
89

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Pairing Prolog and the Web in a Normalization and Denormalization Tool 
 

 

Lule Ahmedi 

Computer Engineering 

University of Prishtina 

Prishtina, Kosova 

lule.ahmedi@uni-pr.edu 

 

Naxhije Jakupi 

Computer Science 
South East European University 

Tetovo, FYR Macedonia  

naxhijejakupi@yahoo.com 

 

Edmond Jajaga 

Information Technoogies 

State University of Tetovo 

Tetovo, FYR Macedonia 

e.jajaga@unite.edu.mk 

 

Besmir Sejdiu 

Computer Engineering 

University of Prishtina 

Prishtina, Kosova 

besmir.sejdiu@gmail.com

Abstract—The concept of database normalization emerges as 

very important since the need of redundant-free storages.  Its 

hard understanding by students requires a flexible learning 

environment and an intelligent behavior by the machine. Our 

tool NORMALDB integrates both of them in a PHP and Prolog 

implemented platform providing a complex architecture 

internally and user friendly interface. Students will effectively 

learn by working with their own defined examples and at the 

same time can consult the theory behind each normalization 

step. On the other side, database teachers can track the tool 

usage of their students, by getting the information of their 

actions. This paper provides a detailed description of 

NORMALDB pointing out the communication between HTML 

pages and Prolog predicates and spread the challenges faced 

during the application deployment. Instead of normalization, 

our tool is the first in the series to support the teaching of 

denormalization procedure. 

Keywords-E-learning systems; database normalization and 

denormalization; logic programming; prolog server; web 

programming; 

 

I. INTRODUCTION 

Learning technologies is one of the fields that highlighted 
the potential of the web for education [1]. Easy access, 
location and time independent resources, unlimited design 
space, flexibility, and a wide range of functionalities of the 
web prompted the development of a new branch of learning 
named e-Learning [2]. The advantages of the web were by 
default inherited by e-Learning technologies built upon them, 
enabling thus more sophisticated teaching and learning 
environments. That way, the utilization of e-Learning 
technologies by universities has led them to transform from 
didactic teaching methods to flexible and independent 
learning. Passing to this level of authomatizm requires 
introducing the latest programming technologies, through 
which the machines will behave more like human. 
Algorithms that simulate thought processes and reasoning 
that produce behavior similar to humans belongs to a special 
field called Artificial Intelligence (AI). These software 
portions of applications are known as intelligent agents, 
which can learn from the interaction of the human and the 
machine. 

The AI based e-Learning applications have the potential 
of producing realistic environments in which students can 
perform learning. In this simulated environment the student 
interacts with the intelligent agents, which in turn perceive 
changes and take appropriate actions. Such a feature is very 

important in the domain of e-Learning, especially in subject-
based e-Learning. These applications are an example of 
providing support for even more complex subjects to learn 
[3], as is database normalization and denormalization, which 
is a subject-to-learn through our e-Learning tool we will here 
introduce. 

Database design is the art and science of improving the 
structure of database relations that are most suited to 
represent a small portion of the world called the “universe of 
discourse” [4]. The relational schema that results at the end 
of the design phase must consist of normalized relations 
accordant with the semantics of given entities and their 
integrity constraints (ICs), avoiding at the same time as more 
as possible data manipulation anomalies. Hence, 
normalization is very important in practice, but also crucial 
to get familiar with, for every student studying databases. 
Unfortunately, this subject is often dry and troublesome to 
learn, making it not well received by students.  

To ease learning of database normalization and 
denormalization, we developed NORMALDB, a web-based e-
Learning tool. It is designated to provide theoretical 
background on the subject (normalization and 
denormalization of database schema): it explains stepwise 
every single detail of the process as a whole. It also provides 
an interactive interface of learning the subject, driven by the 
student’s given examples. The content organization of the 
tool is a pure reflection of how the teacher organizes the 
subject.  

The rest of the paper is organized as follows. Section II 
describes the current state-of-the-art on e-Learning tools for 
database normalization. A brief review on the main concepts 
of database normalization and denormalization is given in 
Section III, Section IV introduces the NORMALDB’s system 
architectural layers and its features. Further, Section V 
provides the main challenges faced during the system design, 
whereas Section VI describes the learning methodology 
using NORMALDB. Section VII includes deployment of 
NORMALDB in real accessible platforms for testing purposes. 
Finally, the paper ends with the conclusion and future works 
section. 

II. RELATED WORK 

There are already few tools that cover executing 
normalization, like JMathNorm [5], NORMIT [6], 
RDBNorma [7] and Micro [8]. To the best of our knowledge, 
NORMALDB is the first which supports the denormalization 
step. 



90

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

JMathNorm [5] is an interactive tool for relational 
database (RDB) normalization implemented by using 
Mathematica. The tool includes normalization till Boyce-
Codd Normal Form (BCNF) and calculates closure and 
cover of functional dependencies (FDs). The design 
approach of our system is similar to this tool. JMathNorm 
integrates Mathematica for writing normalization modules 
and Java language for programming the user interface, while 
we use Prolog and PHP, respectively. Our advantage over 
JMathNorm is the advantage of using web-based systems 
over the standalone ones in terms of software distribution, 
compatibility issues and immediate software updates. 

Another tool dealing with the database normalization, 
NORMIT [6], is a web-enabled Intelligent Tutoring Systems, 
which is also the first in the series of constraint-based tutors 
developed at ICTG (University of Canterbury). The 
emphasis of this system is on problem solving thus 
complementing the students’ class work. Its domain 
knowledge is modeled using Constraint-Based Modeling 
(CBM), which enables a student to work on with 
normalization problems as long as he/she reaches a state 
known to be true pre-defined by 53 constraints. With 
NORMALDB our emphasis was on establishing an e-Learning 
tool which shall not only be complement to the class work, 
but also to be an independent database normalization 
“teacher”. Additionally, our tool is more complete w. r. t. the 
inclusion of the normalization concepts like finding minimal 
cover, making the decomposition lossless and projecting 
FDs.  

Micro [8] and RDBNorma [7] are tools that employ 
linked lists to model the relation entity along with its FDs. 
Micro uses two linked lists to store the relation, the first one 
stores all the relation attributes while the other one stores 
FDs. RDBNorma focuses on system performance in terms of 
space and time consumption by using only one linked list to 
represent a relation along with FDs holding on it. In our tool 
the relation schema and FDs are modeled using two separate 
Prolog lists. Our emphasis during the system design was on 
providing a more user friendly GUI and a flexible learning 
environment, while authors of RDBNorma does not deal 
with user interface issues.  

Generally, NORMALDB is unique in that it smoothly 
integrates two entirely diverse paradigms, namely: 

• at the internal level, an intelligent layer based on 
logic rules in Prolog that implements the 
normalization and denormalization of a given 
database, whereas, 

• at the external level, the user may friendly and 
stepwise interact with the tool through a common 
Web interface, kept thereby not concerned with the 
complexity of the tool at its internal level. 

Moreover, using NORMALDB, students may step-by-step 
experience the whole life-cycle of database relations up to 
their normalized forms, or in a reverse process of 
denormalization, which means roll backing relations into 
their original form whenever deemed necessary for the sake 
of efficiency of join operations. Driven by examples, each 
step is in addition accompanied with comprehensive 
explanation of the theories applied in that given step. 

Navigation through content blocks across individual steps / 
subtopics is another strong reason to leverage NORMALDB. 
The level of interactivity, the ease of use, its logic-base of 
rules and the Web interface make NORMALDB unique 
among existing tools, which support normalization. 

III. DATABASE NORMALIZATION AND 

DENORMALIZATION 

It has been estimated that more than 80% of all computer 
programs are database-oriented. This is easy to believe since 
databases allow the applications to meet all their 
requirements for storing, manipulating and displaying data 
[9] at once. 

For years now, the relational data model remains the 
most used data model in databases. The central data 
description construct in this model is a relation, which can be 
thought of as a set of records. The description of a data in 
terms of data model is called a schema. In relational model, 
the schema for the relation specifies its name, the name of 
each field, and the type of each field. User requirements may 
in addition result into certain ICs within the schema. ICs may 
in turn cause redundancy-related problems like: redundant 
storage, update anomalies, insertion anomalies, and deletion 
anomalies. Special group of ICs that plays the major role in 
the schema refinement are called FDs [10]. 

Together with the input schema, FDs provide the initial 
information from which it is produced normalized relations 
i.e., anomalies-free relations. Namely, FDs holding over a 
relation influence a relation to be split in two or more 
relations. This technique is known as relation decomposition. 
A decomposition of a relation schema R consists of replacing 
the relation schema by two (or more) relation schemas that 
each contain a subset of the attributes of R and together 
include all the attributes in R [10]. Whether to decompose a 
relation or not, it depends on the desired level of redundancy. 
Additionally, in order to not losing any information when 
performing relation decomposition we need to be aware of 
two issues: 

• Lossless-join decomposition, which enables to 
recover any instance of the decomposed relation 
from the corresponding instances of the smaller 
relations. 

• Dependency-preserving decomposition, which 
prevents from expensive joins of derived relations by 
enforcing original relation’s FDs on each of the 
derived relations. 

A. Normalization 

Following the FDs that hold over a relation, one may 
understand what redundancy problems, if any, might arise 
from the current schema. To provide such guidance, several 
normal forms (NFs) have been [10] introduced in terms of 
FDs as follows: 

• 1NF – First Normal Form: A relation R is in first 
normal form if and only if all underlying domains 
contain atomic values only. 

• 2NF – Second Normal Form: A relation R is in 
second normal form if and only if it is in 1NF and 



91

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

every nonkey attribute is fully dependent on the 
primary key. 

• 3NF – Third Normal Form: A relation R is in third 
normal form if and only if it is in 2NF and every 
nonkey attribute is nontransitively dependent on the 
primary key. 

• BCNF – A relation R is in BCNF if and only if every 
determinant is a candidate key. 

• 4NF and 5NF are rarely achieved, and hence not 
implemented in our tool at this stage. 
 

The procedure itself of transforming a relation, given its 
FDs, into any of the abovementioned NFs is known as 
normalization, and it: 

• leaves the relation unchanged if it already satisfies 
the NF sought after, or 

• decomposes the relation in two or more smaller 
relations, i.e., relations with less number of columns, 
each satisfying the NF sought after. 

 
Regarding the normalization theory it is necessary to 

mention the concept of attribute closure, since every 
normalization algorithm, including 3NF and BCNF 
algorithms, within the Prolog system for normalization [4] 
uses it. Closure of a set of attributes X with respect to a set of 
FDs as the set of all attributes A such that X � A can be 
deduced by Armstrong’s axioms [4, 10]. 

B. Denormalization 

Normalization of a relational schema with the given set 
of FDs results into a relational schema, which is free of 
redundancy-derived anomalies, but might yet suffer from 
eventual performance-derived problems. To address that 
kind of problems, a reverse process to normalization, known 
as denormalization, has been introduced. Denormalization is 
the process of adding columns to the table to reduce joins in 
favor of performance, and is considered only if the integrity 
of data is not seriously compromised [11]. 

The two most common types of denormalization are: 

• Two Entities in a One-to-One Relationship: The 
tables for these entities could be implemented as a 
single table, thus avoiding frequent joins required by 
certain applications. 

• Two Entities in a One-to-many Relationship: 
Sometimes logical design results in very simple 
tables with very few attributes, where the primary 
key is a foreign key in another table you want to join 
with. In such cases, when a query wants data from 
both tables, it may be more efficient to implement 
them as individually named columns as an extension 
of the parent entity (table).  

The procedure  of denormalization need to follow these 
steps: 

First of all there is a need to make sure that normalization 
process was done by correctly applying NF  rules. Then will 
be selected the dominant queries and updates based on the 
criteria such as high frequency of execution, high volume of 
data accessed, response time constraints or explicit high 

priority. This analysis will result on definition of the tables 
that require extra columns, when appropriate to reduce the 
number of joins required for dominant queries. After the 
recomposition of the tables with extra colums there is a need 
to consider also the data integrity due to denormalization [9].  

Denormalizing databases is a critical issue because of 

the important trade-offs between system performance, ease 

of use, and data integrity [12]. Thus, a database designer 

should have a good reason when deciding to perform 

denormalization. 

IV. THE ARCHITECTURE OF NORMALDB 

As stated in [11], students find it difficult to understand 

the concept of FDs and normalize data in order to obtain 

smaller well-structured relations. NORMALDB is a web-

based e-Learning tool that we developed to aid students 

understand and experience the most complex tasks of 

database design, i.e., normalization and denormalization. 

The organization of NORMALDB resembles the way how a 

teacher schedules his / her class while teaching 

normalization and denormalization. Further, the ability to 

explore every single step / subtopic of normalization by 

running student’s own examples and breaking them down to 

elementary details makes NORMALDB far more 

advantageous vs. traditional in-class teaching of the subject. 
In the following subsections is given a description of 

NORMALDB to reflect its implementation in two layers, the 
logical and the interface layer. 

A. Logical Layer 

1) Normalization: At the data tier and business logic 
layer of NORMALDB, we adopted the Ceri and Gottlob’s 
script [4] implemented in Prolog. The Prolog programming 
language is known for its contributions to problem solving in 
AI [13]. A common integrated framework for describing 
both data structures (“facts”) and algorithms (“rules”), and 
the facilitated interaction with the code through the “trial and 
error” interface are few among several advantages readily 
provided by the Ceri and Gottlob code due to the logical 
representation of normalization in Prolog [4].  

The adopted Prolog script [4] of normalization consists 
of the following: 

• the facts, which provide data about relations (the 
relation name, attributes, and FDs), and 

• the rules, which relate facts, and implement all 
algorithms throughout normalization. 
 

For example, according to [4], a relation schema rel 

with the set [a, b, c] of attributes, and with set of FDs 

[a � b, b � c] is represented with the following 

facts at our logical layer: 
 
schema(rel, [a, b, c]). 

fd(rel, [a], [b]). 

fd(rel, [b], [c]). 
 
For each normalization step, there is a rule or a set of 

rules that may be invoked in any order. This way a user may 



92

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

observe results incrementally by executing certain rules step 
by step over the input base of facts. Some of the 
normalization rules provided in the script are as follows [4]: 

• findonekey(REL, K) - Determines one key K 

of relation REL 

• assertallkeys(REL) - Determines and asserts 

all keys of REL 

• findmincover(REL) - Finds a minimal cover 

of the FDs defined for REL 

• thirdnf(REL)  - Decomposes REL into 3NF 

• haslj(REL) - Tests for losslessness of the 

decomposition of REL 

• makelj(REL) - Makes the decomposition of REL 

lossless 

• projectfds(REL, RELl) - Projects FDs 

holding for the relation REL to the relation RELl 

• isinbcnf(REL) - Tests whether REL is in BCNF 

• bcnf(REL) -  Decomposes REL into BCNF  

• formminimize(REL) - Minimizes the 
decomposition of REL 
 

2) Denormalization: Denormalization also supported in 
NORMALDB is a rather intuitive task driven primarily by 
queries, which are frequently invoked in a database and 
involve expensive joins. 

The implementation in NORMALDB of denormalization 
extends the existing Prolog knowledge base of normalization 
with the following: 

• rules for the direct re-composition of tables, and 

• a parser written in Definite Clause Grammar (DCG) 
notation of Prolog, which is able to read queries  
against the database and reason upon them to infer, 
which tables need re-composition in favor of 
performance. 

Regarding the feature of re-composition of relations we 
have extended the Prolog code with a pair of rules. 

The first one, rule recompose, gets the two relations 
schema to be merged (row 2 and 3), generates a new name 
for the newly created relation (row 4), ensures there is not 
any other relation schema in the base of facts with the one it 

is trying to create by deleting any NEWREL instance (row 5), 

merges two schemas in a new one NEWSCHEMA (row 6) and 

finally calls the rule recomposerel, which will build the 

new relation NEWREL with its schema NEWSCHEMA. 
 

1.  recompose(REL, REL1, REL2)--> 

2.   {schema(REL1, SCH1), 

3. schema(REL2, SCH2), 

4. makerecomposedname(REL1, NEWREL), 

5.  retractall(schema(NEWREL, K)), 

6. append(SCH1, SCH2, NEWSCHEMA)}, 

7. html(div(\recomposerel(REL, 

NEWREL, NEWSCHEMA))). 

The second one, rule recomposerel, asserts the newly 

created relation schema to the base of facts, asserts the 
decomposition information between the original relation and 
the newly re-composed relation, projects the FDs from the 

original relation schema to the recomposed relation, 
minimizes the original relation i.e., if eventually the 
recomposed relation schema is a subset of another existing 
relation schema it is discarded from the database, and finally 
an output information is published in a HTML page created 
by HTML generators. 

Another improvement to the Prolog script was the Prolog 
DCG parser. Semantic grammar is an engineering technique 
for constructing natural language understanding systems 
[14]. The denormalization algorithm of the tool is written 
with this notation of Prolog. SQL queries given by the user 
will be read using DCG grammar and then processing them 
will result in a statistical table of joins between relations. A 
detailed description follows in the next subsection. 

3) Rendering Prolog results into HTML. In addition to 
denormalization, few more modifications to the Prolog script 
of Ceri and Gottlob [4] were applied to enable the integration 
with the web-based module, i.e., adding new rules and facts 
for rendering Prolog results into the web page. Most of new 
rules are HTML generators, which convert the adopted 
Prolog script to the Prolog server [15], namely they generate 
HTML tags, which hold the results retrieved from Prolog 
predicates. 

These generators are built-up using DCG notation rules. 
The idea behind this is to translate a Prolog term i.e., 
predicate into an HTML document. HTML generators are 
predicates from html_write.pl library. This library contains a 
wide range of DCG rules that enables easy generation of 
HTML pages. 

The DCG non-terminal html/3 (html(:Spec)) is 
the main predicate of this library. It translates the 
specification for an HTML page into a list of atoms that can 

be written to a stream using print-html/1. The 
expansion rules of this predicate may be extended by 

defining the multi-file DCG html_write: expand/1. 
Spec is either a single specification or a list of single 
specifications. 

Nested with this predicate can be used another predicates 
that are build up as per request, which contain some Prolog 
rules and then the result from this rule is injected within any 

HTML tag by using any html predicate. 

B. Interface Layer 

Next we discuss the interface layer of NORMALDB, 
which is mainly developed in PHP language.  

Next we discuss the interface layer of NormalDB, which 
is mainly developed in PHP language. The HTML tag 
rendering is provided through PHP scripts, whereas 
JavaScript, especially its libraries jQuery [16] and jQuery UI 
[17] help make the NORMALDB interface simple and easy to 
navigate through. 

Figure 1 shows the organization of NORMALDB from 
user perspective. The colored boxes represent web pages, 
whereas the grey box represents the knowledge base of the 
application supplied by the Prolog server, which runs 
whenever a normalization step is called. Connection to the 
knowledge base does not require any extra procedure from 
the user, except for a user to be signed in. Simply, the given 



93

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

connection hyperlink makes a request to the Prolog server, 
which in turn displays the result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The interconnection between topics and examples is done 

via hyperlinks, while results are represented in accordance to 
the actual web page template. Depending on the content, the 
result appears within a dedicated tag of the page, or in a 
message box that shows after clicking the link. The 
JavaScript language and its libraries jQuery and jQuery UI 
are employed for user-friendly purposes of the interface. 
jQuery tabs and message boxes helped us prevent the 
overload of the interface. Also the management of the 
Document Object Model (DOM) is carried out with jQuery 
routines. This is applied when the student gives initial 
relation schema attributes and FDs. The remove() and 
appendTo() methods are employed to add/remove attributes 
and FDs. 

The whole interface of the tool (colored boxes in Figure 
1) is organized in three main parts: 

Theoretical part: Consists of theoretical explanations of 
the topics covering the normalization phase of the database 
design. Each topic explanation appears as a hyperlink, and 
may further contain links, which illustrate the application of 
the given theory to a given example. That example is 
referred to as a default example in our tool, and is designed 
to serve the demonstration of each of the theories over a 
given set of (default) relations and their FDs. 

Practical part: This is the core part of NORMALDB, and 
is aimed to serve exercises. The user (e.g., a student) shall 
input the relation name, attributes, as well as FDs of the 
relation that he / she wants to examine in terms of 
normalization and denormalization, and the tool will then 
start exploring the topics upon the given relation. 

Exam part (Self-assessment part): This part is planned 
for future work. It is designed to provide a testing 
environment where users (e.g., students) may themselves 
examine their knowledge gained in the field concerning both 
exercises and the theory. 

V. IMPLEMENTATION 

The development environment in building NORMALDB 
consisted of the scripting language PHP, JavaScript, and the 
logic programming language Prolog. 

The logic of the NORMALDB relays in the server side of 
the application. The client side shares just the functionalities 
given by JavaScript codes. 

The server side of the application is comprised of two 
distinct servers. Apache server is employed for processing 
PHP scripts and generating HTML pages for the client, while 
Prolog server provides the knowledge base of the system. 
The later one is accessed from the client side through links 
generated from the PHP scripts. 

Figure 2 describes the used architecture in NORMALDB 
with the pursued workflow of the functionalities. In the 
following subsections we will explain the challenges that 
appeared during the system design and implementation..  

A. Prolog Server 

  Prolog is an excellent tool for representing and 
manipulating data written in formal languages as well as 
natural languages. Its safe semantics and automatic memory 
management make it a prime candidate for programming 
robust Web services [15]. 

There are two views on deploying Prolog for Web related 
tasks [15]: 

• Prolog like an embedded component: Prolog acts 
as an embedded component in a general Web 
processing environment. In this view it is a 
component that can be part of any of the layers of 
the popular three-tier architecture for Web 
application. Components generally exchange XML 
if used as part of the backend or middleware services 
and HTML if used in the presentation layer. 

• Stand-alone application: HTTP allows Prolog to be 
deployed in any part of the service architecture, 
including the realization of complete Web 
applications in one or more Prolog processes. 
 

The later one is the view that is used in our project. The 
reason why this separation is done is based on the way how 
Prolog reacts to the inter-platform communication. There are 
web applications, which require the execution of the Prolog 
logic only once. Thus, the best suited solution is to follow 
the application of Prolog as embedded component. Other 
applications require the Prolog knowledge base to remain 
active during the user session. In this case the second view is 
recommended. 

In NORMALDB the knowledge base changes several 
times through normalization steps. Because of this we 
followed the second approach by employing Prolog server 
features for handling the communication between HTML 
and Prolog.  

Figure 2 describes how the communication flows 
between servers and client browser. 

Whenever an HTTP request for PHP processing is sent, 
the Apache server responds with its results. 

 

 
 

 

Figure 1.  Organization of the interface layer in NormalDB. 



94

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the other side, when an HTTP request dedicated for 

Prolog processing is sent to the Prolog server, the later one 
responds with returning its results. The requests to the 
servers aredone from the user via clicking to the links 
appeard in HTML pages. 

This way NORMALDB responds to the user requests by 
exchanging data on two servers at the same time, which 
illustrates the flexibility of the tool. 

B. Preserving the state 

The process of normalization and denormalization flows 
over a step by step evaluation, which requires keeping and 
following the active state of the script execution. This 
happens because of the modifications that are done to the 
knowledge base after evaluating a particular step. Traversing 
through the Prolog script to find the predicates that will 
implicate the required rule, results in asserting new facts that 
affects the next step. For example, if a user wants to test 
whether a particular decomposition has the lossless join 

property, a clause of the form haslj(rel) is searched in 
the base of facts. This kind of facts is provided after the 
execution of the 3NF algorithm. 

This way it was necessary to have the knowledge base 
updated with the information required by users’ future 
request. Hence, it was needed somehow the Prolog 
application to be active as long as a user session is active. 

When addressing this concern, we ended up with three 
alternative solutions, each applying distinct techniques 
originating from different fields. 

One solution was to run the Prolog script using the 

system(), exec(), and shell_exec() built-in PHP 

functions. These functions are easy to implement, but the 
troubles arise after running a required predicate since the 
script then closes up such that the newly asserted predicates 
cannot be saved. 

Another solution was to use a relational database at the 
backend of the application, which will track every inference 
deduced by the Prolog script, and accordingly modify 
respective tables in the database. Yet for the sake of the 
simplicity of the tool, and to avoid difficulties that might 
appear while tracking Prolog inferences, this solution was 
omitted. 

Finally, we experienced the use of Prolog server [15] as 
the most appropriate solution for surpassing this problem, 
which will be discussed in detail in the following 
subsections. 

C. Communication with Prolog server 

The Prolog logic programming language supports a 
number of libraries for accessing data on HTTP (Hypertext 
Transfer Protocol) servers, as well as for providing HTTP 
server capabilities from SWI-Prolog. Both server and client 
are modular libraries. The server can be operated from the 

Unix inetd super-daemon, as well as a stand-alone 
server that runs on all platforms supported by SWI-Prolog 
[17]. 

In order to use these libraries, certain modifications to the 
actual normalization script in Prolog of Ceri and Gottlob 
were required. Thereby, the mere logic of the script is kept 
unmodified, extending it with built-in predicates to deal with 
HTTP requests to configure the HTML pages. 

In a traditional web environment user actions are 
captured by clicking the links. The links on the pages are 
formulated based on the desired action. For example, if the 
user lands in a page for finding the minimal cover of the FDs 
then the link containing the appropriate handle together with 
the input variables is constructed by using PHP string 
manipulation functions and is rendered to the anchor tag. 
The input variables in most of the cases consist of the name 
of the relation instance in which the minimal cover will be 

computed (bank) and the name of the predicate in the 
Prolog script for performing the calculation 

(findmincover). 
 

<a href="http://localhost:5000 

 /module?name=findmincover 

&relation=bank"> 

 

Library library(http/http_dispatch), which 

is defined in the beginning of the script, dispatches the 
request from HTTP request, where it gets the location of the 
predicate that will serve the page from the URL and find the 
required handler. 

Request handlers are built-in predicates that handle the 
HTTP requests made from instantiated HTML pages using 
hyperlinks. When an HTTP request arrives at the server, then 
Prolog starts traversing through the predicate tree for finding 
the handle that matches the path came with the HTTP 
request. The required path is noted as first parameter of the 

 
 

 

Figure 2. Workflow and request chains of NormalDB tool. 



95

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

predicate. The second parameter defines the main predicate 
that handles the handler. As the third parameter of this 
handler is the list of the options related with the handler. A 
code that creates a common handler is written below: 

 
:- http_handler(root(module),home,[]). 

 
After calling a handler, a thread is employed to search for 

a predicate supported by the handler, which is defined in the 
code. 

 
home(Request) :- 

http_parameters(Request, 

[name(Name,[length >= 1]), 

relation(Rel,[length >= 2])]),  

reply_html_page(title('Example'), 

  

 [\html_requires(css('style.css')), 

\case(Name, Rel)]). 

 
The HTTP request can include variables, which can be 

extracted from the request and inherited to other predicates 
that build up the rule. The base predicate that is retrieved 
from the handler renders the HTML page with enclosed 
html, title and body tags, by the following rule: 

 
home(Request):-http_parameters(Request, 

[name(Name,[length >= 2]),  

relation(Rel,[length >= 2])]), 

reply_html_page(title('Example'), 

[\html_requires(css('style.css')), 

\case(Name, Rel)]). 

 
The body part of the new arranged HTML page is filled 

with other HTML tags that are derived from the next HTML 
generators used from other predicates. 

Weaving of the HTML tags with the appropriate results 
is done through HTML tag generators included in the special 
defined rules, which are called with DCG notation of Prolog. 
These rules get the results inferred from the base predicates 
and render them into HTML tags that can be read from every 
web browser. 

The formulated HTML reply of the Prolog server is 
injected into the HTML page rend from the Apache server 

within a <iframes> tag. 

A sample Prolog rule that makes the rendering of the 

result of 3NF normalization in a special div tag looks like 
follows:  

 
case(thirdnf,Rel)-->

 {cleandecomp(Rel)},  

 html(div([\step1_html(Rel), 

  \step2_html(Rel),  

  \step3_html(Rel),  

  \step4_html(Rel),  

  \step5_html(Rel)])). 

 

Some of the links are processed at runtime during the 
execution of the PHP page, while others are simple links and 
are invoked when a user clicks them. 

D. Request processing inside Prolog server 

After the appropriate handle is activated, the traversing 

inside the Prolog server rules and predicates starts in 

hierarchical manner. 

The built-in rule http_parameters starts the 

procedure with extracting the parameters that are required 
from the following predicates. This predicate fetch and type-
check parameters transparently for both GET and POST 
requests and converts them to atoms. 

Parameters that were catch from the HTTP request, after 
converting to atoms, are passed to the main predicates that 
will render the HTML page. 

 
reply_html_page(title('Example'), 

[\html_requires(css('style.css')), 

\case(Name, Rel)]). 

 
The body content of the output pages is build using 

HTML tag generators written in DCG notation. The main tag 

generator that is used here is html/1 predicate. Within this 
generator can be used other tag generators, like div, table, h2 
and so on. 

 
html(div([table(class(stats), 

[\theader([ 'Name', 

'Attribute', 

'Relation Key']) 

| \rowssimple(L)])])). 

E. Preserving Consistency 

The consistency of the Prolog server will be intimidated 
if the same predicate is queried two or more times without 
rolling back to the actual state of the server. Multiple queries 
are posed in case the user clicks the same link multiple times. 
To avoid unwanted results from the repeated clicks, there are 
specific rules asserted in Prolog server that take care to clear 
the server from the previous results.  

Additionally, using the same relation name within the 
same knowledge base by different users will raise the 
problem of interference among results of different users. To 
avoid this, we used the unique session number functionality 
of PHP. The opened index page automatically creates a new 
session with unique number, which will uniquely identify the 
relation schema used by that session, concretely by one user. 
The task of Prolog server in this case is to create a copy of 
the default relation schema and to rename it with a 
combination of its original name and the session number of 
the user. 

In this way, normalization rules consider every user 
session as unique, enabling thus every user work with 
exercises separately at the same time on the same server. 

F. SQL Parser for denormalization 

In the denormalization phase, there is no rule that 
indicates how to recompose resulted tables from 



96

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

normalization. Instead, this phase is more intuitive and based 
on the queries that could be used by the end-user or data 
warehouse transactions.. 

To give this logic to our tool, it is required to have the 
module that will “understand” the queries posed by the user 
and to calculate how many times each table is joined with 
another one.  

This knowledge is represented in Prolog using DCG 
notation, which is specific for natural language processing 
tasks. 

The script starts with the rule: 
 
sql(s(S,F,K)) -->  select(S), 

from(F), 

where(K). 

 

which seperates the given query in three parts and continues 
with analyzing the content of each part. 

In the body part of these parsing rules are placed 
predicates that count the joined relations after detecting the 
names of tables that are joined within query. This rationale 
has been implemented with the following predicate: 
 

joining(T1, T2) :- 

(joined(T1,T2,N)),M is N+1, 

retractall(joined(T1,T2,N)), 

assertz(joined(T1,T2,M)). 

 

VI. CASE STUDY: LEARNING NORMALIZATION IN 

NORMALDB 

Accessing NORMALDB through a URL will initially open 
its homepage as is common for web applications (Figure 3). 
As mentioned earlier in Section IV, the tool is organized in 
three individual modules: theoretical, practical, and the 
testing module. 

The theoretical module (opens when clicking the green 
box in Figure 3) loads a sample example, which illustrates all 
steps of normalization one after another running in the 
Prolog server. The relational schema used in the example is 
named rel and is given a set of predefined FDs. 

The normalization steps or subtopics are each provided 
on a left menu in the page (Figure 4). Changing along the 
menu links, which represent subtopics, does not affect the 
Prolog server unless a button involving the example is 
clicked. 

Such buttons contain links to the Prolog server, invoking 
thus the corresponding predicate to run for the given 
subtopic. 

The left menu contains also the denormalization module 
of the tool. This page, beside the theoretical explanation of 
the topic, includes a form where the user may textually input 
queries supposed to be executed over time against the 
derived database schema. These queries are then analyzed 
with a SQL (Structured Query Language) analyzer script 
written in Prolog, which yields the statistics about which 
tables need to be joined. This way, the user may decide 
which tables need to be recomposed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The result representation in the application is done by 

using jQuery [16] controls. These controls are activated by 
clicking the buttons, which send appropriate requests to 
Prolog server.  

In theoretical part, these functionalities are placed in the 
end of each introduced section, whereas in the practical part 
these are the main functionalities of the pages. 

Navigation to the practical module is possible from any 
page (by clicking the orange box placed at the top of the 
page), not just while residing at the NORMALDB homepage. 
Once opened, this module (see the Web page in Figure 5) 
will first retract all facts belonging to the sample example of 
the theoretical part, and afterwards eventually load a new 
relational schema entered interactively by the user through a 
Web form. If the user provides also the relation attribute 
types, then the tool will be able to generate a ready-to-deploy 
SQL script consisting of procedures for creating the database 
and its tables. 

 
 

 
 

Figure 3. Home Page 

 
 

Figure 4. Theoretical part 



97

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The relation schema, its attributes and FDs entered 

through the Web form are processed by PHP string 
manipulation built-in functions, and are written as new facts 
in a separate Prolog file. For instance, considering the 
example of Section III, let us assume that the user enters the 

same input data, i.e., the rel relation schema with attributes 

[a, b, c] and a set [a � b, b � c] of FDs 
through the Web form of the practice page as depicted in 
Figure 5.  

In the left menu of this page, are listed different ready 

examples. By clicking to one of them, the relation that is 

described will be loaded and then the user can continue 

exercising with the given topics. Figure 6 shows new loaded 

ready-given exercise named “bank” 

Exercising panel for both, ready-given examples and 

examples given by users, is the same page. This shows also 

the dynamicity of NORMALDB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After uploading the new relation (given by user or ready 
given example), all links that will be used for further 
explanation of the topic will use this relation as reference and 
will apply their rules to this relation.  

Whenever the user wants to change the relation instance 
he may move to the last tab and give new relation instance 
data. When the new relation will be uploaded, the data about 
the old one will be deleted and removed from the knowledge 
base.  

The upper mentioned initial facts will be stored in the 
server in a separate Prolog file and will be eventually 
consulted during the lifetime of the user session (Figure 5).  

After uploading the initial data the first thing a user can 
do is to find all relation keys by clicking the Assert Key 
button, which actually triggers the evaluation of the rule 

assertallkeys(bank) at the Prolog server. As 

illustrated in Figure 7a the result of our example will be 

“All keys are [[branchcame, branchcity, 

assets, customername, customerstreet, 

loanno, accntno]]”, rendered at the bottom of the 
page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Practicall Part: Form for giving new relation 

 
 

Figure 6. Practicall Part: Ready given example 

 

 
 

a) Result rendered within the page 

 

 
 

b) Result appears in new message box 
 

Figure 7. Result rendering in practical part 



98

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The other display format of results is by using jQuery 
dialog box. This format  is used when the resulting display 
contains more than one Prolog rule execution.  Figure 7b 
displays the 3NF decomposition of our running example. 

As one may experience NORMALDB has met the 
requirement of simplicity in its interface and usage. The 
organization of the page, its rich set of features and the 
simple layout contribute altogether towards bringing closer 
to students the normalization theory, which has otherwise 
proved to be troublesome to capture in a traditional teaching 
classroom. 

VII. APPLICATION DEPLOYMENT 

 
In order for users to be able to use this tool, we have 

published it on the Internet and have established an 
authentication module for accessing the tool. Because the 
platform of NORMALDB includes the scripting language 
PHP, JavaScript and the logic programming language 
Prolog, the PHP scripting files have been published on 
Apache Web Server port 80, which was installed on a Linux 
platform and the Prolog server was activated within SWI-
Prolog server for handling Prolog requests.  The HTTP 
Prolog server library consists of two mandatory parts and 
one optional part [15]. The first mandatory one deals with 
connection management, while the second mandatory one 
implements a generic wrapper for decoding the HTTP 
request calling for user code to handle it and encode the 
answer. Dealing with hosting of the Prolog server, three 
different approaches were considered: 

• One is to run it on a dedicated machine [15] on port 
80, the standard HTTP port. The machine may be a 
running virtual one. The (virtual) machine approach 
isolates security threads and allows for using a 
standard port. 

• The server can also be hosted on a non-standard port 
such as 8000, or 8080. However, using non-standard 
ports may experience issues from intermediate 
proxy- and/or firewall policies.  

• Another approach is to use Apache reverse proxies. 
This causes the main web-server to relay requests 
below a given URL location to our Prolog server.  

In our case the Prolog server, has been hosted on a 

dedicated machine on port 80, a standard HTTP port, on 

Windows platform. Installation of the SWI-Prolog on a 

Windows system contains the following important features 

[15]: 

• A folder called pl containing the executables, 

libraries, etc. of the system. No files are installed 

outside this folder. 

• A program swipl-win.exe, providing a window for 

interaction with Prolog. Another 

program, swipl.exe, is a version of SWI-Prolog that 

runs in a DOS-box. 

• The file-extension .pl is associated with the 

program swipl-win.exe. Opening a .pl file will 

cause swipl-win.exe to start, will switch the 

directory to the one in which the file-to-open resides 

and load this file. Additionally, other Prolog files 

may be consulted within the SWI-Prolog. 

A. Security, Authentication, and Event Logging 

Web security is a set of procedures, practices, and 
technologies for assuring a reliable, predictable operation on 
web servers, web browsers, other programs that 
communicate with web-servers, and the surrounding Internet 
infrastructure. Unfortunately, the sheer scale and complexity 
of the Web makes the problem of web security dramatically 
[18] more complex than the problem of Internet security in 
general. Today's web security problem has three primary 
facts: 

• Securing the web-server and the data that is on it; 

• Securing information that travels between the web-
server and the user; 

• Securing the end user's computer and other devices 
that people use to access the Internet; 

NORMALDB authentication module offers three different 
user groups: students, instructors and administrators, where 
each of the user groups has different permissions. A one’s 
access is enabled through traditional login data with 
username and password, where the password is encrypted 
with SHA-1 (Secure Hash Algorithm). 

In each page of NORMALDB authentication control is 
performed, and in the case there is unauthorized attempt for 
access, the session automatically will be redirected to the 
login page. For security reasons, during the logging process 
some of the user’s data are recorded, like: Username, 
Hostname – the computer name from which the user has 
tried to log in, Ipaddress – user's IP address, AttemptStatus – 
status of the attempt, which may take value Successful or 
Failed, and EntryDate – date and time when the attempt was 
made. 

NormalDB also provides the feature of event logging 
where every user’s action gets evidence. The logging event 
includes the following data: Username – the user who 
approaches the tool, SessionId – a unique ID that identifies 
each session to the application, EntryDate – date and time 
when the attempt was made, Actions – describes the actions 
taken by the user e.g., New Example means the user has 
practiced a new normalization example, and Details – 
contains information about the input relational schema and 
the input FDs. Figure 8 shows a view of event logging. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Event logging in NormalDB 

 



99

International Journal on Advances in Life Sciences, vol 4 no 3 & 4, year 2012, http://www.iariajournals.org/life_sciences/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. CONCLUSION AND FUTURE WORK 

 
This paper introduced NORMALDB, an e-Learning tool, 

which offers a user-friendly environment for learning and 
experimenting the normalization phase of the database 
design. Simple interface with an internal complex system 
and a wide range of features including experiments with self-
chosen examples are some of the main advantageous features 
of NORMALDB. For the purposes of friendlier UI and 
efficient client-server interaction several jQuery and jQuery 
UI routines were applied. Additionally, some Prolog rules 
were added to the Prolog script for database normalization 
[4], mainly for supporting denormalization feature of our 
tool.  

During the development phase different challenges were 
encountered. The main one was to enable an efficient 
communication between PHP and Prolog. Among several 
alternatives considered, the interaction through a Prolog 
server [15] proved to be the most appropriate solution for our 
application since it already provides a number of Prolog 
libraries for accessing data on HTTP. Syntactically, the 
communication between HTML and Prolog predicates has 
been carried out through DCG notation. The HTML 
rendering is produced through HTML tag generators. 

The tool was deployed in two separate servers, namely 
one for handling PHP requests – Apache server, and another 
for handling Prolog reasoning – Prolog server. While 
deploying Prolog server we eventually encountered 
difficulties, which were solved with deploying it into a 
dedicated Windows-based hosting server.  

By placing NORMALDB in real environments, it was 
possible to check and test the communication between 
Apache and Prolog server. We plan to evaluate NORMALDB 
by placing it for use by database students among our future 
plans around the NORMALDB. 

NORMALDB is further planned to expand its capabilities 
of a typical e-Learning tool by incorporating a test module 
where the student may test himself / herself by solving a 
given normalization problem, and then comparing his / her 
solution with the one generated by the tool. Moreover, the 
support for higher NFs is one of our future plans, besides 
adding new visual effects that will enable graphical 
interpretation of relations’ decomposition. Adding higher 
NFs is easy to implement, since the interface is flexible for 
adding new features and as stated in [4] the knowledge base 
can be expanded. 

 

REFERENCES 

 

[1] L. Ahmedi, N. Jakupi, and E. Jajaga, “NORMALDB – A logic-
based interactive e-Learning tool for database normalization 
and denormalization”, The Fourth Intl. Conf. on Mobile, 
Hybrid, and On-line Learning (eL&mL), Jan. 30- Feb. 4, 
2012,  pp. 44-50. 

[2] Namahn, “E-learning: A research note by Namahn”, 
www.namahn.com/resources/documents/note-e-learning.pdf, 
22.11.2011. 

[3] J. O. Uhomoibhi, “Implementing e-learning in Northern 
Ireland: prospects and challenges”, Campus-Wide 
Information Systems, vol. 23 no.1, 2006, pp. 4-14, 
doi:10.1108/10650740610639697. 

[4] S. Ceri and G. Gottlob, “Normalization of relations and 
PROLOG”, Commun. ACM , vol. 29 no. 6, 1986, pp. 524-
544, doi:10.1145/5948.5952. 

[5] A. Yazici and Z. Karakaya, “JMathNorm: A Database 
Normalization Tool Using Mathematica”, ICCS (2), Lecture 
Notes in Computer Science , vol. 4488, 2007, pp. 186-193, 
doi:10.1007/978-3-540-72586-2_27. 

[6] A. Mitrovic, “NORMIT: A Web-Enabled Tutor for Database 
Normalization”, Intl. Conf. on Computers in Education 
(ICCE), Auckland, New Zealand, 3-6 Dec. 2002, pp. 1276-
1280, doi:10.1109/CIE.2002.1186210. 

[7] P. S. Dhabe, Y. V. Dongare, and S. V. Deshmukh, 
“RDBNorma: - A semi-automated tool for relational database 
schema normalization up to third normal form”, International 
Journal of Database Management Systems (IJDMS), vol. 3, 
no.1, Feb. 2011. 

[8] Du H and Wery L, “Micro: A normalization tool for 
relational database designers” Journal of Network and 
Computer application, vol. 22, Oct. 1999, pp. 215-232, doi: 
10.1006/jnca.1999.0096. 

[9] R. Stephens, “Beginning Database Design Solutions” Wiley 
Publishing, 2008. 

[10] R. Ramakrishnan and J. Gehrke, “Database Management 
Systems”, 2nd ed., McGraw-Hill, 2002. 

[11] S. S. Lightstone, T. J. Teorey, and T. Nadeau, “Physical 
Database Design: the database professional's guide to 
exploiting indexes, views, storage, and more” 4th ed., Morgan 
Kaufmann, 2007.  

[12] G. L. Sanders and S. K. Shin, “Denormalization effects on 
performance of RDBMS”, Proceedings of the 34th Annual 
Hawaii International Conference on System Sciences 
(HICSS-34), Jan. 2001. 

[13] G. F. Luger, “Artificial Intelligence: Structures and Strategies 
for Complex Problem Solving”, 6th ed., Addison Wesley, 
2008. 

[14] R. R. Burton and J. S. Brown, “Semantic grammar: A 
technique for constructing Natural Language interfaces to 
instructional systems”, 1977. 

[15] J. Wielemaker, SWI-Prolog HTTP support. SWI-Prolog's 
home page:  
http://www.swi-prolog.org/pldoc/package/http.html, 
22.11.2011. 

[16] jQuery Documentation. Sept. 2009. The jQuery Project: 
http://jquery.org/, 22.11.2011. 

[17] jQuery User Inerface Library. Sept. 2009. The jQuery UI 
library: http://jqueryui.com/, 22.11.2011. 

[18] S. Garfinkel, “Web Security, Privacy and Commerce”, 2nd 
ed., O’Reilly, November 2001. 

[19] K. Hsiang-Jui and T. Hui-Lien, “A web-based tool to enhance 
teaching/learning database normalization”, Proc. of the 2006 
Southern Association for Information Systems Conf., 2006, 
pp. 251-258. 

[20] D. Akehurst, B. Bordbar, P. Rodgers, and N. Dalgliesh, 
“Automatic Normalisation via Metamodelling”, ASE 2002 
Workshop on Declarative Meta Programming to Support 
Software Development, Sept. 2002. 

[21] S. Ram, “Teaching data normalisation: Traditional 
classroom methods versus online visual methods - A literature 
review“, Proc. of the 21st Annual Conf. of the National 
Advisory Committee on Computing Qualifications, Auckland, 
New Zeland, 2008, pp. 327-330.  


