
Accelerating Image Processing in Flash using SIMD Standard Operations

Chamira Perera
†
, Daniel Shapiro

‡
, Jonathan Parri

‡
, Miodrag Bolic

‡
, Voicu Groza

‡

†
Systems and Computer Engineering, Carleton University

‡
Computer Architecture Research Group, University of Ottawa

†
cperera@sce.carleton.ca,

‡
{dshap092, jparr090, mbolic, groza}@site.uottawa.ca

Abstract— Flash applications have played an integral role in

shaping the interactivity of the Internet. Desktop Flash

applications feature vector-based processing such as image

and video processing to enhance the user experience. In

response to these needs, Adobe has added graphics card

based acceleration for vector processing in Flash applications

starting with Flash Player 10. This solution is limited to

computer systems that have the proper graphics card. In this

paper, we investigate the possibility of making explicit use of

Single Instruction Multiple Data instructions, specifically

SSE in the Intel x86-64 platforms, to accelerate vector

operations in a Flash application. We also discuss certain

limitations of the Flash virtual machine. The data reveals

that a 90-92% speedup can be achieved by using SSE

instructions to accelerate the alpha blending image

processing algorithm in a Flash application. The SSE

instructions are accessed by providing a standardized limited

native interface to the Flash application.

Keywords-SIMD; image processing; native code interface;

image processing acceleration; virtual machine; Flash

I. INTRODUCTION

Since the advent of Web 2.0, Adobe Flash has played

an important role in making websites interactive and fun

to use. An example of this is the well-known YouTube

service, which allows users across the world to share and

stream videos. ActionScript, currently in version 3, is the

programming language used to create Flash programs.

Flash’s ActionScript, just like Java, is an interpreted

language. The ActionScript Virtual Machine (AVM)

performs this interpretation. The advantage here is that the

AVM allows Flash applications to run in a platform

independent manner.

The inclusion of various image, video, and audio type

processing makes Flash applications feature rich. The data

input to the application must be processed in a timely

manner. Otherwise, the application will not be considered

to be enjoyable. Flash applications are interpreted and so

they are not expected to perform as quickly as

applications that are compiled and linked for a particular

hardware platform, but are often expected to meet a user’s

perceived real-time perspective.

The Single Instruction Multiple Data (SIMD)

instructions allow programs that feature vector-based

processing such as image, video, and audio to be

accelerated. The Intel x86 and x64 platforms support

SIMD instructions inside the Central Processing Unit

(CPU), and these instructions are known as Streaming

SIMD Extensions (SSE). SSE instructions have been

added to the instruction sets of modern CPUs to offer fast

vector processing possibilities.

Currently, image and other types of vector processing

can be accelerated in Flash programs using hardware

acceleration from the Graphics Processing Unit (GPU).

This acceleration is only available when used with certain

graphics cards from Nvidia and ATI [1]. In addition to the

GPU, SIMD instructions available on the CPU can also be

used to accelerate vector processing for Flash

applications. Unlike the expensive GPU, which is a

computer system add-on, CPUs with SSE are more widely

available and have no extra price tag.

In this paper, we show that SSE instructions available

on an Intel x86 CPU can be used to accelerate the

processing of images in a Flash application. This work

follows closely in the footsteps of [2], which used SSE to

accelerate Java applications using available SIMD

instructions. The acceleration for Flash applications is

performed by providing a limited native interface to a

standalone Flash application so that it can access SSE

instructions directly. This study focuses on accelerating

the alpha blending image processing algorithm for color

images in the RGB color space using SSE instructions.

Figure 1 shows the high-level view of the components

involved in accelerating image processing in Flash

applications using SSE. The native interface opened by

the Flash application allows it to invoke functions in a

Dynamic Linked Library (DLL), which in turn uses SSE

instructions to accelerate the processing of images. We

found no explicit support in the AVM to make use of SSE

instructions from within Flash applications and it is not

discussed in the available AVM literature.

The remaining sections of the paper are organized as

follows: Section 2 provides background information on

Flash applications, SSE, and alpha blending, Section 3

discusses related work, Section 4 discusses the

implementation work of this study, Section 5 discusses the

experimentation that was performed to evaluate the

effectiveness of the proposed method and results, and we

conclude by summarizing our results in Section 6.

118

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

ActionScript 3 User Code

ActionScript Virtual Machine

Dynamic Linked Library

SSE Instructions

Figure 1. High-level organization of the method to accelerate image

processing in Flash applications.

II. BACKGROUND

This section provides background information on the

technologies used in the study. Section 2.1 briefly outlines

Flash, Section 2.2 discusses Intel’s SIMD version: SSE,

and finally Section 2.3 illustrates the alpha blending image

processing algorithm.

2.1 Flash

An Adobe Flash program compiled into a .SWF file

(pronounced as “swiff”) runs on any web browser that has

a Flash Player plug-in installed. Flash media can also run

as a standalone application outside a web browser when

packaged into an executable file on various operating

systems (OS). These are known as Flash projectors.

Having Flash Player allows Flash programs to run on any

processor architecture and OS, which is similar to how

Java programs run on top of a Java Virtual Machine.

The low level processing in a Flash program can be

implemented using ActionScript 3. The ActionScript 3

code is compiled into ActionScript Byte Code (ABC) and

packaged into a .SWF file, which is interpreted by the

AVM when the Flash application is executed [3].

The Flash platform does not provide a native interface

for Flash applications to invoke native code. The lack of

native access can be attributed to the perceived security

risks that it imposes, and the cross-compatibility that may

result from calls to native code. For example, a rogue

Flash application running in a web browser could hack the

target machine, and the Flash VM of a cell phone is likely

not equipped to execute native code for a desktop PC. We

leave the problem of security and cross-compatibility for

future work. The Zinc 3.0 Flash builder tool by MDM

provides the ability to create a standalone Flash projector

from a .SWF file and includes functionality in the

projector to load a DLL [4]. This is the basis for our

native interface.

2.2 SSE

SSE is Intel’s version of SIMD instructions for their

current and recent x86-64 CPUs and is the evolution of

MMX. AMD processors also feature support for SSE.

Support for SIMD initially started with the introduction of

MMX and until today SSE has had many revisions and

currently it is at revision 4.2 (SSE4.2) [12]. The SSE

architecture features eight 128-bit wide vector registers. In

2010, Intel showcased its Advanced Vector Extensions

(AVX), which feature 256-bit wide vector registers [6].

The first version of SSE provided more support for

floating point operations compared to integer operations.

In addition, it does not allow an instruction to pack

smaller units of data (8-bit values) to vector registers.

SSE2 enhanced SSE by providing more support for

integer arithmetic including operations to handle 8 and

16-bit data in SSE registers. This is ideal for image

processing as the smallest size of data (e.g., a color

channel of a pixel) in an image is usually an 8-bit value

[5]. The net result of using SSE2 for image processing

rather than SSE is that more pixels can be loaded into a

single vector register and more parallelism can be

achieved and exploited. For this study, SSE2 instructions

were used to accelerate image processing.

2.3 Alpha-Blending

Simply put, alpha blending is an image processing

algorithm that allows two images to be blended together

[7]. An example is blue screen matting, where a

newscaster can be superimposed in front of a particular

background to give the illusion that he/she is actually in

front of the background. To perform alpha blending, Eq.

(1) can be used. FG and BG correspond to foreground and

background images respectively. F is the resulting image

from the blending, and α ranges from 0 to 1 inclusively.

By changing the value of α, the contributions of the

pixels from the foreground and background to the blended

image can be controlled. To apply this equation to color

images, all three color channels, i.e., red, green, and blue

values have to be updated in the same manner.

F pixel = α ⅹFG pixel + (1.0 - α) ⅹ BG pixel (1)

An optimized version of the alpha blending equation is

shown in Eq. (2). This equation was derived from an

equation shown in [10]. Unlike in (1), the values of α in

this equation range from 0-255. Therefore, this equation

assumes that the α values are read from an image. This

image is known as a matte.

F pixel = α ⅹ (FG pixel – BG pixel) >> 8 + BG pixel (2)

Note that the right shift by 8 (divide by 256)

introduces a certain amount of error in the blending as the

value of α should be divided by 255 to ensure that the

values are within the proper range (0 to 1). This error

cannot easily be detected by the human eye. An example

119

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

of a matte image is shown in Figure 4. Figure 5 shows an

example of how alpha blending was applied to blend the

background shown in Figure 2 and foreground shown in

Figure 3 using the matte available in Figure 4. SIMD can

easily be applied to accelerate alpha blending because the

same operation is applied to all pixels and each color

channel in the pixel.

Figure 2. Example background image.

Figure 3. Example foreground image.

Figure 4. Example custom matte.

Figure 5. The alpha blended image.

III. RELATED WORK

The work done in this paper is in line with the work of

[2] to accelerate Java applications that perform vector

operations using SSE instructions. Their work used the

Java Native Interface (JNI) to access SSE instructions and

accelerate vector operations in Java. Their vector

operation was completely implemented using SSE

instructions and wrapped in a function, which is part of a

DLL and presented as a standardized API. Their results

showed a 1.0x-4.0x speed up of the Java application with

SSE acceleration over an application that implements the

operation only in Java.

Usage of SSE instructions to accelerate image

processing is not a new concept. This has been

demonstrated in the Intel whitepaper [5], which makes use

of SSE, SSE2 and AVX instructions to accelerate cross-

fade and sepia filters in image processing. Since

processors that support AVX instructions are still not

mass produced, Intel used a processor simulator to

simulate the AVX instructions. In [9], SSE2 instructions

were used to speed up a Harris corner detector used in

image processing.

Adobe provides the ability to accelerate image and

other vector processing algorithms using the GPU in their

Pixel Bender Toolkit [1, 11]. Using this toolkit a

developer can implement a vector processing algorithm

and compile it into byte code. In the Adobe literature, the

vector processing algorithm produced by the toolkit is

known as a shader [11]. This byte code is imported into

the Flash application by the ActionScript code and is used

to perform the vector processing. This capability was

added starting with Flash Player 10. The usage of the

GPU is opaque to the developer and there is no way to say

for certain that specific operations are performed in the

GPU or not. Another disadvantage of this approach is that

the acceleration can only be achieved with certain GPUs:

only a subset of those available from Nvidia and ATI.

Overcoming this weakness, the work in this paper shows

that the vector unit is a viable alternative to the GPU.

Hence, a user should not have to invest in an additional

120

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

graphics card but instead experience optimal acceleration

from the already available vector unit in the processor.

IV. IMPLEMENTATION

To invoke SSE instructions in a Flash program, a

limited native interface was added to Flash applications

(see Figure 1). This approach is similar to the JNI, which

allows Java applications to call native functions in a DLL

written in other languages such as C++. The Flash

platform does not provide a native interface that Flash

programs can use. To overcome this issue the MDM Zinc

3.0 Flash Builder tool was used.

Prior to implementing an image processing algorithm,

a generic vector processing algorithm was implemented in

a manner similar to [2]. In their work, the data that is

processed by the Java application is generated by the Java

application and is processed by the native function. Due to

severe limitations in the native interface provided via the

Zinc 3.0 tool, no speedup of the algorithm was achieved

when the Flash application relied on SSE instructions to

accelerate the vector operation. This is because the native

interface only allows the programmer to pass either

primitive types (i.e., different size integers) or a string of

characters, therefore, if a vector of integers have to be

passed to the DLL to process and another vector has to be

returned then each element in the vector has to be

converted to a string of characters. Furthermore, this

string of characters must be decoded and the original

vector has to be reconstructed so that the data can be used.

This operation of encoding and decoding of the elements

of the vector consumes a large amount of time and this

time alone was enough to offset the execution time

improvement, such that the implementation of the vector

operations in Flash was faster. We look to greatly improve

on this in future work.

Instead of operating on vectors using data that are

generated in the Flash application, a different approach

was applied where the Flash application performs vector

processing on file based data such as image files or audio

files. The native code in the DLL performs the vector

processing as before. The Flash application does not load

the image file into its local memory space but instead it

delegates that task to the DLL by passing it a path to the

location of the file. After the images are loaded, the Flash

application invokes a function that performs the image

processing, i.e., the alpha blending. The native function

saves the resulting blended image to a location specified

by the Flash application. Once the control returns back to

the Flash application, it loads the blended image to its

own local memory space and displays the image to the

user.

The native code to perform alpha blending was

implemented using SSE2 instructions. The pseudo

implementation of the algorithm using SSE2 instructions

is shown in Figure 6. The underlying assumption in the

implementation is that the total number of the pixels in

each image (i.e., the foreground, background, and matte

images) should be a multiple of 16. This is a reasonable

assumption as almost all of the mainstream image

resolutions (e.g., 720p, 1080p) have this property. The

matte image is usually gray-scale but it was converted to

an RGB image so that the algorithm could be

implemented with less complications. Note that the RGB

channel values for a gray-scale image are the same.

Initially, 16 bytes worth of pixels of each image is

loaded into three SSE registers. The Portable Image

Library (PIL) was used as an image handling library [8].

The PIL stores a pixel as a 3-byte value (each color

channel occupies one byte), as it loads an RGB image and

returns a handle to the location that it is stored in memory

[8]. Because 3 bytes per pixel are needed, there can be at

most five full pixels and one partial pixel in an SSE

register.

All three images have to be interleaved with zeros

because the SSE2 multiply operation only multiplies 16-

bit data. Note that, because of the interleaving, 8 bytes of

pixel data will be in one SSE register and the other 8 bytes

will be in another register. After the operations required

for the algorithm are performed, the bytes that correspond

to the pixel data have to be extracted one by one and

written to the buffer that holds the resulting image.

At first glance, this operation may seem very

inefficient due to 16 individual memory writes by

software. However, the performance of this approach was

compared against another implementation that makes use

of an SSE3 instruction (PSHUFB). This instruction can be

used to shuffle the bytes in an SSE register around. With

this instruction the two sets of interleaved data can be

placed into one single SSE register and the contents of it

can be written to memory using a single SSE2 instruction.

When the performance was evaluated, the execution time

was exactly the same as the original solution, and since

SSE3 is supported only on newer Intel CPUs (Core 2

Duo, Core i7), the SSE3 approach was not pursued any

further.

Load 16

bytes of FG

Load 16

bytes of BG

Interleave FG

with zeros

Interleave

BG with

zeros

Subtract BG

from FG

Multiply

result with

matte

Shift result

right by eight

Load 16

bytes of

matte

Interleave

matte with

zeros

Add BG to

result

Images

Processed?
End

Yes

Extract

interleaved

data and write

to memory

Advance pointers

to image data by

16

No

Start
Initialize

variables

Figure 6. Pseudo SSE2 implementation of the alpha blend algorithm.

121

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

V. EXPERIMENTAL EVALUATION AND RESULTS

To evaluate the effectiveness of accelerating alpha

blending in a Flash application using SSE instructions, the

performance was measured for four different

implementation possibilities, and the results compared.

The approaches evaluated were: implementation of the

algorithm with our accelerated Flash approach, only in

Flash, only in C, and in C using SSE instructions. In the

latter implementation, the DLL that was compiled for the

Flash and SSE implementation was reused. The latter two

implementations represent the best possible

implementation in terms of performance as the program is

compiled to run directly on the hardware without any

interpretation. Alpha blending was performed on a pair of

eight images with different image resolutions. In addition,

eight matte images were also used for the blending. Only

mainstream image resolutions were used for the

evaluation as the total number of pixels is a multiple of

16.

The evaluation of all four implementations of alpha

blending was done on an Intel Centrino Duo machine with

2.5GB of RAM. The OS used on the machine is Windows

Vista. The C implementation and the DLL were compiled

with optimization for speed enabled. In the Flash-only

implementation, the entire set of pixels were extracted and

stored in an instance of a vector class in ActionScript 3.

This method provides the quickest possible

implementation.

Fifty runs were performed on each resolution for each

implementation and the execution time for each run was

recorded. Note that only the image resolution and not

individual pixel values affect the performance of the given

operation. The average and the standard deviation were

computed at the end of each run. Figure 7 shows pseudo

code for the method that was used to measure the

execution time of each implementation. The average

execution times (in milliseconds) for each resolution used

in the performance evaluation are shown in Table 1, while

Table 2 shows the standard deviations of the execution

times. Figure 8 depicts the average execution times shown

in Table 1 in a graphical format.

Figure 7. Method of measuring execution time.

According to the results shown in Table 1 and Figure 8 it

is evident that there is a speedup when a Flash program

makes use of SSE instructions to perform vector

operations over an implementation that solely relies on

Flash to perform the computations. This speedup is

summarized in

Table 3. In addition, it shows the speedup of the

implementation of the algorithm in C that uses SSE over

the implementation that uses both Flash and SSE. We

found that the Flash with SSE implementation has a

speedup of 90-92% over a Flash-only implementation and

a speedup of negative 7%-34% over a C and SSE

implementation. The results were in line with

expectations, as the native code was faster than the code

running through the AVM. Since the standard deviations

of the execution times were low it is evident that external

factors such as garbage collection in the AVM and OS

context switching have not influenced the variability of

the runtimes in a drastic manner.

TABLE 1. AVERAGE EXECUTION TIMES IN MS FOR DIFFERENT IMAGE

RESOLUTIONS.

Image

Resolution

TFlash

(ms)

TFlash+SSE

(ms)

TC

(ms)

TC+SSE

(ms)

640x480 30.16 2.9 3.04 2.04

768x576 43.84 3.9 4.22 3.06

800x600 47.76 4.78 5.02 3.14

1024x600 60.42 5.22 6.14 4.04

1280x720 89.82 7.86 10.02 6.08

1366x768 102.56 8.58 11.02 7.18

1680x1050 173.06 13.82 19.1 12.13

1920x1080 201.66 16.2 23.44 15.06

TABLE 2. STANDARD DEVIATIONS OF THE EXECUTION TIMES FOR

DIFFERENT IMAGE RESOLUTIONS.

Image

Resolution

σFlash σFlash+SSE σC σC+SSE

640x480 0.65 0.416 0.282 0.282

768x576 1.076 0.364 0.418 0.24

800x600 1.733 0.932 0.141 0.405

1024x600 1.071 0.545 0.405 0.34

1280x720 1.119 0.808 0.141 0.274

1366x768 1.981 1.247 0.141 0.482

1680x1050 1.931 0.748 0.364 0.598

1920x1080 1.303 1.125 2.011 0.314

Figure 8. Graph of image resolution vs. average execution time.

start = get_sys_time_stamp()

alpha_blend()

end = get_sys_time_stamp()

execution_time = end - start

122

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

TABLE 3. SPEED OF FLASH VS. FLASH+SSE AND FLASH+SSE VS. C+SSE.

Image

Resolution

Speedup

Flash+SSE vs.

Flash (%)

Speedup

Flash+SSE vs.

C+SSE (%)

640x480 90.38 29.66

768x576 91.1 21.54

800x600 90 34.3

1024x600 91.36 22.61

1280x720 91.25 22.65

1366x768 91.63 16.32

1680x1050 92.01 12.22

1920x1080 91.97 7.03

VI. CONCLUSION

The purpose of this work was to prove that a Flash

application that performs vector processing can be easily

accelerated using SIMD instructions such as the SSE

instruction sets on common x86-64 CPUs. Adobe already

has a solution to accelerate vector-based processing using

GPUs, however, this solution is only available to a limited

number of GPUs, and moreover only to consumers who

pay extra to have a GPU in their system. If the

acceleration is provided via the vector unit in the CPU

then it is available without having to invest money in a

special GPU. The minimum system requirements to run

the alpha blending algorithm outlined in the paper is a

Intel Pentium 4 machine since it requires support for

SSE2 and 128MB of RAM to run Flash Player 10.

This acceleration was proven only in a limited case

where the data to be processed can be loaded from a file

and the resulting data can be saved back into a file. In

addition, the Flash application can only be executed as a

standalone desktop application (Flash projector) and not

in a web browser in its current state. The reason for this

limitation is due to the fact that the current Flash platform

does not have a native interface to call native functions in

a DLL unlike Java, which has a fully featured JNI, and the

fact that the Zinc 3.0 Flash builder only provides support

to create standalone Flash desktop applications that

feature a very limited native interface. The native interface

is provided via loading a DLL and being able to invoke

functions in it.

For this work, we implemented the alpha blending

image processing algorithm using SSE2 instructions,

compiled it into a DLL, and the Flash application invoked

the algorithm using the native interface provided by the

Zinc 3.0 tool. The experimental results show that there is a

speedup of 90-92% when alpha blending is performed by

a Flash and SSE implementation over a Flash-only

implementation. The size of the image was orthogonal to

the speedup. Even though only one image processing

algorithm was considered in this study, due to the nature

of most image processing and vector processing

algorithms it can be concluded that by using Flash

applications that have vector operations can be

accelerated using SSE instructions. Such inherent parallel

support should be included in the ActionScript

specification and made available in the AVM.

The solution outlined in this paper neglects that a

Flash based web application calling native code via a

native interface can introduce a security risk and

compatibility issues. To alleviate these security concerns

the available options are to:

 Make Pixel Bender generate SSE instructions when it

cannot detect the proper GPU on the computer system.

 Incorporate SSE directly into the AVM and augment

ActionScript specification for better vector operation

support.

In our upcoming work, we will address the security

and compatibility concerns posed by exposing the vector

instructions directly through generic calls to the VM.

Mapped and complete SSE integration into the

ActionScript specification and AVM will move ahead

with an SSE bypass in the open source ActionScript

virtual machine, Tamarin [13], produced by Mozilla and

Adobe.

REFERENCES

[1] Adobe Systems Inc., “Pixel Bender release notes.” [Online]. Available:

http://www.adobe.com/devnet/pixelbender/articles/releasenotes.html.

[Accessed: Feb 1, 2011].

[2] J. Parri, J.M. Desmarais, D. Shapiro, M. Bolic, and V. Groza, “Design of

a Custom Vector Operation API Exploiting SIMD Intrinsics within Java,”

23rd Canadian Conference on Electrical and Computer Engineering, pp. 1-4,

May 2010.

[3] ActionScript Virtual Machine 2 (AVM2) Overview, Adobe Systems Inc.,

San Jose, CA, USA, 2007.

[4] MDM, “Zinc™ 3.0 - Rapid Application Development for Adobe®

Flash.” [Online]. Available:

http://www.multidmedia.com/software/zinc/. [Accessed: Feb. 1, 2011].

[5] Image Processing Acceleration Techniques using Intel® Streaming

SIMD Extensions and Intel® Advanced Vector Extensions, Intel, Santa

Clara, CA, USA, 2009.

[6] Intel, “Picture the future now Intel® AVX.” [Online]. Available:

http://software.intel.com/en-us/avx/. [Accessed: Feb. 1, 2011].

[7] J.F. Blinn, “Compositing. 1. Theory,” Computer Graphics and

Applications, IEEE, vol. 14, no. 5, pp. 83-87, September 1994.

[8] A. Whitehead, “Portable Image Library (PIL).” [Online]. Available:

http://iv.csit.carleton.ca/~awhitehe/PIL/. [Accessed: Feb 1, 2011].

[9] J. Skoglund and M. Felsberg, “Fast image processing using SSE2,” in

Proc. SSBA Symposium on Image Analysis, Malmö, Sweden, 2005.

[10] W. Shao, “Tip: An Optimized Formula for Alpha Blending Pixels.”

[Online]. Available:

http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c15989/Ti

p-An-Optimized-Formula-for-Alpha-Blending-Pixels.htm. [Accessed: April

Feb. 1, 2011].

[11] Programming ActionScript 3.0 for Flash, Adobe Systems Inc., San

Jose, CA, USA, 2009.

[12] S. Siewert, “Using Intel® Streaming SIMD Extensions and Intel®

Integrated Performance Primitives to Accelerate Algorithms.” [Online].

Available: http://software.intel.com/en-us/articles/using-intel-streaming-

simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-

algorithms/. [Accessed: Feb. 1, 2011].

[13] Mozilla, “Tamarin Project.” [Online]. Available:

http://www.mozilla.org/projects/tamarin/. [Accessed: Feb. 1, 2011].

123

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

