 8 do

if A[i] < A[min] then
min← i

end if
end for
Swap(A, p,min)
P [p]← (min− 1)

end for
return C[GetPermutationIndex(P)]

VI. CONCLUSION AND FUTURE WORK

This paper uniquely presents how to use symmetric per-
mutation groups to classify octree nodes into similar blocks.
This classification is used to feed the Fractal Volume Coding
algorithm such that the Domain-Range search will provide
better distortion-curve results.

Future work will focus on speeding the domain pool
search. We can extend the work of Kominek [5] to 3D
by implementing a multi-dimensional r-tree indexing of the
domain pool or by using other spatial data structures like
the M-Tree [13]. Another interesting approach is to exploit

SIMD architecture of the graphics commodity hardware
available [14].

In this paper we complete our preliminary work done
in Fractal Volume Coding [9] by finding a method for
classifying the Domain Pool so that to have a good com-
pression ratio. Having this done we can advance into the full
implementation and have some useful experimental results.
Unfortunately we do not have any experimental results to
provide at this moment but a detailed description of the
classification method will provide a better understanding of
the method in matter.

REFERENCES

[1] M.F. Barnsley, and L.P. Hurd. Fractal Image Compression, AK
Peters, Ltd., Wellesley, Ma., 1992.

[2] M. S. Lazar and L. T. Bruton. Fractal block coding of digital
video, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 4, no. 3, pp. 297308, 1994.

[3] A. Jacquin. A Fractal Theory of Iterated Markov Operators
with Applications to Digital Image Coding, PhD thesis, Geor-
gia Institute of Technology, 1989.

[4] Y. Fisher, E.W. Jacobs, and R.D. Boss, Fractal image compres-
sion using iterated transforms, Technical Report 1408, Naval
Ocean Systems Center, San Diego, CA, 1991.

[5] J. Kominek, Advances in fractal compression for multimedia
applications, Multimedia Systems, 5:255-270, Springer-Verlag,
1997.

[6] J. M. Beaumont, Advances in block based fractal coding of still
pictures., Proc IEEE Colloquium: The Application of Fractal
Techniques in Image Processing, pp 3.13.6, 1990.

[7] D. Saupe, Lean domain pools for fractal image compression,
Proceedings of PSIE Electronic Imaging’96, Science and Tech-
nology, Still Image Compression II, Volume 2669, San Jose,
1996.

[8] W. O. Cochran, J.C. Hart, and P.J. Flynn, ”Fractal volume com-
pression”, IEEE Transactions on Visualization and Computer
Graphics, Page(s):313 - 322, 1996.

[9] M. Popescu, M. Tudorache, and R. Tanasie, Volume Content
Indexing using a Fractal Coding Algorithm, IEEE Computer
Society, 2010.

[10] Donald E. Knuth, The Art of Computer Programming, Section
1.3.3, p.178-179, Volume 1, 3rd Ed, Addison-Wesley, 1997.

[11] D. E. Knuth, The Art of Computer Programming, Section
7.2.1.6, p.3, Volume 4, Fascicle 4a, Addison-Wesley, 2005.

[12] D. E. Knuth, The Art of Computer Programming, Section
3.3.2, p.65-66, Volume 2, 3rd Ed, Addison-Wesley, 1998.

[13] M. C. Mihaescu, D. D. Burdescu, ”Using M Tree Data
Structure as Unsupervised Classification Method”, Informatica
Journal, Ljubljana, 2011.

[14] U. Erra, Toward Real Time Fractal Image Compression Using
Graphics Hardware Advances in Visual Computing, 2005 -
Springer

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-195-3

MMEDIA 2012 : The Fourth International Conferences on Advances in Multimedia

