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Abstract—High speed feature detection is a requirement for 

many real-time multimedia and computer vision 

applications. In previous work, the Harris and KLT 

algorithms were redesigned to increase the performance by 

reducing the algorithmic complexity, resulting in the Low 

Complexity Corner Detector algorithm. To attain further 

speedup, this paper proposes the implementation of this low 

complexity corner detector algorithm on a parallel 

computing architecture, namely a GPU using Compute 

Unified Device Architecture (CUDA). We show that the low 

complexity corner detector is 2-3 times faster than the 

Harris corner detector algorithm on the same GPU 

platform. 
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I.  INTRODUCTION 

High speed detection of feature points is a fundamental 
requirement of many real-time computer vision and multimedia 
applications such as image matching, immersive 
communications, augmented reality, object recognition, 
mosaicing etc. Among robust and real-time feature point 
detectors (a good survey can be found in [16]), corner detection 
algorithms such as Harris [3] and KLT [2] are widely used for 
their lower complexity compared to SIFT [14] and SURF [15]. 
Several implementations of corner feature detection algorithms 
exist on GPUs. Sinha et. al. [4] proposed an implementation of 
the KLT corner detector for GPUs. However, the last step of 
non-maximum suppression of the cornerness response was 
performed on the CPU; this limits the potential speedup that can 
be obtained by a corner detector algorithm. Teixeira et. al [5] 
proposed their own implementation of non-maximum 
suppression for GPUs. They attained a significant speedup but 
introduced an imprecision of one pixel in the localization of 
corner points. Moreover, their method used a 3x3 Prewitt filter 

instead of a 9x9 Gaussian filter to compute image gradients. 

Both the algorithms [4][5] were implemented using the 
traditional OpenGL GPGPU API. 

For modern GPU architectures, the CUDA [7] framework is 
supported by Nvidia GPUs for general purpose parallel 
computing. Compared to traditional GPUs and APIs such as 
Direct 3D or OpenGL, CUDA provides much more flexibility to 
manage and utilize GPU resources in order to fully exploit data 
parallelism in an application. Moreover, CUDA provides a high 
level programming model and a straightforward method of 
writing scalable parallel programs to be executed on the GPU. 
To our knowledge, none of the corner detector algorithm has 
fully exploited the computational power of CUDA. 

Pradip et al. [1] proposed a Low Complexity Corner 
detector algorithm, which reduces the complexity of the Harris 
and KLT corner detectors by using a box kernel, integral image, 
and efficient non-maximum suppression. It achieves a 
complexity reduction by a factor of 8 on a CPU platform. By 
exploiting the computation power of CUDA, this paper 
proposes an efficient mapping of this low complexity corner 
detector on GPU. The implementation outperforms the 
execution time of existing state-of-the-art corner detector 
algorithms on GPUs [4][5]. 

The remaining of the paper is organized as follows: the low 
complexity corner detector algorithm is described in Section 2 
in order to make the work self-contained. The mapping of the 
low complexity corner detector on GPU is described in Section 
3. Section 4 shows the experimental results and Section 5 
concludes the paper. 

II. LOCOCO : LOW-COMPLEXITY CORNER DETECTOR 

Harris feature detector is based on the local autocorrelation 
function within a small window of each pixel as shown in (1) 
and (2), which measures the local change of intensities due to 
the shifts in a local window: 
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where v(x) is a weighting function, which is usually Gaussian or 
uniform, p is a center pixel, W is a window centered at p, I is 
the original image, g is Gaussian, and gx and gy are the 
convolution of the Gaussian first order partial derivative with I 
in x and y directions at point (x, y), respectively.  

As shown in (1), the Harris corner detector algorithm 
computes image derivatives using the Gaussian derivative 
kernel, computes cornerness response and suppresses non-
maximum points to obtain the corner points. LoCoCo reduces 
the computational complexity of the Harris algorithm in each 
step. First, by using the integral image and box kernel, the 
computational cost of gradients is reduced. The box kernel is 
obtained by approximating the first order Gaussian 
derivative kernel. Second, many repeated calculations for 
computation of cornerness according to (1) are reduced by 
the use of the integral image. Finally, the combination of 
sorting (to rank cornerness responses) and non-maximum 
suppression is replaced by the efficient non-maximum 
suppression [6]. The LoCoCo algorithm is summarized as 
follows: 

 

1. Calculate the integral image for the original image I.  

2. Compute gradients gx and gy by using the integral image 

and the box kernel approximation. 

3. Create the integral images for g2x, g2y and gxy Then, 

evaluate (1) and (2) and compute the cornerness response. 

With the use of the integral image, each element of (2) can 

be evaluated in 4 memory accesses and 3 operations. 

4. Efficient non-maximum suppression is performed to 

suppress the non-maximum point instead of sorting and 

performing non-maximum suppression. 
 

By following the above mentioned steps, LoCoCo 
achieves comparable feature detection results and a speedup 
factor of 8 with respect to Harris on the CPU platform. More 
details and experimental results are presented in [1]. 

III. MAPPING LOCOCO USING CUDA 

This section explains the mapping of each step of 
LoCoCo on the GPU using CUDA. In CUDA, the kernel is 
visualized as a grid, which consists of multiple parallel 
thread blocks; each thread block can contain up to 512 
parallel threads. It is the responsibility of the programmer to 
choose the number of blocks per grid and the number of 
threads per block. Once the kernel is launched, the grid 
blocks are distributed on the parallel multiprocessors as 
described in [7]. The global memory exists off-chip and is 
accessible by all threads. The shared memory is on-chip and 
the threads within a block can communicate and cooperate 
using the shared memory as well as the thread 
synchronization mechanism. As described in [12], high 
performance on CUDA can be achieved by allowing a 
massive number of active threads to exploit the large number 
of cores, hence hiding memory latency by computations. 

A. Integral Image 

LoCoCo makes an extensive use of the integral image. 
We propose an efficient method to map the computation of 
the integral image on the GPU. The computation of the 

integral image can be separated in two stages. As shown in 
Figure 1(a), the prefix sum is calculated for each row. After 
completing the processing on rows, as shown in Fig. 1(b), 
the prefix sum is applied to each column, thus resulting into 
an integral image. 

The prefix sum is computed for all rows in parallel by 
using the efficient parallel scan algorithm designed for GPUs 
[8]. The key idea of this algorithm is to divide the block of 
data into warp-sized chunks and all scan primitives are built 
upon the set of primitive intra-warp scan routines. The warps 
execute instructions in SIMD fashion and synchronization is 
not needed in order to share data within a warp. Thus, the 
intra-warp scan routine performs scan operations over a warp 
of 32 threads and computes the prefix sum for 32 elements 
without requiring any synchronization operation.  

The computation of the prefix sum on a row is performed 
by allocating a thread block to that row and dividing it into 
warp-sized chunks. All the warps are scanned in parallel 
using an intra-warp scan routine. Next, the partial results of 
each scan are accumulated and adjusted to get the scan for 
the complete row. The reduced number of synchronization 
steps and various optimizations, such as efficiently 
exploiting shared memory and performing an initial serial 
scan of multiple input elements when read from global 
memory, makes it one of the fastest scans yet designed for 
the GPU [8]. 

In order to evaluate the subsequent prefix sum on the 
columns, the prefix sum result of the rows is transposed and 
a new row-based scan is launched. Transpose between the 
two steps help to maintain coalesced access to the global 
memory [7]. The resultant integral image is not transposed 
back again to correct the orientation, since the computation 
of integral image in the subsequent step of computing the 
cornerness response leads to another transpose, yielding the 
restored image. 

B. Gradients 

The strategy used to parallelize this step is based upon 
creating many threads to exploit the large number of cores. 
The image is partitioned into a regular grid of blocks. The 
width and height of these blocks are equal to the 16th of the 
width and height of the image, respectively. Each thread in 
that block can be mapped to a pixel location and computes 
the gradient value corresponding to that pixel of the image.  
Therefore, for the box kernel, the computations performed 
by the threads in a block are independent of each other. The 
CUDA kernel is launched wherein each thread performs 
eight memory accesses and seven operations in parallel to 
calculate gx or gy, corresponding to each pixel. The step is 
complete when the gradients are computed for all the pixels 
in the image. 

C. Cornerness Response 

The strategy used to compute the integral image for g
2
x, 

g
2

y and gxy is the same as described in Section 3.1. In order to 
obtain g

2
x, g

2
y and gxy, the scan algorithm is modified such 

that each element of gx and gy is squared or multiplied with 
each other when fetched from global memory to shared 
memory. 
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Figure 1.  (a) Prefix sum on rows (b) Prefix sum on columns 

The computation of the summation within a window and 
cornerness response corresponding to each pixel, is based on 
a similar strategy as described in previous section is adopted 
so that each thread in every block can be mapped to a pixel 
location in the image. The CUDA kernel is launched wherein 
each thread performs four memory accesses and three 
operations in parallel to calculate the window sum 
corresponding to each pixel followed by the computation of 
cornerness response. The step is complete when the 
cornerness response is calculated for all the pixels in the 
image.  

D. Efficient Non-Maximum Suppression 

Access to off-chip global memory is slow and requires 
200 to 300 cycles per access. This latency can be hidden by 
launching a massive number of active threads [12]. But this 
technique does not give enough speedup for algorithms that 
have repeated calculations or are bounded by memory 
accesses. Another technique to attain speedup is to use low 
latency on-chip shared memory and reuse data among all the 
threads in a thread block to reduce the number of accesses to 
the global memory [12]. As non-maximum suppression 
incorporates repeated calculations on a small region of pixels 
therefore shared memory is exploited to reduce the number 
of accesses to the global memory. 

The suppression algorithm is implemented for a d by d 
(d=9) neighborhood. The kernel is launched wherein threads 
in each thread block fetches (2d x 2d) pixels from global 
memory to the shared memory. At this point the contents of 
shared memory can be visualized as four sub-blocks as 
shown in Figure 2(a). The kernel is implemented in such a 
way that the threads in a thread block compute the maximum 
value of the cornerness response in each of the sub-blocks in 
parallel. These maximum values are termed as candidate 
local-maximas (max1, max2, max3 and max4). The maximum 
value in each of the sub-blocks is calculated using parallel 
reduction [10], where the add operation is replaced with a 
comparison operator. For each candidate maxima, the threads in 
a thread block fetch the local neighborhood pixels to the shared 
memory if the value is greater than the predefined threshold, as 
shown in Figure 2(b). The maximum value is computed in each 
of the blocks using [10]. If the candidate maxima remains 
maximum in the local neighborhood then it is marked as corner 
point else the point is suppressed. 

 

Figure 2.  Efficient Non-Maximum Suppression 

IV. RESULTS AND DISCUSSION 

The execution time of LoCoCo is evaluated on a CPU 
and on a GPU. To measure the effectiveness of LoCoCo on 
GPUs, the execution times are compared with our CUDA 
based implementation of the Harris corner detector on the 
same GPU. 

For Harris, the Gaussian derivative is implemented by 
using the separable Gaussian convolution kernel [11], which 
requires less computations compared to the 2D convolution. 
In order to measure the cornerness response, the gradients 
are squared and multiplied with each other. Furthermore, the 
summation within the window is implemented by utilizing 
the separable convolution. The separable filter can be used to 
sum the pixels within the window by setting the coefficients 
of separable filters to 1. This method of implementation runs 
much faster than computing the naive sum of all pixels 
within a window. As described in [4], the sorting for 
cornerness response is performed on the CPU and this 
involves transferring the complete cornerness image back to 
the CPU. Instead of adopting this approach, the sorting is 
performed on the GPU by using an efficient sorting 
algorithm as presented in [9]. After this step, non-maximum 
suppression is performed on the GPU. Thus, the Harris 
algorithm completely runs on the GPU and this 
implementation is utilized to have a fair comparison with 
LoCoCo implementation on the GPU. 

As shown in Figure 3, the GPU implementation of 
LoCoCo is around 14 times faster than the corresponding 
CPU implementation. The speedup is mainly due to the fact 
that computation of the integral image and efficient non-
maximum suppression is efficiently parallelized using 
CUDA. 

The comparison of execution time of both LoCoCo and 
Harris on GPU is shown in Figure 4 for different image and 
kernel sizes. As shown in Figure 4(a), for various image 
sizes and a fixed kernel size of 9x9, the LoCoCo 
implementation on GPU is around 2 times faster than the 
Harris corner detector on GPU. The original Harris algorithm 
uses Gaussian convolution instead of Integral image 
computation and box kernel approximations; contrary to 
CPU programming the execution time of the GPU 
implementation of convolution for small kernel size (9x9) is 
comparable to the time taken by the computation of the 
integral image and the box kernel approximation. 
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Figure 3.  Execution time of LoCoCo on CPU and GPU (CPU: Intel Core 

2 Duo E6750, 2.66 GHz and 2 GB RAM, GPU: Nvidia GeForce GTX 280, 
1.296 GHz, 1 GB Global memory, 16 KB shared memory per core) 

With the box kernel approximation, the speedup for a kernel 
size of 9x9 is mainly due to the fact that LoCoCo replaces 
the combination of feature sorting and non-maximum 
suppression in Harris by efficient non-maximum 
suppression. As shown in Figure 4(b), for a kernel size of 
31x31, LoCoCo is 3 times faster than the Harris. As the 
kernel size increases, the computation of the integral image 
and box kernel approximation remains unaffected but the 
execution time for the convolution increases significantly. 
For applications that require multi-scale estimation, the 
convolution must be computed for each scale, while only one 
execution of the integral image allows for the computation of 
all the scales. In that case, the LoCoCo algorithm turns out to 
be much more efficient than the Harris algorithm. 

Table 1 presents the comparison of LoCoCo using 
CUDA with other state-of-the-art implementations of corner 
detectors. Accelerated corner detector [5] provides a full 
implementation of the Harris corner detector on GPU by 
proposing its own version of non-maximum suppression. 
The proposed non-maximum suppression has two different 
variants, one in which the cornerness response image is 
compressed and the other in which the cornerness response 
image is not compressed. The lossy compression of the 
cornerness response image introduces a precision error of 
one pixel in localization of the corner points whereas our 
method does not introduce any precision error or 
compression of the cornerness response image. A 
comparison is made with the version of the accelerated 
corner detector in which the cornerness response image is 
not compressed. 

The time taken by this implementation is reported in 
[13]. The timings presented in Table 1 include the time to 
transfer data between the GPU and the CPU. Notice that 
execution times reported in [4][5] are related to a GeForce 
8800 GTX while the execution times of our contribution 
have been measured on a GeForce GTX 280. Even though 
reference [17] indicates that GTX280 delivers twice the 
performance of GeForce 8800, it can still be inferred that our 
method is the fastest compared to state-of-the-art 
implementations of corner detectors reported till now. 
 
 

TABLE I.  COMPARISON WITH OTHER METHODS 

Algorithm Time 

(ms) 
Image 

Size 
Platform 

L.Teixeira [5] 7.3 640x480 GeForce 8800 GTX 

Sinha [4] 61.7 720x576 GeForce 8800 GTX + 

AMD Athlon 64 X2 Dual 

Core 4400 (one core used) 

Our Method  2.4 640x480 GeForce 280 GTX 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed an efficient implementation of 
low complexity corner detector using CUDA. Corner 
detection using CUDA has not been reported so far. Our 
method greatly exploits the data parallelism and achieves a 
speedup factor of 14 with respect to CPU. Experimental 
result shows that low complexity corner detector is around 2-
3 times faster than Harris on a GPU. With the increase of 
kernel size, the execution time of our method remains close 
to constant while the execution time of the Harris increases, 
thus achieving further speedups. 

REFERENCES 

[1] P. Mainali, Q. Yang, G. Lafruit, R. Lauwereins and L. Van 
Gool, “LoCoCo: Low Complexity Corner Detector”, ICASSP 
2010, pp. 810-813. 

[2] C. Tomasi and T. Kanade, “Detection and tracking of point 
features”, Technical Report CMU, April 1991 

[3] C. Harris and M. Stephen, “A Combined corner and edge 
detector” In Proce. of Alvey Vision Conf., pp. 147-151, 1988 

[4] S. Sinha, J. Frahm and M. Pollefeys, “GPU-based video 
feature tracking and Matching”, in EDGE 2006, workshop on 
Edge Computing Using New Commodity Architectures, 2006 

[5] L. Teixeira, W. Celes and M. Gattass, “Accelerated Corner 
Detector Algorithms”, in BMVC, 2008  

[6] A. Neubeck and L. V. Gool, “Efficient non-maximum 
suppression”, in ICPR 2006, Vol. 3, pp. 850-855. 

[7] http://developer.nvidia.com/object/cuda.html. 

[8] S. Sengupta, M. Harris, and M. Garland. “Efficient parallel 
scan algorithms for GPUs”. NVIDIA Technical Report NVR-
2008-003, December 2008 

[9] N. Satish, M. Harris, and M. Garland. “Designing efficient 
sorting algorithms for manycore GPUs”, Proc. 23rd IEEE 
IPDPS2009, May 2009 

[10] M. Harris, “Optimizing Parallel Reduction in CUDA”, 
NVIDIA Developer Technology 

[11] V. Podlozhnyuk, “Image Convolution with CUDA”, Nvidia 
CUDA 2.0 SDK convolution separable document 

[12] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk and 
W. Hwu. “Optimization principles and application 
performance evaluation of a multithreaded GPU using 
CUDA”. In Proc. 13th ACM SIGPLAN, 2008. 

[13] J. F. Ohmer and N. J. Redding, “GPU-Accelerated KLT 
Tracking with Monte-Carlo-Based Feature Reselection”, 
DICTA 2008. 

[14] D. Lowe “Distinctive image features from scale-invariant 
keypoints” International Journal of Computer Vision, 60, 2 
(2004), pp. 91-110 

[15] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, "SURF: Speeded 
Up Robust Features", Computer Vision and Image 
Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008 

10

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-129-8



[16] T. Tuytelaars, K. Mikolajczyk "Local Invariant Feature 
Detectors: A Survey", Foundations and Trends in Computer 
Graphics and Vision, Vol. 3, nb 3, pp 177-280, 2008. 

[17] http://www.nvidia.com/content/PDF/fermi_white_papers/N.B
rookwood_NVIDIA_Solves_the_GPU_Computing_Puzzle1.p
df 

 

320x320 480x480 800x800 960x960
0

2

4

6

8

10

12

Image Size

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
se

c
)

(a)

 

 
LoCoCo using CUDA

Harris using CUDA

9x9 15x15 27x27 31x31
0

5

10

15

20

Kernel Size

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
se

c
)

(b)

 

 
LoCoCo using CUDA

Harris using CUDA

 
Figure 4.  Execution time for LoCoCo and Harris on Nvidia GeForce GTX 280 GPU (a) Comparison for different image sizes (b) Comparison for different 

kernel sizes 
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