
Low Complexity Corner Detector Using CUDA for Multimedia Applications

Rajat Phull, Pradip Mainali, Qiong Yang

Interuniversitair Micro-Electronica Centrum vzw.

Interdisciplinary Institute for BroadBand Technology

Kapeldreef 75, Leuven B-3001, Belgium
rajatphull@gmail.com, {pradip.mainali,qiong.yang}@imec.be

Patrice Rondao Alface

Alcatel-Lucent Bell Labs

Copernicuslaan 50, Antwerp B-2018, Belgium

patrice.rondao_alface@alcatel-lucent.com

Henk Sips

Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

sips@ewi.tudelft.nl

Abstract—High speed feature detection is a requirement for

many real-time multimedia and computer vision

applications. In previous work, the Harris and KLT

algorithms were redesigned to increase the performance by

reducing the algorithmic complexity, resulting in the Low

Complexity Corner Detector algorithm. To attain further

speedup, this paper proposes the implementation of this low

complexity corner detector algorithm on a parallel

computing architecture, namely a GPU using Compute

Unified Device Architecture (CUDA). We show that the low

complexity corner detector is 2-3 times faster than the

Harris corner detector algorithm on the same GPU

platform.

Keywords-LoCoCo; Harris feature detector; GPU; CUDA

I. INTRODUCTION

High speed detection of feature points is a fundamental
requirement of many real-time computer vision and multimedia
applications such as image matching, immersive
communications, augmented reality, object recognition,
mosaicing etc. Among robust and real-time feature point
detectors (a good survey can be found in [16]), corner detection
algorithms such as Harris [3] and KLT [2] are widely used for
their lower complexity compared to SIFT [14] and SURF [15].
Several implementations of corner feature detection algorithms
exist on GPUs. Sinha et. al. [4] proposed an implementation of
the KLT corner detector for GPUs. However, the last step of
non-maximum suppression of the cornerness response was
performed on the CPU; this limits the potential speedup that can
be obtained by a corner detector algorithm. Teixeira et. al [5]
proposed their own implementation of non-maximum
suppression for GPUs. They attained a significant speedup but
introduced an imprecision of one pixel in the localization of
corner points. Moreover, their method used a 3x3 Prewitt filter

instead of a 9x9 Gaussian filter to compute image gradients.

Both the algorithms [4][5] were implemented using the
traditional OpenGL GPGPU API.

For modern GPU architectures, the CUDA [7] framework is
supported by Nvidia GPUs for general purpose parallel
computing. Compared to traditional GPUs and APIs such as
Direct 3D or OpenGL, CUDA provides much more flexibility to
manage and utilize GPU resources in order to fully exploit data
parallelism in an application. Moreover, CUDA provides a high
level programming model and a straightforward method of
writing scalable parallel programs to be executed on the GPU.
To our knowledge, none of the corner detector algorithm has
fully exploited the computational power of CUDA.

Pradip et al. [1] proposed a Low Complexity Corner
detector algorithm, which reduces the complexity of the Harris
and KLT corner detectors by using a box kernel, integral image,
and efficient non-maximum suppression. It achieves a
complexity reduction by a factor of 8 on a CPU platform. By
exploiting the computation power of CUDA, this paper
proposes an efficient mapping of this low complexity corner
detector on GPU. The implementation outperforms the
execution time of existing state-of-the-art corner detector
algorithms on GPUs [4][5].

The remaining of the paper is organized as follows: the low
complexity corner detector algorithm is described in Section 2
in order to make the work self-contained. The mapping of the
low complexity corner detector on GPU is described in Section
3. Section 4 shows the experimental results and Section 5
concludes the paper.

II. LOCOCO : LOW-COMPLEXITY CORNER DETECTOR

Harris feature detector is based on the local autocorrelation
function within a small window of each pixel as shown in (1)
and (2), which measures the local change of intensities due to
the shifts in a local window:

2

xx xyx x y

2
W xy yyx y y

G Gg () g ()g ()
C() = × v() =

G Gg ()g () g ()

= (x, y)

∈

∑
x

x x x
p x

x x x

x

 (1)

i i i

g (I) () I,i (x,y)= ∂ ⊗ = ∂ ⊗ ∈g g (2)

7

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

where v(x) is a weighting function, which is usually Gaussian or
uniform, p is a center pixel, W is a window centered at p, I is
the original image, g is Gaussian, and gx and gy are the
convolution of the Gaussian first order partial derivative with I
in x and y directions at point (x, y), respectively.

As shown in (1), the Harris corner detector algorithm
computes image derivatives using the Gaussian derivative
kernel, computes cornerness response and suppresses non-
maximum points to obtain the corner points. LoCoCo reduces
the computational complexity of the Harris algorithm in each
step. First, by using the integral image and box kernel, the
computational cost of gradients is reduced. The box kernel is
obtained by approximating the first order Gaussian
derivative kernel. Second, many repeated calculations for
computation of cornerness according to (1) are reduced by
the use of the integral image. Finally, the combination of
sorting (to rank cornerness responses) and non-maximum
suppression is replaced by the efficient non-maximum
suppression [6]. The LoCoCo algorithm is summarized as
follows:

1. Calculate the integral image for the original image I.

2. Compute gradients gx and gy by using the integral image

and the box kernel approximation.

3. Create the integral images for g2x, g2y and gxy Then,

evaluate (1) and (2) and compute the cornerness response.

With the use of the integral image, each element of (2) can

be evaluated in 4 memory accesses and 3 operations.

4. Efficient non-maximum suppression is performed to

suppress the non-maximum point instead of sorting and

performing non-maximum suppression.

By following the above mentioned steps, LoCoCo
achieves comparable feature detection results and a speedup
factor of 8 with respect to Harris on the CPU platform. More
details and experimental results are presented in [1].

III. MAPPING LOCOCO USING CUDA

This section explains the mapping of each step of
LoCoCo on the GPU using CUDA. In CUDA, the kernel is
visualized as a grid, which consists of multiple parallel
thread blocks; each thread block can contain up to 512
parallel threads. It is the responsibility of the programmer to
choose the number of blocks per grid and the number of
threads per block. Once the kernel is launched, the grid
blocks are distributed on the parallel multiprocessors as
described in [7]. The global memory exists off-chip and is
accessible by all threads. The shared memory is on-chip and
the threads within a block can communicate and cooperate
using the shared memory as well as the thread
synchronization mechanism. As described in [12], high
performance on CUDA can be achieved by allowing a
massive number of active threads to exploit the large number
of cores, hence hiding memory latency by computations.

A. Integral Image

LoCoCo makes an extensive use of the integral image.
We propose an efficient method to map the computation of
the integral image on the GPU. The computation of the

integral image can be separated in two stages. As shown in
Figure 1(a), the prefix sum is calculated for each row. After
completing the processing on rows, as shown in Fig. 1(b),
the prefix sum is applied to each column, thus resulting into
an integral image.

The prefix sum is computed for all rows in parallel by
using the efficient parallel scan algorithm designed for GPUs
[8]. The key idea of this algorithm is to divide the block of
data into warp-sized chunks and all scan primitives are built
upon the set of primitive intra-warp scan routines. The warps
execute instructions in SIMD fashion and synchronization is
not needed in order to share data within a warp. Thus, the
intra-warp scan routine performs scan operations over a warp
of 32 threads and computes the prefix sum for 32 elements
without requiring any synchronization operation.

The computation of the prefix sum on a row is performed
by allocating a thread block to that row and dividing it into
warp-sized chunks. All the warps are scanned in parallel
using an intra-warp scan routine. Next, the partial results of
each scan are accumulated and adjusted to get the scan for
the complete row. The reduced number of synchronization
steps and various optimizations, such as efficiently
exploiting shared memory and performing an initial serial
scan of multiple input elements when read from global
memory, makes it one of the fastest scans yet designed for
the GPU [8].

In order to evaluate the subsequent prefix sum on the
columns, the prefix sum result of the rows is transposed and
a new row-based scan is launched. Transpose between the
two steps help to maintain coalesced access to the global
memory [7]. The resultant integral image is not transposed
back again to correct the orientation, since the computation
of integral image in the subsequent step of computing the
cornerness response leads to another transpose, yielding the
restored image.

B. Gradients

The strategy used to parallelize this step is based upon
creating many threads to exploit the large number of cores.
The image is partitioned into a regular grid of blocks. The
width and height of these blocks are equal to the 16th of the
width and height of the image, respectively. Each thread in
that block can be mapped to a pixel location and computes
the gradient value corresponding to that pixel of the image.
Therefore, for the box kernel, the computations performed
by the threads in a block are independent of each other. The
CUDA kernel is launched wherein each thread performs
eight memory accesses and seven operations in parallel to
calculate gx or gy, corresponding to each pixel. The step is
complete when the gradients are computed for all the pixels
in the image.

C. Cornerness Response

The strategy used to compute the integral image for g
2
x,

g
2

y and gxy is the same as described in Section 3.1. In order to
obtain g

2
x, g

2
y and gxy, the scan algorithm is modified such

that each element of gx and gy is squared or multiplied with
each other when fetched from global memory to shared
memory.

8

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

Figure 1. (a) Prefix sum on rows (b) Prefix sum on columns

The computation of the summation within a window and
cornerness response corresponding to each pixel, is based on
a similar strategy as described in previous section is adopted
so that each thread in every block can be mapped to a pixel
location in the image. The CUDA kernel is launched wherein
each thread performs four memory accesses and three
operations in parallel to calculate the window sum
corresponding to each pixel followed by the computation of
cornerness response. The step is complete when the
cornerness response is calculated for all the pixels in the
image.

D. Efficient Non-Maximum Suppression

Access to off-chip global memory is slow and requires
200 to 300 cycles per access. This latency can be hidden by
launching a massive number of active threads [12]. But this
technique does not give enough speedup for algorithms that
have repeated calculations or are bounded by memory
accesses. Another technique to attain speedup is to use low
latency on-chip shared memory and reuse data among all the
threads in a thread block to reduce the number of accesses to
the global memory [12]. As non-maximum suppression
incorporates repeated calculations on a small region of pixels
therefore shared memory is exploited to reduce the number
of accesses to the global memory.

The suppression algorithm is implemented for a d by d
(d=9) neighborhood. The kernel is launched wherein threads
in each thread block fetches (2d x 2d) pixels from global
memory to the shared memory. At this point the contents of
shared memory can be visualized as four sub-blocks as
shown in Figure 2(a). The kernel is implemented in such a
way that the threads in a thread block compute the maximum
value of the cornerness response in each of the sub-blocks in
parallel. These maximum values are termed as candidate
local-maximas (max1, max2, max3 and max4). The maximum
value in each of the sub-blocks is calculated using parallel
reduction [10], where the add operation is replaced with a
comparison operator. For each candidate maxima, the threads in
a thread block fetch the local neighborhood pixels to the shared
memory if the value is greater than the predefined threshold, as
shown in Figure 2(b). The maximum value is computed in each
of the blocks using [10]. If the candidate maxima remains
maximum in the local neighborhood then it is marked as corner
point else the point is suppressed.

Figure 2. Efficient Non-Maximum Suppression

IV. RESULTS AND DISCUSSION

The execution time of LoCoCo is evaluated on a CPU
and on a GPU. To measure the effectiveness of LoCoCo on
GPUs, the execution times are compared with our CUDA
based implementation of the Harris corner detector on the
same GPU.

For Harris, the Gaussian derivative is implemented by
using the separable Gaussian convolution kernel [11], which
requires less computations compared to the 2D convolution.
In order to measure the cornerness response, the gradients
are squared and multiplied with each other. Furthermore, the
summation within the window is implemented by utilizing
the separable convolution. The separable filter can be used to
sum the pixels within the window by setting the coefficients
of separable filters to 1. This method of implementation runs
much faster than computing the naive sum of all pixels
within a window. As described in [4], the sorting for
cornerness response is performed on the CPU and this
involves transferring the complete cornerness image back to
the CPU. Instead of adopting this approach, the sorting is
performed on the GPU by using an efficient sorting
algorithm as presented in [9]. After this step, non-maximum
suppression is performed on the GPU. Thus, the Harris
algorithm completely runs on the GPU and this
implementation is utilized to have a fair comparison with
LoCoCo implementation on the GPU.

As shown in Figure 3, the GPU implementation of
LoCoCo is around 14 times faster than the corresponding
CPU implementation. The speedup is mainly due to the fact
that computation of the integral image and efficient non-
maximum suppression is efficiently parallelized using
CUDA.

The comparison of execution time of both LoCoCo and
Harris on GPU is shown in Figure 4 for different image and
kernel sizes. As shown in Figure 4(a), for various image
sizes and a fixed kernel size of 9x9, the LoCoCo
implementation on GPU is around 2 times faster than the
Harris corner detector on GPU. The original Harris algorithm
uses Gaussian convolution instead of Integral image
computation and box kernel approximations; contrary to
CPU programming the execution time of the GPU
implementation of convolution for small kernel size (9x9) is
comparable to the time taken by the computation of the
integral image and the box kernel approximation.

9

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

Execution time(msec)

22

Gaussian

Derivative
Corner

Response

Efficient Non-

Maximal suppression

36 11.5

1.12 1.75 1.96

Lococo

CPU

Lococo

GPU
Image Size = 960x960

Speed up = 14.4

Figure 3. Execution time of LoCoCo on CPU and GPU (CPU: Intel Core

2 Duo E6750, 2.66 GHz and 2 GB RAM, GPU: Nvidia GeForce GTX 280,
1.296 GHz, 1 GB Global memory, 16 KB shared memory per core)

With the box kernel approximation, the speedup for a kernel
size of 9x9 is mainly due to the fact that LoCoCo replaces
the combination of feature sorting and non-maximum
suppression in Harris by efficient non-maximum
suppression. As shown in Figure 4(b), for a kernel size of
31x31, LoCoCo is 3 times faster than the Harris. As the
kernel size increases, the computation of the integral image
and box kernel approximation remains unaffected but the
execution time for the convolution increases significantly.
For applications that require multi-scale estimation, the
convolution must be computed for each scale, while only one
execution of the integral image allows for the computation of
all the scales. In that case, the LoCoCo algorithm turns out to
be much more efficient than the Harris algorithm.

Table 1 presents the comparison of LoCoCo using
CUDA with other state-of-the-art implementations of corner
detectors. Accelerated corner detector [5] provides a full
implementation of the Harris corner detector on GPU by
proposing its own version of non-maximum suppression.
The proposed non-maximum suppression has two different
variants, one in which the cornerness response image is
compressed and the other in which the cornerness response
image is not compressed. The lossy compression of the
cornerness response image introduces a precision error of
one pixel in localization of the corner points whereas our
method does not introduce any precision error or
compression of the cornerness response image. A
comparison is made with the version of the accelerated
corner detector in which the cornerness response image is
not compressed.

The time taken by this implementation is reported in
[13]. The timings presented in Table 1 include the time to
transfer data between the GPU and the CPU. Notice that
execution times reported in [4][5] are related to a GeForce
8800 GTX while the execution times of our contribution
have been measured on a GeForce GTX 280. Even though
reference [17] indicates that GTX280 delivers twice the
performance of GeForce 8800, it can still be inferred that our
method is the fastest compared to state-of-the-art
implementations of corner detectors reported till now.

TABLE I. COMPARISON WITH OTHER METHODS

Algorithm Time

(ms)
Image

Size
Platform

L.Teixeira [5] 7.3 640x480 GeForce 8800 GTX

Sinha [4] 61.7 720x576 GeForce 8800 GTX +

AMD Athlon 64 X2 Dual

Core 4400 (one core used)

Our Method 2.4 640x480 GeForce 280 GTX

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient implementation of
low complexity corner detector using CUDA. Corner
detection using CUDA has not been reported so far. Our
method greatly exploits the data parallelism and achieves a
speedup factor of 14 with respect to CPU. Experimental
result shows that low complexity corner detector is around 2-
3 times faster than Harris on a GPU. With the increase of
kernel size, the execution time of our method remains close
to constant while the execution time of the Harris increases,
thus achieving further speedups.

REFERENCES

[1] P. Mainali, Q. Yang, G. Lafruit, R. Lauwereins and L. Van
Gool, “LoCoCo: Low Complexity Corner Detector”, ICASSP
2010, pp. 810-813.

[2] C. Tomasi and T. Kanade, “Detection and tracking of point
features”, Technical Report CMU, April 1991

[3] C. Harris and M. Stephen, “A Combined corner and edge
detector” In Proce. of Alvey Vision Conf., pp. 147-151, 1988

[4] S. Sinha, J. Frahm and M. Pollefeys, “GPU-based video
feature tracking and Matching”, in EDGE 2006, workshop on
Edge Computing Using New Commodity Architectures, 2006

[5] L. Teixeira, W. Celes and M. Gattass, “Accelerated Corner
Detector Algorithms”, in BMVC, 2008

[6] A. Neubeck and L. V. Gool, “Efficient non-maximum
suppression”, in ICPR 2006, Vol. 3, pp. 850-855.

[7] http://developer.nvidia.com/object/cuda.html.

[8] S. Sengupta, M. Harris, and M. Garland. “Efficient parallel
scan algorithms for GPUs”. NVIDIA Technical Report NVR-
2008-003, December 2008

[9] N. Satish, M. Harris, and M. Garland. “Designing efficient
sorting algorithms for manycore GPUs”, Proc. 23rd IEEE
IPDPS2009, May 2009

[10] M. Harris, “Optimizing Parallel Reduction in CUDA”,
NVIDIA Developer Technology

[11] V. Podlozhnyuk, “Image Convolution with CUDA”, Nvidia
CUDA 2.0 SDK convolution separable document

[12] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk and
W. Hwu. “Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA”. In Proc. 13th ACM SIGPLAN, 2008.

[13] J. F. Ohmer and N. J. Redding, “GPU-Accelerated KLT
Tracking with Monte-Carlo-Based Feature Reselection”,
DICTA 2008.

[14] D. Lowe “Distinctive image features from scale-invariant
keypoints” International Journal of Computer Vision, 60, 2
(2004), pp. 91-110

[15] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, "SURF: Speeded
Up Robust Features", Computer Vision and Image
Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008

10

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

[16] T. Tuytelaars, K. Mikolajczyk "Local Invariant Feature
Detectors: A Survey", Foundations and Trends in Computer
Graphics and Vision, Vol. 3, nb 3, pp 177-280, 2008.

[17] http://www.nvidia.com/content/PDF/fermi_white_papers/N.B
rookwood_NVIDIA_Solves_the_GPU_Computing_Puzzle1.p
df

320x320 480x480 800x800 960x960
0

2

4

6

8

10

12

Image Size

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
se

c
)

(a)

LoCoCo using CUDA

Harris using CUDA

9x9 15x15 27x27 31x31
0

5

10

15

20

Kernel Size

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
se

c
)

(b)

LoCoCo using CUDA

Harris using CUDA

Figure 4. Execution time for LoCoCo and Harris on Nvidia GeForce GTX 280 GPU (a) Comparison for different image sizes (b) Comparison for different

kernel sizes

11

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

