
3D Object Retrieval and Pose Estimation for a Single-view Query Image in a Mobile
Environment

Yoon-Sik Tak
Department of Electrical Engineering

Korea University
Seoul, Korea

Life993@korea.ac.kr

Eenjun Hwang
Department of Electrical Engineering

Korea University
Seoul, Korea

ehwang04@korea.ac.kr

Abstract—3D object retrieval and its pose estimation for a
single view query image are essential operations in many
specialized applications. With the recent deployment of various
mobile devices, such operations require near real-time
performance. However, most of the existing methods are not
appropriate for mobile devices, due to their massive resource
requirements. In this paper, we propose new 3D object
retrieval and pose estimation schemes that can be used on a
client-server platform. In order to accomplish this, we first
construct both a sparse and a full index on the shape feature of
the objects for the client and the server, respectively. Then, the
client (the mobile device) retrieves the candidate camera view
images that are similar to the query image by using the sparse
index. The server refines the results by using the full index and
then computes the exact pose by using the SIFT (Scale
Invariant Feature Transform) features. In the experiment, we
show that our prototype system based on the proposed scheme
can achieve an excellent performance.

Keywords- 3D object retrieval, pose estimation, shape-based
retrieval, distance curve, SIFT.

I. INTRODUCTION

3D object retrieval and pose estimation are popular
operations in various applications, such as robotic vision,
medical image analysis, unmanned aerial vehicles (UAVs),
and manufacturing automation. For instance, such operations
can be used by robots to recognize diverse objects and
change them to some specific pose for further actions such as
assembly [1].

Depending on the hardware requirements, existing
studies on the problem can be classified into three groups:
The first group uses specialized equipment, such as the CMU
high speed VLSI range sensor found in [2] and the CCD
camera and laser scanner found in [3]. The second group
uses multiple cameras. For example, in [4], the pose
estimation was done using a pair of ground and onboard
cameras for an autonomous unmanned aerial vehicle. In [5],
a linear algorithm for computing the 3D points and the
camera positions from multiple perspective views was
proposed. The third group uses a single camera. For instance,
in [6], a fully automatic solution using the Contracting Curve
Density algorithm with speedup factors and SIFT features
was proposed for a 3D object pose tracking. In [7], a pose
tracking scheme based on the SIFT features and the Ferns

was proposed for the classification of objects on mobile
phones. The SIFT and Ferns were simplified for mobile
phones at the cost of accuracy, due to their resource
requirements. In our previous works [8][9], we introduced a
simple object type classification scheme based on the shape
symmetry and presented a time-consuming but accurate
client-server collaboration scheme for 3D object retrieval in
a mobile environment.

 In this study, we ameliorate our previous work in the
following directions: (i) We present a new object type
classification scheme, which can determine the type of an
object automatically using the shape difference curve. ii) We
present another client-server collaboration scheme which
takes an heuristic approach to determine the object pose
faster. We compare the performance of those two
collaboration schemes through extensive experiments

In order to achieve good object recognition, we construct
two indexes with different granularities based on the shape
of the objects: The sparse index is constructed for the client
in order to perform an approximate matching using large
angle view images. Therefore its size is small compared to a
full index. Conversely, the full index is constructed for the
server using the small angle view images; these can be used
for a more accurate matching. We propose two different
client-server collaboration schemes in order to achieve load
balancing. Basically, the client performs an approximate
matching using the sparse index. The server refines it by
using the full index. Since different view images of an object
could give the same shape, we use their SIFT features for an
accurate pose estimation. Figure 1 shows the overall
architecture of our scheme.

Feature
extraction

Full view DB &
Index

Matching
(k-NN Search)

Result Refinement

Pose Calculation

Pose Selection

Query

Sparse view DB &
Index

Client Server

Figure 1. An illustration of system flow

62

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

II. THE VIEW INDEX ORGANIZATION

A. The Shape Represenstation

One straightforward method for shape based 3D object
recognition is to consider all of the distinct camera views of
the objects. For each camera view image, we first extract its
shape contour and then calculate its distance curve by
connecting the distances between the center point and all of
the points along the shape contour. Considering the distance
curve as sequence data, we can use well-known sequence
matching techniques for retrieval purposes. In addition, we
can construct a multidimensional index based on their DFT
(Discrete Fourier Transform) values.

B. Camera View Skimming

Most real-world objects have bisymmetry in the front
and/or on the side. Depending on the object symmetry,
different camera view images of an object can have a same
or a mirrored shape. Formally, for an image at an arbitrary
angle, we can define three related images according to the
camera viewpoint, as seen in Figure 2: the rear image, the
mirror image, and the reflective image. Based on these
images, the following properties are exhibited depending on
the object symmetry: (i) for a bisymmetrical object, the
mirror image has the mirror shape of the object; (ii) for any
object, the rear image also has the mirror shape of the object;
and (iii) the reflective image has the same shape of the given
image. Based on these facts, we can remove the redundant
camera view images that have the same or mirrored shapes
from the index without sacrificing any matching accuracy.
This facilitates the reduction of the index size and improves
the matching speed. More specifically, our camera view
skimming scheme consists of two parts: i) Mirror image
pairing, and ii) Camera view pruning.

Mirror image pairing: For any type of object, an image and
its rear image have mirrored shapes. Distance curves of
mirrored shapes are simply the reverse of each other, and
their DFT values are the same. Therefore, we can pair these
mirror shaped view images via a set of DFT values. By
pairing the mirror-shaped views during indexing and
restoring the reversed curve during matching, the index size
can be reduced by 50%.

Camera view pruning: Since all of the viewpoints of 3D
objects can be generated by a combination of horizontal and
vertical camera movements, we can consider the object
symmetry in two planes: the horizontal and the vertical.
Depending on the front and side symmetries, we can define
four object types per plane. For instance, the horizon plane
has four object types: H1- H4:

H1: Represents objects that have the same shape with respect

to all horizontal camera views (e.g., a sphere).
H2: Represents objects that have front symmetry. Their

distance curves repeat every 90 degrees (e.g., cars).
H3: Represents objects that have front symmetry and the

same front and side views. Their distance curve repeats
more frequently than that of H2. (e.g., dice).

H4: Represents objects that have no repeating shape pattern.
We can define the vertical object types in the same
manner.
We define vertical object types in the same manner,

except that we consider the front and top views of the objects
in the vertical plane. By combining the horizontal and
vertical types, we can define 16 different object types.

Object type classification: Depending on the object type,
the index entries for the redundant camera view images can
be removed from the index without sacrificing any matching
accuracy. Even though most real-world objects have certain
level of symmetry, it is not easy to determine the exact object
type automatically. In order to perform this efficiently, we
developed a new object type classification method based on
the shape difference curve. Informally speaking, the shape
difference curve indicates how similar each camera view
image is to the base view image. The shape difference of
two different view objects can be defined by the Euclidean
distance of their distance curves. For any symmetric object,
its base view represents the camera view where the object is
exactly bisymmetric. Based on the base view image, we can
calculate its shape difference curve using all the camera view
images. Depending on the object type, its shape difference
curve has different repeating patterns. By analyzing these
repeating patterns, we can determine the object type. For
instance, Figure 3 shows the shape difference curve of a
sample car object. Since the car has bisymmetry, the
repeating pattern appears twice in the curve. The detailed

(1)
(2)

(3)

(4)
(5)

(6)

(7)

(8)

rear image
mirror shape

mirror image
mirror shape

reflective image
same shape

Figure 2. An illustration of shape patterns

Shape Difference

Camera Angle

Figure 3. The shape difference curve of a car object

63

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

steps for automatic object type classification are found in
Algorithm 1. By considering both the horizontal & the
vertical view sequences, we can automatically define object
types.

Algorithm 1: Object Classification (image sequence IS)
Variable queue : Queue;
Period P = {0, 0} // {a, b} denotes view image period from
a° to b°

1. find a base view BV from the images in IS
2. if there is no BV, exit the algorithm // Type 4.
3. else
4. calculate shape distance distances of BV image for IS
5. insert every image I whose shape distance is less than

some threshold σ into the queue
6. repeat until queue is empty do
7. retrieve one from the queue into next
 set EndP as ┌next.position/2┐
 initialize P to {0, EndP} and D to 0
8. for i is 2 to (180/ EndP)
9. for j is 0 to EndP
10. if i is odd
11. D += shape distance of Ij and I(i-1)* EndP+j
12. else
13. D += shape distance of Ij and Ii*EndP-j

14. if D ≤ σ
15. return P

C. The Index Construction

Even though the number of camera view images that
need to be indexed is considerably reduced via our camera
view skimming method, we still have to consider a large
number of view images of the 3D objects. Therefore, an
effective index structure is essential to achieve fast searching.
For this purpose, we have constructed a R-tree based
indexing structure based on the set of DFT coefficients
obtained from the distance curves. The detailed steps for
index construction are: (1) For the distance curve of each
view image, we calculate a set of Fourier Coefficients (FCs)
and define its Fourier Point (FP) which includes the object id,
the coordinate, the H_type, the V_type, and the distance

curve of the origin view. (2) For each object, we construct a
subtree which contains all of the camera views of the object
done by grouping the adjacent FPs using a minimum
bounding rectangle (MBR). For each MBR, the lower and
upper endpoints of the FCs are defined by its lower and
upper bounds. (3) All of the MBRs representing the subtree
in (2) are grouped again into larger MBRs until all of the
MBRs of the objects are contained in the Root MBR. Figure
4 illustrates the overall structure of our index structure.

III. MATCHING

In this section, we describe how the server and client
work together to retrieve similar 3D objects and estimate
their exact poses using a single view image. We consider two
different collaboration schemes: CS1 and CS2. The former
guarantees no false dismissal by considering all of the
camera view images at the server. The latter uses some
heuristics to speed up the matching process at the cost of
accuracy.

A. The K-NN Search in the Mobile Client

Since we represent the shape of the objects by using the
distance curve, any of the existing matching frameworks
proposed for the sequence data can be used. In this paper, we
revise the priority queue based k-NN search algorithm [10]
to find the k most similar to the objects based on our index
structure. In order to prevent an unnecessary and time-
consuming matching process, we hierarchically used several
low bound functions, such as Fourier_Dist, MINDIST and
LB_Keogh [10]. The revised k-NN search algorithm is
described in Algorithm 2.

Algorithm 2: k-NN Search (Q, k)
Variable queue : MinPriorityQueue;
1. queue.push(root);
2. result = {};
3. while not queue.IsEmpty() do
4. top = queue.Pop();
5. if top.id is in the result
6. continue;
7. else
8. if top is a sequence with DTW Dist.
9. add top to result;
10. if | result | = k
11. return result;
12. else if top is a leaf node
13. for each Fourier Point P in top do
14. queue.push(P, Fourier_Dist(Q,P));
15. else if top is a Fourier Point P
16. retrieve its full sequence S from DB;
17. queue.push(S, LB_Keogh(Q,S));
18. calculate reverse sequence S’ of S //mirror shape
19. queue.push(S’, LB_Keogh(Q,S’));
20. else if top is a sequence S with LB_Keogh Dist
21. queue.push(S, DTW(Q, S));
22. else
23. for each child node C in top
24. queue.push(C, MINDIST(Q,C));

Root MBR

MBR of object A

. . .

.

MBR of Objects

MBR of FPs

FP1
. . .

. . .

MBR of object D MBR of object E

MBR of Objects

MBR of object P

MBR of FPs

• 1st FC, 2nd FC, …, nth FC

High(1st FC) High(2nd FC) … High(nth FC)
Low(1st FC) Low(2nd FC) … Low(nth FC)

1st FC, 2nd FC, …, nth FCQuery Q :

• Coordination of the view
• H_Type, V_Type

• distance curve

• Object id

FPn

Figure 4. The overall index structure

64

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

B. Collaboration Scheme I (CS1)

After retrieving k similar objects for the given query Q,
the client sends the result R to the server for refinement. The
server refines it by using its full view index. In order to
speed up the refinement, we use the maximum distance of R
as an upper bound for the search. In order to guarantee no
false dismissals, the CS1 considers all of the views of the
objects during the refinement. Figure 5 shows the flow of the
CS1; a brief sketch for the CS1 is shown in Algorithm 3.

Algorithm 3: CS1 (Q, R)
Variable queue : MinPriorityQueue;

1. retrieve MBR of Object Os whose distance from Q ≤
maximum distance of R.

2. for each O
3. if O.id is in R
4. set the UB of O as the dist. in R.
5. else
6. set the UB of O as maximum distance in R.
7. insert O into the minimum priority queue.
8. k-NN Search_CS1(Q, k)

The k-NN Search_CS1(Q, k) at line 6 is a modified
version of Algorithm 2. The difference is that we don’t need
to push the root of the index (line 1) into the queue and the
following code segments need to be inserted before every
push operation.

1. if top.UB ≤ D(Q, top)
2. continue;
3. set top to one of the nodes {P, S, S’, C}
4. set D() one of the distances {Fourier_Dist(),LB_Keogh(),

DTW(), MINDIST()}

C. Collaboration Scheme II (CS2)

In some applications, a quick response time could be
more important than the guarantee of no false dismissal.
Moreover, with the huge database of 3D objects, supporting
a fast search can be prioritized at the cost of accuracy. CS2
speeds up the matching process by using a heuristic
algorithm at the cost of matching accuracy. This scheme is
based on the assumption that if, for two camera views V1
and V2 of an object and query Q, if angle(V1, Q) <
angle(V2, Q), then dist (V1, Q) < dist(V2, Q). Even though
there could be some exceptions, this assumption is still valid
in most cases. Based on this assumption, CS2 can refine R
very quickly. Figure 5 shows the CS2 flow; the major steps
are shown in Algorithm 4. Before adding the top into the
result in line 5 in Algorithm 2, Algorithm 4 is called in order
to refine the results of the mobile device.

D. The Candidate Pose Extraction

Since different views of an object might give the same
shapes, we have to consider all of the same shaped views to
give an accurate pose estimation. However, we have
removed the redundant view images with the same shape
obtained during the index construction. Therefore, at the
pose estimation stage, we need to retrieve these images from
the database or generate them dynamically from the 3D
object using software tools such as CAD. Equations (1) and
(2) explain the way to calculate the coordination of candidate
pose views when the coordination of the base view is (k, l).
HRperiod and VRperiod denote the period of horizontal and
vertical shape pattern, respectively. For instance, HRperiod of
typical cars is 90. By combining all of the x and y
coordination, we can get all of the candidate poses.

x =

even is i if k - i* HR

odd is i if k 1)-i(* HR

period

period
(1)

y =

even is if - * VR

odd is if 1)-(* VR

period

period

ilj

ilj
(2)

Client

Server

Shape-based
k-NN Search

Shape-based Detailed
View Calculation

Result Refinement

Pose Selection
Using SIFT

Candidate Pose
Calculation

①MR

②Refined
Result

③ Estimated Pose

① View
②Detailed

View

③MR

④ Estimated Pose

CS1

CS2

Figure 5. An overall flow for collaboration schemes

Algorithm 4: CS2 (Q, image I, client view gap Gc)
Variable queue : MinPriorityQueue;
1. set x as x coordination of I, y as y coordination, p as Gc.
2. extract 8 neighbor views N of I with the combination of

Vx±p, y±p
3. insert every N into the queue with LB_Keogh dist. and p
4. repeat until |Result| = k do
5. if top contains DTW distance

6. if server view gap Gs ≤ top.p, set top.p to top.p /2.
7. extract neighbor views N of top.p
8. calculate LB_Keogh(N, Q)
9. insert N into the queue with the distance and p.
10. else
11. insert top into Result
12. else
13. queue.push(top, DTW(Q, top));

65

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

where, 1≤i≤180/HRperiod and 1≤j≤180/VRperiod

E. The Pose Selection using SIFT Features

Among the candidate poses, the best matching pose can
be determined based on the actual visual features. This can
be done by using a well-known image matching method such
as SIFT [11] or SURF[12].
SURF is known to take relatively shorter time in matching
than SIFT. On the other hand, SIFT shows better accuracy
than SURF. In this work, we just need to consider a small
number of images for pose estimation. Hence, we use the
standard SIFT [11] method for matching for better accuracy
even though it will take slightly longer time than the SURF
method.

IV. THE EXPERIMENTS

A. The Systems and Datasets

In order to evaluate the performance of our proposed
scheme, we implemented a prototype system. The server was
equipped with an Intel Core2Duo CPU with 4 GB of RAM.
iPhone 3Gs was used as the mobile client. Most of the
applications at the client and server were implemented using
C#. For the dataset in the experiments, we generated 259,200
views from 200 objects collected via the Internet [8]. The
dataset contains diverse types of objects such as vehicles,
kitchen appliances and furniture, to name a few.

For the comparison, we considered six different system
configurations that depended on the platform and the use of
view skimming, as shown in Table 1.

Table 1 The System Configuration

Type Description
S1 Server alone with camera view skimming
S2 CS1 with camera view skimming
S3 CS2 with camera view skimming
S4 Server alone without camera view skimming
S5 CS1 without camera view skimming
S6 CS2 without camera view skimming

B. The Accuracy Comparison

In this experiment, we show that our camera view
skimming scheme does not impair the retrieval accuracy
under any platform. The query input was a randomly

selected view image stored in a database as a 3D model.
Figure 6 shows the cumulative match curves (CMC) of the
six different system configurations. For the test, we

Figure 6. An accuracy comparison

0

10

20

30

40

50

60

70

0 1 2 3 4 5

E
xe
cu
ti
o
n
 T
im

e
(s
)

K

S1

S2

S3

S4

S5

S6

(a) Camera angle = 20°

0

10

20

30

40

50

60

70

0 1 2 3 4 5

Ex
e
cu
ti
o
n
 T
im

e
 (
s)

K

S1

S2

S3

S4

S5

S6

(b) Camera angle = 30°

0

10

20

30

40

50

60

70

0 1 2 3 4 5

E
xe
cu
ti
o
n
 T
im

e
(s
)

K

S1

S2

S3

S4

S5

S6

(c) Camera angle = 40°

0

10

20

30

40

50

60

70

0 1 2 3 4 5

Ex
ec
u
ti
o
n
 T
im

e
(s
)

K

S1

S2

S3

S4

S5

S6

(d) Camera angle = 50°

Figure 7. The effect of camera angle on execution time

66

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

constructed indexes for 10° view images at the server and
30° view images at the client. From the graph, we observe
the following facts:

1) For any platform, the camera view skimming does not

have any effect on the accuracy.
2) Regardless of the view skimming, the three different

platforms show the same accuracy. Theoretically, the
server-alone and the CS1 guarantees the same accuracy.
However, unlike CS1, CS2 cannot guarantee the same
accuracy because CS2 refines the results using a heuristic
approach. Therefore, CS2 shows a lower accuracy than
CS1.

C. The Execution Time Comparison

In this experiment, we compare the total execution time,
which includes the approximate estimation at the client and
the result refinement at the server. In order to see the effect
of the camera view gap size on the execution time, we
considered four different camera angles for the client ranging
from 20° to 50°, inclusively. In any case, the server used 10°
of the camera view gap for the index construction. Since our
scheme basically searches for similar objects based on the K
-NN search, we measured the execution time by varying the
size of the K as 1 to 5. Figure 7 shows the results. From the
figure, we can observe the following facts:

1) Our camera view skimming scheme dramatically reduced

the execution time.
2) A wider camera angle for view images with CS1 at the

client helped to reduce the execution time since the wider
camera view angle results in a smaller index at the client.
However, an excessive camera angle gap can increase the
execution time due to the overhead at the server for the
refinement of the client result.

3) CS2 could reduce the execution time compared to CS1.
From the experiment, we observe that setting the view
extraction gap at the mobile client at 30° achieves a
minimal searching time.

V. CONCLUSION

In this paper, we proposed a new shape-based client-
server collaboration scheme for 3D object retrieval and pose
estimation in a mobile environment. In particular, we
proposed a camera view skimming scheme that reduces the
index size and improves the search time using the
bisymmetric property of most objects. For the pose
estimation, we used the SIFT method to compare the same-
shaped view images. Via various experiments on the
prototype system, we demonstrated the effectiveness of our
scheme. In addition, we proposed two collaboration schemes
and compared their performance. Conclusively, larger
camera angles used for the index at the client can reduce the
index size and improve the search time. However, excessive
camera angles might increase the search time at the server.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science
and Technology(2010-0025395)

REFERENCES

 [1] A. Collet and S.S Srinivasa, "Efficient multi-view object
recognition and full pose estimation," IEEE Conf. on Robotics
and Automation, pp.2050-2055, 2010.

[2] D.A. Simon, M. Hebert and T Kanade, "Real-time 3-D Pose

Estimation Using a High-Speed Range Sensor," IEEE Conf. on
Robotics and Automation, pp.2235-2241, 1994.

[3] L. Haoxiang, W. Ying and C.W. de Silva, "Mobile Robot

Localization and Object Pose Estimation Using Optical Encoder,
Vision and Laser Sensors," IEEE Conf. on Automation and
Logistics, pp.617-622, 2008.

[4] E. Altug and C. Taylor, "Vision-based pose estimation and

control of a model helicopter," IEEE Conf. on Mechatronics,
pp.316 - 321, 2004.

[5] C. Chen, D. Schonfeld and M. Mohamed, "Robust Pose

Estimation Based on Sylverster’s Equation: Single and Multiple
Collaborative Cameras," IEEE Conf. on Acoustics, Speech and
Signal Processing, 1085-1088, 2008.

[6] G. Panin and A. Knoll, "Fully Automatic Real-Time 3D Object

Tracking using Active Contour and Appearance Models,"
Journal of Multimedia, vol. 1 no. 7, 2006.

[7] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond and D.

Schmalstieg, "Pose Tracking from Natural Features on Mobile
Phones," IEEE/ACM Symposium on Mixed and Augmented
Reality, pp.125-134, 2008.

[8] H. Kim, Y. Tak and E. Hwang, "Shape-based indexing scheme

for camera view invariant 3-D object retrieval," Multimedia
Tools and Applications, Vol. 47, No. 1, pp.7-29, 2010.

[9] Y. Tak and E. Hwang, "Indexing and Matching Scheme for

Recognizing 3D Objects from Single 2D Image," Internet and
Multimedia Systems and Applications, 2009.

[10] E. Keogh and C. Ratanamahatana, "Exact indexing of dynamic

time warping," Knowledge and Information Systems, Vol.7, pp.
358-386, 2005.

[11] D.G. Lowe, "Distinctive Image Features from Scale-Invariant

Keypoints," International Journal of Computer Vision, Vol. 60,
no. 2, pp. 91 - 110, 2004.

[12] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, "SURF: Speeded Up
Robust Features", Computer Vision and Image Understanding
(CVIU), Vol. 110, No. 3, pp. 346- 359, 2008.

67

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

