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Abstract—Although many valuable visualizations have been
developed to gain insights from large datasets, selecting an
appropriate visualization for a specific dataset and goal remains
challenging for non-experts. In this article, we propose a
novel approach for knowledge-assisted, context-aware visual-
ization recommendation. Therefore, both semantic web data
and visualization components are annotated with formalized
visualization knowledge from an ontology. We present a rec-
ommendation algorithm that leverages those annotations to
provide visualization components that support the users’ data
and task. Since new visualization knowledge is generated while
working with a visual analytics system due to users insights,
particularly a component is suitable or not for a selected
dataset, we track these findings by means of users explicit
and implicit ratings. This empirical visualization knowledge
is reused in subsequent recommendations to better adapt the
ranking of components to users needs. We successfully proved
the practicability of our approach by integrating it into a
mashup-based research prototypes called VizBoard.

Keywords-visualization, recommendation, ontology, knowl-
edge, collaborative filtering, mashup

I. INTRODUCTION

Through this article we detail, update, and extend our ap-
proach for a context-aware recommendation of visualization
components [1] presented at the eKNOW 20121.

Visualization is a powerful way of gaining insight into
large datasets. Therefore, a myriad of visualizations have
been developed in recent decades. To bridge the gap between
data and an appropriate visual representation, models like the
visualization pipeline [2] have been established in numerous
tools. As one part of this process, the mapping of data
to a graphic representation is critical because only small
subsets of existing visualization techniques are expressive
and effective for the selected data in a specific context.
Generally, domain-specific data can be visualized either us-
ing tools which were developed specifically for that domain
and use case, or using generic visualization systems. The
development of the former requires extensive knowledge by
visualization and domain experts, and is usually costly and
time-consuming. Thus, in many cases generic visualization

1http://www.iaria.org/conferences2012/eKNOW12.html
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Figure 1. Overview of the complete semantics-based information vi-
sualization workflow. The highlighted Visualization Recommendation and
Knowledge Tracking are presented in this article in detail.

tools are preferable, because they are quickly available and
reusable in different contexts. Using such tools, domain
experts can directly get the information they need out
of their data. However, these tools typically require them
to select the visualization type and to specify the visual
mappings, which can be difficult because they often lack the
necessary visualization knowledge [3]. Knowledge-assisted
visualization can address this problem by representing and
leveraging formalized visualization knowledge to support the
user [4]. Suggesting automatically generated visualizations
to the user is one promising approach to aid domain experts
in constructing visualizations [3], [5].

The concepts defined within this article are essential parts
of a semantics-based information visualization workflow for
end-users tailored to semantic web dataset [6]. Fig. 1 gives
an overview. It consists of five stages users needs to pass:
choosing or uploading a dataset 1 , getting an overview of
the data and choosing a subset 3 , selecting relevant data
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Figure 2. Overview of our goal to recommend mappings of a data source
(1) to a visualization component (2) based on a semantic model utilizing
visualization knowledge (3) and context information (4).

variables and suitable visualization components 5 , config-
uring them 7 and, finally, interacting with the rendered
data to gain the desired insights 9 . Due to the interactive
nature of the visualization process, users can sequentially
pass through, but may also move backwards. For instance,
the configuration step can be skipped by using default
mappings. Furthermore, users may choose to search and
integrate multiple, alternative visualizations to benefit from
multiple coordinated views of their data after completing
the workflow. This user-driven process is supported by five
system-side functionalities (the right rectangles in Fig. 1)
where the concepts for the visualization recommendation 6
and the knowledge externalization 10 are proposed within
this article.

We employ a simple example to get our approach across
(Fig. 2). It considers a semantic web dataset comprising a
list of events hosted at different venues with varying fees. A
business user with less visualization experience wants to get
an overview of how expensive the events are using his lap-
top. Thus, he selects a subgraph from a semantic dataset as
shown in 1 containing two classes (EVENT, VENUE) linked
by a Property (hasVenue) and two Data Properties (hasName,
hasPrice). To map this data to a compatible visualization
component 2 , a user needs visualization knowledge 3 .
Context information 4 about the user (knowledge, skills),
his device (hard- /software capabilities) and his task (get
overview) must also be considered to create a successful
mapping. We strive for a generic recommendation approach
utilizing and understanding these different ingredients based
on a common semantic knowledge model to facilitate the
automated visualization process for different tools.

Our goal of creating a knowledge-assisted, context-aware
system which recommends visualization components in-
volves basically five challenges, which are addressed by
this article. Firstly, a formalized vocabulary for the in-
terdisciplinary visualization domain is required. To this
end, we have developed a modular visualization ontology

called VISO. Secondly, means to semantically describe
visualization characteristics of both data sources and vi-
sualization components must be provided. Therefore, we
propose the linking and annotation of semantic web data
and component descriptors with concepts of VISO. Thirdly,
appropriate visualization components must be discovered
for a certain set of data. Thus, we present a matching
algorithm which takes the aforementioned formalized vi-
sualization knowledge and given user requirements into
account to search for compatible visualization components.
Fourthly, component candidates need to be ranked with
regard to the user, usage and device context. Hence, we
have developed a corresponding ranking algorithm for the
mappings, i. e., component candidates resulting from the
discovery. Fifthly, internal visualization knowledge created
by the user during the visualization workflow needs to
be externalized and reused. Accordingly, we defined an
architecture and algorithms to externalize, consolidate, store,
and reuse this knowledge.

The remainder of this article is structured as follows.
First, we discuss related work in the fields of automated
or knowledge-assisted visualization, semantic models for
visualization, and semantics-based component recommen-
dation in Section II. Then, Section III introduces our vi-
sualization ontology VISO in detail and clarifies how it
is applied to describe visualization components and data
sources. Afterwards, we present the corresponding recom-
mendation algorithm separated into matching and ranking
in Section IV. We detailed the gathering and the reuse of
empirical visualization knowledge in Section V. Section VI
gives an overview of the architecture and its corresponding
prototypical implementation. Finally, we conclude the article
and outline future work in Section VII.

II. RELATED WORK

The recommendation algorithm presented in this article
builds on previous research in the four different research
areas: (1) automated visualization, (2) semantic visualization
models, (3) mechanisms for semantics-based component
discovery and ranking, and (4) collaborative filtering. We
will now discuss the state of the art in those four areas.

A. Automated, Knowledge-assisted, and
Component-based Visualization

Several automatic visualization systems have been de-
veloped to help users to create visualizations. They pro-
duce visualization specifications based on user-selected data
and implicitly or explicitly represented visualization knowl-
edge. We distinguish between data-driven, task-driven, and
interaction-driven approaches. Furthermore, we differen-
tiate into two orthogonal facets: knowledge-assisted and
component-based visualization. The firsts objective is to
overcome the burden of learning complex visualization tech-
niques by formalizing and sharing domain and visualization
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knowledge [7]. We narrow the definition so that these
systems need to build on current semantic web technologies,
e. g., RDF or OWL, to formalize, use, and maybe share
this knowledge in a standardized and widely-adopted way.
Component-based visualization means that the single visu-
alization techniques are encapsulated in components or even
(user interface) services. It allows for their flexible, context-
aware reuse in different scenarios.

Data-driven approaches analyze the meta-model of the
data and potentially instance data to generate visualization
specifications. Mackinlay addressed the problem of how to
automatically generate static 2D visualizations of relational
information in his APT system [8]. It searches the design
space of all possible visualizations using expressiveness
criteria and then ranks them using effectiveness criteria. The
more recent visualization mosaics approach from MacNeil
and Elmqvist [9] works the same way. Gilson et al. devel-
oped an algorithm that maps data represented in a domain
ontology to visual representation ontologies [10]. Their
visual representation ontologies describe single visualization
components, e. g., tree maps. A semantic bridging ontology
is used to specify the appropriateness of the different map-
pings. Our automated visualization approach is similar to
the one by Gilson et al. in that both data and visualization
components are described using ontologies. The main limita-
tion of data-driven approaches is that they do not take other
information such as the user’s task, preferences or device
into account. Task-driven and interaction-driven approaches
usually build on the data analysis ideas present in data-driven
approaches, but go beyond them.

The effectiveness of a visualization depends on how well
it supports the user’s task by making it easy to perceive
important information. This is addressed by task-driven
approaches. Casner’s BOZ system analyzes task descrip-
tions to generate corresponding visualizations [11]. How-
ever, BOZ requires detailed task descriptions formulated in
a structured language and is limited to relational data. The
SAGE system by Roth and Mattis extends APT to consider
the user’s goals [12]. It first selects visual techniques based
on their expressiveness, then ranks them according to their
effectiveness, refines them by adding additional layout con-
straints (e.g., sorting), and finally integrates multiple visu-
alization techniques if necessary. In constrast to SAGE and
BOZ, our algorithm is ontology-based to allow for reasoning
and it leverages device and user preference information.

Visual data analysis is an iterative and interactive process
in which many visualizations are created, modified and an-
alyzed [3]. Interaction-driven approaches consider either
the user interaction history or the current visualization state
to generate visualizations that support this process. Mackin-
lay et al. have developed heuristics that use the current
visualization state and the data attribute selection to update
the current visualization or to show alternative visualizations
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Figure 3. Knowledg-assisted Visualization, based on [15], [16].

[13]. Behavior-driven visualization recommendation moni-
tors users’ interactions with visualizations, detects patterns
in the interaction sequences, and infers visual tasks based
on repeated patterns [14]. The current visualization state
and the inferred visual task are then used to recommend
more suitable visualizations. Interaction-driven approaches
leverage implicit state information, but they consider neither
task information that is explicitly expressed by the user, nor
user preferences or device constraints.

As mentioned before, knowledge-assisted visualization
is a more orthogonal aspect of a visualization approach.
It means, that the single process steps, e. g., filtering, au-
tomated mapping, and configuration, are underpinned by
semantic models, i. e., ontologies, which allow for reasoning
but also for sharing and, thus, enhancing the knowledge in
a collaborative manner. Chen et al. [4] give a good but only
a theoretical impression how such a visualization workflow
could be designed.

Furthermore, Wang et al. [15] propose a knowledge con-
version process in visual analytics system. Fig. 3 sketches
this workflow for the identification of the applicable visual-
ization for the chosen data (D). The visualization component
(V ) represents its (interactive) image I to the user. With
its perception (P ), the user gets internal knowledge about
this visualization over time dKt/dt (internalization) and
an insight whether this visualization is applicable or not.
If it is not suitable, the user can adapt the representation
by changing the specification of the visualization over time
(dS/dt). In the end, the internal knowledge (Kt) can be
externalized to a (global) knowledge base (KB). In case of
choosing the same or equivalent data next time, the exter-
nalized knowledge is fetched and the suitable visualization
presented. Since this theoretical process is valuable for our
work, their prototype do not rely on visualization-specific
knowledge and, hence, does not cover the recommendation
and automated mapping of graphic representations.

Also, the already sketched data-driven approach from
Gilson et al. [10] is a knowledge-assisted one since it makes
extensive use of ontologies to identify suitable mappings
from data to visualization techniques. Its greatest drawback
is the manual definition of effective mappings from data
items to visual variables within the semantic bridging ontol-
ogy. In [17], Shu et al. present an ontology (cf. Sect. II-B)
and a simple discovery approach for visualization service
which regrettably neglects an automated mapping.
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Using encapsulated components or widgets is a com-
mon concept to reuse generic visualization techniques in
different contexts or applications. In particular, web-based
applications like sgvizler [18] or dashboards [19] employ
visualization libraries, e. g., Google Chart Tools2 or High-
charts JS3, to present the data. Their biggest disadvantage
is that the user has to manually define the mappings.
Further, dashboards are mostly static. In contrast, mashup
environments like DashMash [20] take the user by the
hand to specify mappings or to interconnect the widgets
without high cognitive efforts. But all in all, they are not
tailored to the needs of automated information visualization
since their components are often data-dependent and do not
explicitly support the steps of a visualization process. In the
visualization domain, some approaches, e. g., [3], [9], are
component-based and allow for a flexible combination of
visualization widgets. Although they support visualization-
specific features like automated mapping or linking and
brushing, their components are not loosely coupled like in
mashup platforms nor consider context parameters.

In summary, while our work builds on many ideas from
automated and knowledge-assisted visualization approaches,
in particular the work by Gilson et al. [10] and Wang et al.
[15], it is extensible in terms of visualization components,
and it considers task, user preferences and device capabili-
ties. In contrast to generative approaches [8], [11]–[13], the
strength of using visualization components is that they are
optimized for the visual metaphor they represent.

B. Formalizations of Visualization Knowledge

As shown in the previous section, automated visualization
requires one or more models to bridge the gap between data
and suitable graphic representations. In this regard, prevalent
approaches use different concepts, such as rules [12], heuris-
tics [13], and semantic models [10]. We share the view of
Gilson et al. [10] that semantic technologies are the methods
of choice today. They allow for capturing and formalizing
expert knowledge in a readable and understandable manner
for humans as well as machines. Therefore, they provide an
effective solution for automated recommendation. Further,
the current technologies facilitate an easy and dynamic reuse
of existing semantic models in new scenarios.

Actually, only few academic works have explored se-
mantic web technologies as means to capture visualization
knowledge for describing and recommending resources.
Duke et al. [21] were the first proposing the need for a
visualization ontology. Their promising approach captures
an initial set of concepts and relations of the domain
comprising data, visualization techniques, and tasks. Potter
and Wright [22] combine formal taxonomies for hard- and
software capabilities, sensory experience as well as human

2https://developers.google.com/chart/
3http://www.highcharts.com/

actions to characterize a visualization resource. Similarly,
Shu et al. [17] use a visualization ontology to annotate and
query for visualization web services, with regard to their
(1) underlying data model and (2) visualization technique.
While the former is a taxonomy comprising various kinds
of multidimensional datasets, the latter builds on the data
module to classify the graphic representations. For our work,
their data taxonomy is not flexible enough as we need to
support graph-based data structures for example. Gilson et
al. [10] employ three dedicated ontologies to allow for auto-
matic visualization: the first one captures domain semantics
and instance data to visualize; the second one describes a
particular graphic representation; the final ontology contains
expert knowledge to foster the mapping from domain to
visualization concepts. In contrast, we allow for a more
flexible and generic linking of both sides by annotating each
with VISO concepts instead of the explicit, manual creation
of an additional ontology. But we reuse this concept of a
mapping ontology in a particular way. The adapted concept
gives the possibility for an automated insertation of user-
generated knowledge by storing mappings of chosen data
with the applied visualizations. Rhodes et al. [23] aimed
to categorize, store and query information about software
visualization systems using a visualization ontology as the
underlying model. Their approach facilitates methods for
specifying data, graphic representation, or the skill of users.

All in all, we share the goal of the works presented above:
defining a formalized vocabulary to describe and recommend
visualization resources. However, as we strive for a context-
aware recommendation we need a more comprehensive and
detailed model that covers not only data and graphical
aspects, but also represent the user, his activity, and device.

C. Semantics-Based Component Discovery and Ranking

When it comes to finding and binding adequate services
for a desired goal, such as visualizing semantic data as we
are, Semantic Web Services (SWS) tackle a very similar
problem. SWS research provides solutions for finding a
service or service composition that fulfills a goal or user
task based on certain instance data. Therefore, they employ
a formal representation of the services’ functional and non-
function semantics – usually based on description logics –
to facilitate reasoning. Based on this, they strive for the
automation of the service life-cycle including the discovery,
ranking, composition, and execution of services through
proper composition environments.

The discovery of suitable semantic services employs
either complete semantic service models, e. g., in OWL-S
[24] and WSMO [25], or semantic extensions to existing
description formats, as proposed by SAWSDL [26] and
WSMO-Lite [27]. The former top-down approaches are usu-
ally very expressive, but descriptions are complex and time-
consuming to build. The latter bottom-up approaches add
semantic annotations, i. e., references to concepts in external
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ontologies, to WSDL. Even though the above-mentioned
solutions cannot be directly applied to our problems, e. g.,
due to their limitation to web services formats and de-
sign principles (stateless), we follow the idea by extending
a mashup component description language with semantic
references. Thereby, visualization components can be de-
scribed regarding their data, functional and non-functional
semantics, including references to formalized visualization
knowledge.

In SWS discovery, suitable services are searched based
on a formalized goal or task definition, which is usually a
template of an SWS description. Thus, the desired data and
functional interface is matched with actual service models.
The corresponding algorithms either use measures like text
and graph similarities, which restricts the applicability to
design-time, or determine the matching degree of services,
operations, etc., using logic relationships between annotated
concepts as in [28]. In contrast to SWS, we follow a
data-driven approach, in which semantically annotated data
forms the input for the discovery of suitable candidates. The
direct generation of SWS goals from a selected dataset is
not feasible. Therefore, we individually match data types,
functional interface and hard-/software requirements with
and between data and visualization components based on
shared conceptualizations. Based on this measure, compati-
ble visualization components can be found.

Ranking of service candidates in SWS bears a number of
similarities with ranking visualization components for a cer-
tain dataset. It is usually based on non-functional properties,
such as QoS and context information (user profile, device
capabilities). To this end, a number of sophisticated concepts
exist, e. g., for multi-criteria ranking based on semantic
descriptions of non-functional service properties [25] and
for context sensitive ranking [29]. Since these algorithms
are rather generic and work on a semantic, non-functional
level, they likewise apply to our concept space.

In summary, the discovery and ranking of candidate
services for a predefined goal in SWS research follows
a similar principle as our work. Yet, its solutions can
not be directly applied to our problems. For one, there
is a difference in component models, e. g., with regard to
statefulness of visualization components. Furthermore, the
discovery of visualization components can not be based on
predefined, formalized goal descriptions, as it basically de-
pends on semantic data which is annotated with visualization
knowledge. For the annotation of visualization components
with semantic concepts though, we can apply the ideas
of SAWSDL and WSMO-Lite to the component descrip-
tions. To link semantic data with visualization components,
a shared conceptualization of visualization knowledge is
needed. Therefore, the next section presents VISO.

D. Collaborative Filtering Mechanisms

One approach to share and track user-generated knowl-
edge are Collaborative Filtering Recommender Systems
(CFRS) [30]. In contrast to the content-based recommenda-
tion, which employs the structure of the items, these systems
investigate the similarity of ratings for items given by users.
Hence, no content analysis or tagging by experts is required.
All knowledge is generated due to ratings from end-users
while using the system.

The ratings can be distinguished into implicit and explicit
ones [31]. Implicit ratings are acquired by tracking the user
interactions within the application, by reaching predefined
time slices or a number of iteration steps. Nichols et. al [32]
specify an extensive list of possible kinds implicit ratings
and their corresponding recognition. The most suitable ones
for us are Repeated Use, Glimpse and Associate Ratings.
In contrast to the implicit ratings, the explicit ones are
concretely expressed by the user by a concrete interaction,
e. g., by pressing a button. The only requirement is that the
user knows what is the effect of the interaction or rating.
Unfortunately, it is challenging to identify suitable methods
and scales since it is usually a trade-off between getting a
detailed opinion from the user by not overburden or scaring
him. For example, ebay gathers feedback on four distinct
5-star scales. On the other hand, facebook just eases the
interaction by just liking content.

The algorithm used for the CFRS is the Neighborhood-
based Recommendation Method, which can be calculated
in two different ways [33]–[35]. The user-based approach
looks for similar users in the system, by finding akin ratings
according to the actual user. This approach lacks mainly
in the possibility to justify the calculated prediction to the
user [35]. The system has only the ability to present similar
users not items, which is not appropriate for a mainly item-
oriented system like ours. The item-based approach searches
for similar items to make a prediction of interesting ones for
the specific user.

Unfortunately, the recommender systems compete with
the cold-start problems, which are based on the non-
existence of ratings. According [36], they can be classified
into three categories: (1) new users or (2) new items have no
ratings in the system, hence, it is impossible to find similar
items or users; (3) a new community, which comprises
new users and items, is applied. For these problems, the
CFRS community has identified different strategies, e. g.,
un-personalized results, automatically generated ratings, or
closed beta phases, which should be considered and carefully
balanced during the system design.

To the best of our knowledge, CFRS are not used within
automated visualization systems so far. In our opinion, the
main reason is that they may identify suitable graphical
representations based on users ratings but do not allow for
an automated mapping of data structures and values to visual
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Figure 4. Overview of the VISO.

structures and attributes. However, if this mapping is already
provided by the visualization system, collaborative filter-
ing introduces a new facet for recommending visualization
techniques: users conclusion if a mapping is suitable in the
current context. Thus, it allows for tracking and storing user
knowledge – the so-called externalization (cf. Sect. II-A) –
and enables the adaption of the visualization process due to
this evolving knowledge.

III. VISO: A MODULAR VISUALIZATION ONTOLOGY

The foundation of our visualization recommendation ap-
proach is a formalized, modular visualization ontology
called VISO [37], [38]. It provides a RDF-S/OWL vocab-
ulary for annotating data sources and visualization com-
ponents, contains factual knowledge of the visualization
domain, and serves as a semantic framework for storing
contextual information. Altogether, it serves as a bridging
ontology between semantic data and visualization compo-
nents by offering shared conceptualizations for all four
mapping ingredients shown in Fig. 2. Details of VISO and
its development are described in [37], [38]. Furthermore, it
can be downloaded and browsed under http://purl.org/viso/.
The seven VISO modules (data, graphic, activity, user,
system, domain, and facts) represent different facets of data
visualization domain. They refer to each other and to other
existing ontologies as needed. In the following, we discuss
essential parts of the ontology, which are used for the
recommendation of visualization components, in detail.

Data: Fig. 5 shows parts of the data module which
contains concepts for describing data variables and structures
for visualization purposes. While all concepts are employed
to describe visualization components, those with dotted lines
are also used to annotate semantic data. The vocabulary is
especially needed at component-side to describe possible
input data in a generic manner as the most visualizations
allow for representing domain independent data. For ex-
ample, a simple table may visualize data about hotels,
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Figure 5. Overview of the VISO data module.

cars, or humans. Using this vocabulary, we specify only
the data structure and characteristics. As can be seen, a
DATA SCHEMA consists of ENTITY and RELATION concepts.
The latter represent links between ENTITY concepts like
an OWL Object Property. Both ENTITIES and RELATIONS
can contain DATA VARIABLE concepts, whose equivalent in
OWL space is a Data Property. For example, the semantic
data model of a table visualization component would be
represented as one ENTITY concept with several DATA
VARIABLES for every column. Further semantics, e. g., the
SCALE OF MEASUREMENT and CARDINALITIES – specified
using built-in OWL constraints – can be defined on the DATA
VARIABLE concepts (Fig. 5) to constrain its scale etc. By
linking the concepts from the data module to the VISUAL
ATTRIBUTE concepts from the graphic module, we bridge
the gap between data attributes and visual elements.

Graphics: The graphics module conceptualizes the se-
mantics of GRAPHICAL REPRESENTATIONS and their parts,
e. g., their VISUAL ATTRIBUTES. Concrete graphical rep-
resentations, e. g., scatter plot and treemaps, and concrete
visual attributes such as hue or shape are contained as
instance data. The concepts from the graphics module are
used to semantically annotate visualization components and
to define visualization knowledge in the facts module.

Activity: The activity module models user activity in
a visualization context. It builds on the ontology-based task
model by Tietz et al. [39], which distinguishes betweens
high-level, domain specific TASKS and low-level, generic
ACTIONS, similar to the distinction made by Gotz and Zhou
[40]. We have extended the action taxonomy of Tietz’s task
model by separating data- and UI-driven ACTIONS, and by
formalizing ACTIONS from the visualization literature such
as zoom and filter. This enables the fine-grained annotation
of interaction functionality in visualization components.

User: The user module formalizes user PREFERENCES
and KNOWLEDGE. Users can, for example, have PREFER-
ENCES for different GRAPHICAL REPRESENTATIONS, and
their visual literacy can differ. As manifold context models
for users, their characteristics and preferences, already exist
those can be seamlessly integrated and used here.

System: The system module facilitates the description
of the device context, e. g., installed PLUG-INS or SCREEN
SIZE. It also allows us to annotate a visualization component
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with its system requirements. Again, sophisticated models
for device characteristics and context exist, which were
reused or integrated in this module. As an example, we
borrow concepts from the CroCo ontology [41], which
combines user, usage, system, and situational context from
different existing works developed by academia.

Domain: Many visualizations are domain-specific, and
thus it is important to consider the domain context during
visualization recommendation. However, it is not feasible
to model all possible visualization domains. Instead, we
support linking to existing domain ontologies. A DOMAIN
ASSIGNMENT links VISO concepts, e. g., a DATA VARIABLE
(Fig. 5), to concepts from specific domain ontologies. As this
assignment is usually created automatically during data anal-
ysis, it can be qualified with a probability value reflecting its
accuracy. Thus, the analysis of a data source with ambiguous
Properties, such as typeOfJaguar and typeofApple, will result
in multiple domain assignments with probabilities below 1.
In contrast, a Data Property hasPrice from our motivating
example could be annotated with price and a probability of
1. A visualization component supporting DATA VARIABLE
annotated with the more general concept value could be
inferred as a possible mapping.

Facts: The visualization recommendation also depends
on factual visualization knowledge to select suitable visual-
izations. Thus, we formalized knowledge from the infor-
mation visualization community, e. g., verified statements
such as “position is more accurate to visualize quantitative
data than color” [42], to make it machine-processable. These
rankings and constraints are formalized in rules in the Facts
module. These rules use of the vocabulary of the other
VISO modules in their conditions part, e. g., SCALE OF
MEASUREMENT (quantitative) and the VISUAL ATTRIBUTE
(position, color) for the mentioned example. If the condi-
tions are matched, a rating is assigned to the corresponding
visualization component description.

To give a more practical insight, the following example
explains how a treemap visualization is described using
VISO (Fig. 6). First, the hierarchical data structure of the
treemap is specified. At the top level, a Node ENTITY
represents the whole treemap. It can contain Leaf ENTITIES
and Node ENTITIES. The label and size variables of Leafs
can be configured. They are annotated with visualization
semantics, e. g., the SCALE OF MEASUREMENT for the label
variable is nominal and the ROLE of the size variable is
dependent. Further domain semantics could be added to
the variables, e. g., WordNet (http://wordnet.princeton.edu/)
concepts such as value. In addition to the data structure
and the variables, more general semantics such as the kind
of GRAPHIC REPRESENTATION (treemap), the LEVEL OF
DETAIL (overview) and possible ACTIONS (select, brush) are
defined for the entire visualization component.

In order to facilitate the construction of visual mappings,
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Figure 6. Description of a treemap visualization in VISO.

VISO is used to annotate visualization components and
semantic web data. In the latter case, we annotate only
RDF Properties on a schema level. RDF Properties hold
the data that will be visualized, e. g., literals and relations,
whereas RDF classes assemble such properties and do not
provide additional information that would be relevant for
visualization. Similarly, annotations are made on the schema
level, because instance data annotation would be redundant.
Consider our motivating example (Fig. 2-1), comprising
the Property hasPrice. Because the Property has the RDFS
Range xsd:float, the required DATA TYPE is already defined
and the SCALE OF MEASUREMENT is quantitative. The
number of distinct values (CARDINALITY) and the overall
number of values (QUANTITY) can be extracted from the
instance data. While a DOMAIN ASSIGNMENT is not manda-
tory, it could be applied, e. g., to price from the WordNet
vocabulary.

In summary, VISO models the concepts required for
data visualization. It is used to annotate data, to describe
visualization components, to represent context and factual
knowledge. Together, these different pieces are the founda-
tion of our visualization recommendation algorithm.

IV. VISUALIZATION RECOMMENDATION ALGORITHM

The visualization recommendation algorithm creates an
ordered list of mappings of visualizations components for
the selected data (Fig. 2-1). It considers contextual infor-
mation (e.g., device, user model) as well as knowledge
about the full data source. While the user model and device
are mandatory inputs, visualization specific information like
the required LEVEL OF DETAIL or the requested kind of
GRAPHICAL REPRESENTATION are optional constraints.

The algorithm consists of two separate steps: match-
ing and ranking (Fig. 7). Both steps leverage semantic
knowledge formulated as VISO concepts (cf. Sect. III). In
the matching step, potential mappings between data and
widgets are generated based on functional requirements.
The resulting visualization set is then sorted in the ranking
step using the formalized visualization knowledge, domain
concepts, and contextual information.

A. Discovery of Mappings
The matching algorithm generates a set of mappings

from the selected data to visualization components (Fig. 7).
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Calculate Domain-based Rating
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Order and Filter Mappings

Calculate User Rating

Matching

Ranking

Figure 7. Overview of the recommendation algorithm.

First, potentially applicable widgets are identified and non-
applicable components are ruled out (pre-selection), since
limiting the set of available visualization components early
improves the overall algorithm performance. To be applica-
ble, a widget has to (1) be compatible with the target device
(e. g., required PLUGINS must be available), (2) support
the number of selected Data Properties, and (3) support
visualization and task specific requirements (e. g., showing
an overview), if specified by the user. As can be seen, these
constraints do not relate to data structure or semantics of the
data variables, yet. Semantic matching is carried out with the
resulting component candidates in the following step.

Second, semantics, e. g., the SCALE OF MEASUREMENT,
DATA TYPE, and QUANTITY (Fig. 5) of the selected Proper-
ties are fetched (gathering semantics). For example, the
DATA TYPE xsd:float or the SCALE OF MEASUREMENT
quantitative of the property hasPrice (Fig. 8-3)) would get
retrieved. This semantic information about the Properties is
used in the next steps.

Third, we generate generic data schemas, which are
then used to query for mappings. We distinguish between
tabular and graph-based DATA SCHEMAS. TABULAR DATA
SCHEMAS contain one ENTITY with several DATA VARI-
ABLES (Fig. 8-1). GRAPH-BASED DATA SCHEMAS contain
two or more linked ENTITIES, each containing zero or more
variables (Fig. 8-2).

If a single class has been selected, a TABULAR DATA
SCHEMA is chosen and an ENTITY is created for that class.
For every selected Data Property of this class, a DATA
VARIABLE with the semantic information (that was retrieved
in the previous step) is attached to the ENTITY.

If several classes have been selected, we generate both
a tabular and a graph-based DATA SCHEMA. For the TAB-
ULAR DATA SCHEMA, a single ENTITY gets created. For
any selected Data Property from those classes, a DATA
VARIABLE with the semantic information is attached to the
single ENTITY. This reduces the graph-based data structure
to a tabular structure. For example, consider the data shown
in Fig. 8-3. The algorithm would create one ENTITY with

two DATA VARIABLES. The first DATA VARIABLE would rep-
resent the semantics of hasName, e. g., the nominal SCALE
OF MEASUREMENT, and the second DATA VARIABLE would
represent hasPrice. A GRAPH-BASED DATA SCHEMA gets
generated as follows. Beginning with a class from the input
data, e. g., Event in Fig. 8-3, an ENTITY is created. Similar
to the other cases, DATA VARIABLES and their semantics
are attached to this ENTITY for the selected Data Properties
linked to the class. Next, for each Object Property connected
with the class, a RELATION gets generated. If the target
class for that RELATION has not been processed yet, it is
created and processed in a similar way. This depth-first
processing continues until the current part of the input graph
is completely traversed. If there are multiple unconnected
classes in the input, the algorithm continues with those until
all graph components are processed, e. g., the algorithm
would generate the DATA SCHEMA illustrated in Fig. 8-4
by processing the input data structure shown in Fig. 8-3.

Fourth, the mappings are generated by querying the se-
mantic representations of the pre-selected components with
the generic DATA SCHEMAS that were computed in the
previous step (query for mappings). The mappings include
permutations of DATA VARIABLES with similar semantics,
and thus the number of mappings may be higher than the
number of existing components. Using the data structure
generated by the algorithm for the example shown in Fig. 8-
4, both the scatter plot (Fig. 8-1) and the treemap (Fig. 8-
2) would fit on the level of data structure. However, only
the treemap is a suitable mapping due to the annotated
semantics which are also employed by querying. The scatter
plot is not suitable because it has two quantitative DATA
VARIABLES, where both a nominal and a quantitative DATA
VARIABLE are required. The generated set of mappings from
the selected data to the visualization components is ranked
in the next part of the algorithm.

B. Ranking of Mappings

The ranking step of the algorithm sorts the visual map-
pings that were generated by the previous matching step.
While this step identifies valid mappings and visualization
components that satisfy functional criteria, it does not take
their effectiveness into account. To sort the mappings by
their effectiveness, the ranking step applies factual visual-
ization knowledge, domain assignments, contextual user and
device information, and a user rating.

The four different kinds of rating are combined using an
arithmetic mean. The overall rating has a range between 0
and 1. We weight all three, receptively four, rating types
equivalently for two reasons. First, the assignment of a
(quantitative) rating is often subjective. Second, a profound
user study is needed to evaluate the impact of each knowl-
edge base in users visualization selection process what will
be future work. As x, y, z, and ru are the number of each
kinds of rating, the overall rating R for each mapping is
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Figure 8. Comparison of the data structure and the annotation between 1) a scatter plot, 2) a treemap, 3) user’s selected data, and 4) a generic equivalent
of the selected data.

calculated in terms of eq. 1. The meaning factor 1/n is
therefore assigned with 1/3, if neither an user rating can be
found, nor can be calculated. In all other cases, it is assigned
with 1/4 to keep the equivalently rating of all factors.

1) Factual Visualization Knowledge: The factual visu-
alization knowledge (see Section III) is defined by a set
of rules that consists of a condition and a rating. The
conditions are specified using the VISO vocabulary for the
visualization components. For each widget, the ratings of
all rules that are met are added to its specification. During
runtime, the arithmetic mean of all ratings rv is calculated
for the discovered component of each visual mapping. For
example, we formalized rules to rate the appropriateness of
visual encodings for quantitative data [42]. The quantitative
DATA VARIABLE of the treemap (Fig. 8-2) is rated with 0.5
as it employs “only” size and not position.

2) Domain Assignments: Domain concepts from various
ontologies are assigned to both the data input and the
visualization components with a certainty value (see Section
III). For each pair of input Property and DATA VARIABLE
of the visualization component, we calculate a semantic
similarity rating between 0 and 1 (e. g., using [43]), if they
both have a domain concept assigned with a certainty greater
than 0. The final rating rd is the product of the semantic
similarity and the arithmetic mean of both certainties. In
our example (see Sect. III), we used value and price from
WordNet to annotate the quantitative DATA VARIABLE of the
treemap and the Property hasPrice from our dataset, each
with a certainty of 1. Using [43], we get a rating rd=0.9094.

3) User and Device Information: The rules for the
context-based rating rc are part of the knowledge base and
use the VISO vocabulary, similar to the factual visualization
knowledge. The rules are executed during runtime and
employ the above mentioned identifiers of users’ and their
device. For example, we construct a SPARQL-based rule that

counts the use of different GRAPHIC REPRESENTATIONS,
like treemaps or scatter plots. This rule assigns a rating rc
between 0 and 1 to the visual mappings.

4) User-shared knowledge: The factor ru is associated to
our concept of employing the user-generated visualization
knowledge [15] by using collaborative filtering, see Section
V. Since the user has not rated the visualization component
in the specific combination with a selected dataset, the
algorithm tries to foresee a possible rating. This calculated
rating ru assigns a factor between 0 and 1.

Finally, the complete list of mapping is ordered based on
the combined ratings R for each mappings. This ranking
could be used to automatically display the most suitable
visualization component to the user, or, as in our approach,
to let the user pick one of the top n ranked visualizations.

V. REUSE OF EMPIRICAL VISUALIZATION KNOWLEDGE

As identified in Sect. II-A, the idea of knowledge-assisted
visualization is mostly presented in a theoretical way and
lacks of concrete descriptions of data structure or applied
algorithms. Hence, in the latter sections we propose the
VISO as well as a concrete recommendation and mapping
algorithm, which employs the ontological knowledge base,
to enhance the so-called internalization process [15]. Un-
fortunately, we only use the a priori knowledge formalized
by experts so far. Users insights, particularly a component
is suitable or not for a selected dataset, are neglected.
Thus, in the following subsections we provide concepts to
externalize and reuse also this empirical knowledge which
is lost otherwise.

A. Externalization of Empirical Knowledge

The externalization process describes the storage of user’s
internal knowledge within the system. This process can be
distinguished in acquiring implicit and explicit insights. The
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tracking and interpretation of interactions as knowledge is
called implicit rating and is used for gathering knowledge,
before the user indicates the end of the adaption loop by an
explicit rating. In our concept, a rating is always saved for
a combination of a generic data schema (cf. Sect. IV-A) and
concrete visualization component.

For the storage of ratings, we developed a rating ontology
similar to the Semantic Bridging Ontology of Gilson et
al. [10]. It maps all ratings of one generic data schema
with one visualization component, see Fig. 9. The ratings
are saved in a flat table beside these combinations. The
flattened table is necessary to apply the collaborative filtering
algorithm on ontologies without the conversion of the data
types. However, the use of an ontology allows for a simple
reuse of other concepts within the VISO without duplicating
information. Thus, we are able to query for instance “only
good rated components that are able to visualize trends”.
To harvest implicit rating, we rely on the following three
actions from [32].

• Repeated Use: A visualization component is used
more than three times by the same user. The usage of
the component is recognized by counting interactions
within a defined time interval. Since the repeated use
is a sign that the user favors a component, it is added
to a so-called white list.

• Glimpse: If the chosen visualization component is
discarded without reaching a defined time interval or
a count of interactions for recognizing the Repeated
Use, it is downgraded by adding it to a black list.

• Related Rate: The visualization component was ex-
plicit rated by the user, but in a different data com-
bination. Since the user knows its characteristics, it is
possible that he likes it for other data selections, which
are distinct from the generic data schema, as well. In
case of a good rating, the component is added to the
white list, otherwise to the black list.

Beside this implicit knowledge tracking, we gather explicit
ratings. Thus, the user can explicitly decide whether the
visualization is applicable for its purpose or not. Since we
like to stimulate the user to rating, we employ a simple scale
of applicable (1) or not applicable (0). Thereby, we fulfill
the requirement to give the user an adequate possibility to
rate, without an excessive demand.

B. Collaboration

The collaboration process describes a direct collaboration
of two or more users [15], such as chat, telephone, or
co-browsing. We broaden this scope by including indirect

Generic
Datascheme

Semantic
Bridge

Visualization
component

gS1.1

gS1.2

sb1 K2

User Rating

B1 1
B4 1
B2 0

Figure 9. Overview of the rating ontology.

K1 K2 K3 K4 K5

B1 1 0 - 0 0
B2 0 1 0 1 1
B3 0 rrs 1 1 1
B4 1 1 1 1 -

Figure 10. Example set for CFRS prediction.

sharing of knowledge as collaboration. For this purpose, we
use algorithms for the collaborative filtering, what allows for
predicting a rating based on similar users and ratings. After
an evaluation on accuracy, efficiency, stability, justification,
and serendipity [35], we decide to employ the item-based ap-
proach for our use-case. It calculates the similarity between
the ratings of visualization components, given by different
users. With this information, the algorithm can predict the
rating for the current visualization. An example is given in
Fig. 10. It has to calculate the prediction rrs for user B3 and
visualization component K2. In this exemplary setting, the
prediction is assessed based on the rating distances between
K2 and all other visualization components (K1 - K5). The
algorithm chooses K4 and K5 as nearest neighbours and
forecasts a rating of rrs = 1 for this setting. The formal
calculation can be considered in detail in the work from
Sarwar et. al [34] and could be used without adaption,
concerning the flattened structure of the rating storage.

The quality of the CFRS can be measured by calculating
the mean absolute error. This technique involves the dis-
tance between the predicted and the encountered rating. All
distances are saved within the system and are normalized by
their count. This comparative simple method can be applied
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in recommender systems, that scales the rating on a base
of 0 and 1 [44]. If the measured error is near 1, the CFRS
will predict the wrong values and, therefore, sharing wrong
knowledge. In this case, we deactivate the prediction in the
ranking algorithm, acquire more ratings and activate it if a
given threshold is reached.

If no rating exists and also no one could be predicted
due to missing information, our approach tries to employ
the implicit ratings stored in the white and black list as
mentioned in the foregoing subsection. The problem of their
application is the missing expressiveness as it is always
vague if the implicit rating is true or not. We decide to assign
the weight of 0.25 if a component is on the black list and
0.75 if it is on the white list. Their appropriateness needs
to be analyzed and maybe aligned in a broader evaluation
scenario.

C. Using Empirical Knowledge for Evaluation

The empirical knowledge, especially the explicit rating is
an interesting foundation for the evaluation of our ranking
algorithm presented in Sect. IV-B. We can calculate the dis-
tance between the mean of factual visualization knowledge,
domain assignment and user and device information to the
given explicit rating. As it is also normalized to a scale
between 0 and 1, it is possible to apply the method of the
mean absolute error. In case the measured error converges
to 0, we can verify that the calculated elements of the
ranking algorithm are significantly correct. In contrast, if
the measured error converges to 1, the ranking algorithm
and the users needs shows a big gap, which can disprove its
correctness.

VI. ARCHITECTURE AND ITS IMPLEMENTATION

After presenting the conceptual foundations of our ap-
proach, in this section, we show how they are integrated into
a knowledge-based and mashup-based architecture. Further-
more, we outline some implementation-specific details.

A. Knowledge-based Architecture

To realize the concepts discussed above, we specified a
reference architecture shown in Fig. 11. It comprises three
layers: ontological knowledge bases, loosely-coupled web
services, and a component-based user interfaces. In the
following, we describe the functionality of the single parts
and their relation amongst each other in detail.

The first knowledge base, the VISO 1 (cf. Sect. III), holds
the visualization specific knowledge. It is used to annotate
the data within the Data Repository 5 and to describe the
visualization capabilities and the data interfaces of compo-
nents. The foundation of the semantic component description
is the Mashup Component Description Ontology (MCDO),
which is part of the CRUISe mashup environment 2 [45].
It is not only extended by VISO but also by contextual meta-
information. For this, we reuse the CroCoOn ontology 3

being part of the CroCo context service 7 [46]. Finally, we
designed an ontological knowledge base to store ratings 4
for the mapping of selected data to the chosen component.
Therefore, it refers to concepts of the VISO and MCDO.

Furthermore, we build on four different web services
which heavily make use of the mentioned knowledge bases.
The Data Repository 5 offers a homogeneous data layer for
the visualization system to upload, convert, filter, and cluster
the data. Furthermore, it semi-automatically augments it with
VISO vocabulary like described in Sect. III. The Component
Repository 6 – being part of CRUISe as well – allows
for the semantic-driven management of visualization compo-
nents based on the MCDO 2 . Further, the recommendation
for appropriate components (cf. Sect. IV) is integrated within
this service. For this, it gathers data semantics from the Data
Repository, the Context Service, and the Rating Repository.
As mentioned, we reuse CroCo [46] as Context Service 7 .
The Rating Repository 8 offers the functionality to store
all the implicit and explicit ratings of the users tracked in
the user interface. Additionally, it provides an API to retrieve
this score. If it is not available directly, the algorithm defined
in Sect. V is applied to predict this rating.

The visualization workflow of an user is accomplished
by VizBoard – a composite application based on CRUISe
running within the Mashup Runtime Environment. It com-
plies with the process presented in Fig. 1, where the most
crucial steps are shown in Fig. 11. After uploading the
data, the user has to slice and dice it to a manageable
subset by using the Data Pre-Selection component 9 [47].
This reduced dataset is the foundation for the concrete
selection of data items and structures to visualize. Since also
visualization-specific characteristics, e. g., visual variables or
interaction techniques, are important to select appropriate
visualization components, we developed the sophisticated
concept of Weighted Faceted Browsing [48]. The related
component 10 access the Component Repository to execute
the recommendation algorithm proposed in Sect. IV. In
the end, the selected components are integrated 11 . Thus,
the user can perceive the represented data. At this stage,
we explicitly and implicitly acquire users knowledge, like
explained in Sect. V, and save it using the Rating Repository.

B. Implementation Details

After giving an overview of our architecture, we provide
some details on its implementation. All ontologies are build
on the widely adopted semantic web standards from the
W3C: RDF4, RDFS5, and OWL6. To define the schemata, we
mostly rely an OWL DL, which is expressive, deterministic,
and allows for inferring new knowledge by using different

4http://www.w3.org/TR/rdf-primer/
5http://www.w3.org/TR/rdf-schema/
6http://www.w3.org/TR/owl2-overview/
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Figure 11. The architecture of our approach could be distinguished into three layers: knowledge bases, web services, and user interface.

reasoners. To query the ontologies within our services, we
build on SPARQL 1.17.

All web services presented in the architectural overview
(Fig. 11) are prototypical implemented in Java. The Data
Repository is accessible through a RESTful web service
API using Java Jersey8. Its core is a RDF triple store
which allows to store and filter the datasets. To identify an
appropriate one, we had to conduct a triple store benchmark
[49] since the existing ones do not consider real-world
datasets, SPARQL 1.1, nor reasoning which are altogether
requirements in our use case. Although no store stands out
in this test, we decided on Jena TDB9 due to the existence
of an extendable rule engine required for the analysis within
the augmentation step.

As aforementioned, we are relying on the CRUISe ecosys-
tem. Thus, we could reuse the Component Repository and
the Context Service. Since the latter does not require any
extension, the recommendation algorithm (cf. Sect. IV) is
implemented in the Component Repository using the Apache
Jena API and Jena rules. Additionally, we employ SPARQL
to pre-select components and to generate the generic data
schema like proposed in Sect. IV-A. These queries run
against the semantic information of the components stored
within the MCDO, particularly the operations of the com-
ponent API as they are responsible to insert the data.

The Rating Repository, which manages the implicit and
explicit ratings for combinations of generic data schemata
and components, is accessible over a REST interface, too.
To retrieve components and their ratings for a generic data
schema, which could be represented as unique hashes, we
employ SPARQL as well. List. 1 shows an exemplary query.
Furthermore, we implemented the CFRS algorithms defined
in Sect. V-B. This allows for not only to use the rating made
by the user but also to predict ratings if not available.

7http://www.w3.org/TR/rdf-sparql-query/
8http://jersey.java.net/
9http://jena.apache.org/documentation/tdb/

1 # get ratings by given generic data schema
2 SELECT ?vcid ?owner ?val
3 WHERE {
4 ?gds v-r:hasGenericDataScheme
5 v-d:1296abf85e507a9596ab2131a0f933a3 .
6

7 ?sbo v-r:hasGenericDataScheme ?gds;
8 v-r:hasRating ?ratings;
9 v-r:hasVisualizationComponent ?viscomp.

10

11 ?ratings v-r:hasRatingValue ?val;
12 v-r:hasOwner ?owner.
13

14 ?viscomp mcdl:hasId ?vcid.
15 }

Listing 1. SPARQL query to retrieve all ratings for a data schema.

At the user interface layer, we use the Mashup Runtime
Environment, which is implemented as purely JavaScript-
based thin-server architecture and as client server archi-
tecture by using Java for the backend and JavaScript for
the frontend. Both client-side implementations are extended
to allow for voting the data-component-combinations. The
implicit rating starts with the loading of a visualization com-
ponent into the screen (Fig. 11-11). We included all three
recognition modes distinguished in Sect. V-A by tracking
mouse and key events in a defined time span after compo-
nents’ integration. Furthermore, the runtime automatically
integrates rating buttons for every component beneath the
graphic representation (Fig. 12).

All user interface components being part of the user-
centered visualization workflow, e. g., the Data Pre-
Selection, and the components to visualize the data are
developed using HTML, JavaScript, e. g., frameworks like
D3.js10 or jQuery11, and partly Adobe Flash.

10https://github.com/mbostock/d3
11http://jquery.com/
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Figure 12. Visualization component with rating bar at the bottom.

VII. CONCLUSION AND FURTHER WORK

Selecting an appropriate visualization for a specific
dataset in a specific scenario remains challenging for non-
experts. Therefore, we have presented a context-aware and
knowledge-assisted approach to recommend suitable visual-
izations for semantic web data. Its foundation is the modular
visualization ontology VISO, which provides the vocabulary
to annotate both data sources and visualization components.
Based on these shared concepts from the visualization do-
main, our recommendation algorithm covers both matching
and context-aware ranking of suitable graphic representa-
tions. First, possible mappings from data to visual encodings
are identified using the selected data, its semantics, and
other functional information. Then, quantitative ratings for
each mapping are calculated with respect to visualization
knowledge, domain concept relations, context information,
and user ratings. To the best of our knowledge, this approach
is the first that employs formalized, inferred expert knowl-
edge but also empirical, evolving knowledge from users to
identify the most suitable visualization components.

Currently, we are also planning to conduct an exhaustive
user study to identify and model the interdependencies
between the knowledge bases employed within the ranking.
Furthermore, we are working on a concept to use the a priori
and empirical knowledge to assist the user in interpreting
and understanding the visualized data what will underpin
the usefulness of knowledge-assisted visualization.

Furthermore, many concepts presented in this work can
be adapted to general semantic reasoning problems. As
a goal of the SeMiWa [50], a situation reasoner within
an ubiquitous, assisted live environment should forecast
situations based on the current classified one. The ranking
algorithm is an adaption of the one presented in this article.
The factual visualization knowledge is conceptually similar
to factual lifecycle knowledge, such as circadian or infradian
rhythms. The domain assignment changes the prediction

based on the current domain where is user is situated, e. g., at
home, at work, or outside. The user and device information
are identical since they consist of personalized context
information for one user, combined with the sensoral context
of the surrounding environment. An important additional
benefit is the usage of user-shared, empirical knowledge, like
it is mentioned in this work. Therefore, we also propose a
collaborative filtering approach for finding “neighbors” that
are acting in a similar way.
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